Influence of Oxidation Inhibitor on Carbon-Carbon Composites : 8. Studies on Thermal Decomposition Mechanism and Thermal Stability of Composites Impregnated with TEOS

산화억제제를 첨가한 탄소/탄소 복합재료의 물성에 관한 연구 : 8. TEOS를 함유한 복합재료의 열분해 메카니즘 및 열안정성 연구

  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 서민강 (한국화학연구원 화학소재연구부) ;
  • 이재락 (한국화학연구원 화학소재연구부)
  • Published : 2001.11.01

Abstract

In this work, thermal decomposition mechanism based on kinetic parameters and thermal stability of carbon fiber-reinforced carbon matrix composites (C/C composites), have been studied under high temperature oxidative conditions with addition of tetra-ethylorthosilicate (TEOS) as an oxidation inhibitor. Thermogravimetric analysis (TGA) was executed to evaluate the thermal decomposition mechanism and thermal stability of C/C composites in the temperature range of 30 ~ $850^{\circ}C$. As a result, the kinetic parameters of the composites impregnated with TEOS, i.e., activation energy for thermal decomposition ($E_d$), order of reaction (n) , and pre-exponential factor (A) were evaluated as 136 kJ/mol, 0, and 2.3$\times$$10^9s^{-1}$, respectively. Especially, the IPDT and $E_d$ of C/C composites impregnated with TEOS were improved largely compared with the composites impregnated without TEOS, due to the formation of $SiO_2$ on composite surfaces, resulting in interrupting the oxygen attack to carbon active site in the composites.

본 연구에서는 고온 산화분위기 하에서 탄소/탄소 복합재료의 열적 향상을 위해 사용된 tetraethylorthosilicate(TEOS)의 첨가량에 따른 복합재료의 kinetic parameter에 기초한 열분해 메카니즘 및 열안정성을 열중량분석기(TGA)를 사용하여 고찰하였다 TEOS를 함유한 탄소/탄소 복합재료의 kinetic parameter, 즉 열분해 활성화 에너지 ($E_d$), 반응차수(n), 지수앞 인자 (A)는 각각 136 kJ/mol, 0차, 및 2.3$\times$$10^9s^{-1}$을 나타내었으며, 특히 IPDT 및 $E_d$로부터 살펴본 복합재료의 열안정성은 탄소/탄소 복합재료에 TEOS가 첨가되면 크게 향상되었는데, 이는 산소에 대한 산화방지막, 즉 $SiO_2$의 형성으로 인한 복합재료 표면에서의 카본 활성종에 산소의 침투를 방해하여 TEOS를 함유한 복합재료가 이를 함유하지 않은 것에 비하여 표면 산화 속도가 감소되어 열안정성이 증가하였다고 사료된다.

Keywords

References

  1. Essentials of Carbon-Carbon Composites C.R. Thomas
  2. Carbon Materials and Composites J.D. Buckley;D.D. Edie(eds.)
  3. Carbon-Carbon Composites G. Savage
  4. Carbon Fibers Filaments and Composites P. Ehrburger;J.L. Figueiredo(ed.);C.A. Bernardo(ed.);R.T.K. Baker(ed.);K.J. Huttinger(eds.)
  5. Indian J. Chem. v.4 no.310 B.R. Puri;S.C. Anand;N.K. Sandle
  6. Chemistry and Physics of Carbon B.R. Puri;P.L. Walker Jr.(ed.)
  7. Carbon v.39 no.1229 S.J. Park;M.K. Seo
  8. Carbon v.38 no.1053 S.J. Park;M.S. Cho
  9. Polymer v.34 no.4547 M. Banks;J.R. Ebdon;M. Johnson
  10. Carbon v.3 no.16 E. Fitzer
  11. J. Colloid Interface Sci. v.188 no.336 S.J. Park;M. Brendle
  12. Carbon v.30 no.339 S. Ragan;G.T. Emmerson
  13. J. Am. Ceram. Soc. v.76 no.226 S. Jandhyala
  14. Polymer(Korea) v.22 no.987 M.S. Cho;S.J. Park;J.R. Lee;P.K. Pak
  15. Angew. Makrom. Chem. v.160 no.17 V. Choudhary;E. Fitzer;M. Heine
  16. Anal. Chem. v.33 no.77 C.D. Doyle
  17. Anal. Chem. v.35 no.1464 H.H. Horowitz;G. Metzger
  18. Polym. Lett. v.4 no.323 J.H. Flynn;L.A. Wall
  19. Polym. Lett. v.2 no.621 L. Reich
  20. Polym. Degrad. Stab. v.70 no.485 H. Nishida;M. Yamashita;N. Hattori;T. Endo;Y. Tokiwa
  21. Bull. Chem. Soc. Jpn. v.38 no.1881 T. Ozawa
  22. J. Appl. Polym. Sci. v.5 no.15 C.D. Doyle
  23. J. Res. Nat. Bur. Stand. v.70A no.6 J.H. Flynn;L.A. Wall
  24. Polym. Degrad. Stab. v.11 no.309 I.C. McNeill;H.A. Leiper
  25. Polym. Int. v.48 no.980 A. Babanalbandi;D.J.T. Hill;L. Kettle
  26. J. Phys. Chem. v.56 no.707 R. Simha;L.A. Wall
  27. J. Mater. Sci. v.33 no.1217 Y. Waku;N. Nakagawa;T. Wakamoto;H. Ohtsubo;K. Shimizu;Y. Kohtoku
  28. Carbon v.37 no.1685 S.J. Park;M.S. Cho;J.R. Lee;P.K. Pak
  29. Angew. Makrom. Chem. v.160 no.17 V. Choudhary;E. Fitzer;M. Heine
  30. Carbon v.37 no.411 N.S. Jacobson;T.A. Leonhardt;D.M. Curry;R.A. Rapp
  31. J. Mater. Sci. Lett v.18 no.47 S.J. Park;B.J. Park
  32. Polymer(Korea) v.24 no.237 S.J. Park;M.K. Seo;J.R. Lee
  33. Carbon v.38 no.1481 L.M. Manocha;S. Manocha;K.B. Patel;P. Glogar
  34. Carbon S.J. Park;M.K. Seo;J.R. Lee
  35. JOM v.43 no.54 E.W. Lee;J. Cook;A. Khan;R. Mahapatra;J. Waldman