Synthesis of Multifunctional AN-co-(MMA/IA) Fibrous ion-exchanger by Hydrolysis and Adsorption Properties for Trace Transition Elements

가수분해에 의한 AN-co-(MMA(IA) 다관능성 섬유이온교환체의 합성 및 미랑 전이금속 흡착특성

  • 황택성 (충남대학교 공과대학 화학공학과) ;
  • 이선아 (충남대학교 공과대학 화학공학과) ;
  • 황계순 (충남대학교 공과대학 화학공학과)
  • Published : 2001.11.01

Abstract

In In order to remove harmful trace elements such as $Co^{2+}$, $Ni^{2+}$ , $Cr_2O_7\;^{2-}$ from water, we synthesized AN-co-(MMA/IA) according to various mole ratio of monomers and spun by wet-spinning. And multi-functional PAN ion exchangers were prepared by hydrolysis. We observed structure, degree of functionalization, ion exchange capacity, distribution coefficient and mechanical properties for ion exchanger. Anion exchange capacity decreased in 4.5 ~ 4.2 meq/g with increasing of IA content and cation exchange capacity increased in 1.8 ~ 2.2 meq/g. Tensile strength of the ion exchanger increased up to 0.008 mol% IA content and appeared maximum value by 216$kg/cm^2$Distribution coefficient for AN-co-(MMA/IA) ion exchanger appeared maximum value for Co(II), Ni(II) in pH 5-6 range and for Cr(III) in pH 3-4 range. And the adsorption capacity was in the order of Cr(III) > Co(II) > Ni(II) for multicomponent in continuous process.

본 연구에서는 수중의 $Co^{2+}$, $Ni^{2+}$ , $Cr_2O_7\;^{2-}$등의 유해이온을 선택적으로 흡착 제거시키기 위하여 단량체의 몰비를 달리하여 AN-co-(MMA/IA)를 합성하고, 습식방사에 의해 제조한 PAN 섬유를 산가수분해하여 PAN계 다관능성 이온교환섬유를 합성하였다. 또한 합성한 이온교환섬유의 구조, 관능화도, 이온교환용량, 분포계수. 기계적 물성 등을 시험하였다. 이온교환체의 음이온교환 용량은 IA의 mole 함량이 증가함에 따라 4.5~4.2 meq/g으로 감소하고, 양이온교환용량은 1.8-2.2 meq/g으로 증가하는 경향을 보였다. 인장감도는 공중합체 내에 IA의 함량이 0.008 mol%까지 증가하여 216 $kg/cm^2$로 최대값을 나타냈고, AN-co-(MMA/IA) 이온교환체의 분포계수 측정 결과 Co(II)와 Ni(II)는 pH 5-6영역에서 최대를 보였고, Cr(III)는 pH 3-4에서 최대값을 나타냈다. 또한 다성분 계상에서의 연속식 흡착 실험에서 Cr(III > Co(II) > Ni(II)의 순으로 선택능을 나타냈다.

Keywords

References

  1. J. Korean Soc. of Textile Eng. and Chem. v.26 no.2 C.C. Park;H.J. Kim;H.D. Kim;B.K. Kim
  2. Polymer v.42 no.1707 P. Baja;T.V. Sreekumar;K. Sen
  3. J. Korean Soc. of Clothing and Textile v.13 no.2 Y.G. Chin;S.C. Choi
  4. Polymer (Korea) v.12 no.6 J.D. Huh;H.S. Yoon
  5. J. of Korean Fiber Society v.29 no.9 D.J. Lee;Y.S. Koo;H.J. Kim;H.D. Kim
  6. J. of Korean Fiber Society v.28 no.10 H.J. Kim;H.D. Kim
  7. J. of Korean Fiber Soc. v.37 no.9 I.G. Shin;S.H. Lee;S.M. Park
  8. Polymer Syntheses v.1 S.R. Sandler;W. Karo
  9. J. of Korean Fiber Soc. v.31 no.4 D.W. Kim;I.H. Kim;D.H. Ha;S.I. Hong
  10. Polymer(Korea) v.13 no.5 W.S. Kim;S.K. Lee;C.S. Lee;J.K. Lee
  11. J. of Korean Fiber Soc. v.31 no.9 B.C. Kim;S.G. Kim;B.G. Min;T.W. Son;C.J. Lee;D.U. Kim;S.I. Hong;S.S. Kim
  12. Polymer(Korea) v.25 no.3 T.S. Hwang;S.A. Lee;M.J. Lee
  13. J. Chem. Eng. Japan v.23 no.743 T. Kato;T. Kago;K. Kusakabe;S. Morooka;H. Egawa
  14. J. Chem. Tech. Biotech. v.30 no.563 K. Shakir;S.G. Beheir
  15. J. Appl. Polymer Soc. v.30 no.3239 H. Egawa;T. Nonaka;H. Maeda
  16. J. Korean Chemical Soc. v.29 no.2 D.W. Kim;K.S. Kim;N.K. Lee
  17. The Nature of the Chemical Bond(3rd Edition) L. Pauling
  18. Reactive & Functional Polymers v.33 no.13 J. Lehto;K. Vaaramaa;H. Leinonen
  19. Proceedings of Global Symposium on Recycling, Waste Treatment and Clean Tech. v.III J. Lehto;H. Leinonen;R. Koivula;A. Yli-Pentti;T. Karppinen
  20. Reactive & Functional Polymers v.23 no.221 H. Leinonen;J. Lehto
  21. Reactive & Functional Polymers v.43 no.1 H. Leinonen;J. Lehto