RF MEMS Devices for Wireless Applications

  • Park, Jae Y. (Materials and Devices Laboratory, LG Electronics Institute of Technology) ;
  • Jong U. Bu (Materials and Devices Laboratory, LG Electronics Institute of Technology) ;
  • Lee, Joong W. (Materials and Devices Laboratory, LG Electronics Institute of Technology)
  • Published : 2001.03.01

Abstract

In this paper, the recent progress of RF MEMS research for wireless/mobile communications is reviewed. The RF MEMS components reviewed in this paper include RF MEMS switches, tunable capacitors, high Q inductors, and thin film bulk acoustic resonators (TFBARs) to become core components for constructing miniaturized on chip RF transceiver with multi-band and multi-mode operation. Specific applications are also discussed for each of these components with emphasis on for miniaturization, integration, and performance enhancement of existing and future wireless transceiver developments.

Keywords

References

  1. Gopinath A and Rankin J B, 'GaAs FET RF switches,' IEEE Trans. Electron Devices, vol.32, pp. 1272-8, 1985
  2. Ota Y, Sakakura M, Fujimoto K, Yamamoto S and Fujimoto H, 'High isolation and low insertion loss switch IC using GaAs MESFET's,' IEEE Trans. Microwave Theor'. Technol., vo1.43, pp. 2175-7, 1995 https://doi.org/10.1109/22.414559
  3. Kobayashi K W, Oki A K, Umemoto D K, Claxton S K Z and Streit D C, 'Monolithic GaAs HBT p-I-n diode variable gain amplifiers, attenuators, and switches IEEE Trans. Microwave Theor. Technique.,vol. 41 pp. 2295- 302,1993 https://doi.org/10.1109/22.260720
  4. Petersen K E, 'Micromechanical membrane switches on silicon,' IBM J. Res. Dev., vol.23, pp. 376-85, 1979
  5. Gretillat M-A, Gretillat F and de Rooij N F, 'Micromechanical relay with electrostatic actuation and metallic contacts,' J. Micromech. Microeng., vol.9, pp. 324-31,1999 https://doi.org/10.1088/0960-1317/9/4/307
  6. Yao J J and Chang M F, 'A surface micromachined miniature switch for telecommunications applications with signal frequencies from DC up to 4 GHz,' Tech. Digest, 8th Int. Conf. on Solid-State Sensors and Actuators, pp. 384-7, 1995
  7. Schiele I, Huber J, Evers C, HiIIerich B and Kozlowski F, 'Micromechanical relay with electrostatic actuation,' Tech. Digest, Int. Conf on Solid-State Sensors and Actuators, pp. 1165-8, 1997 https://doi.org/10.1109/SENSOR.1997.635412
  8. Hyman D et al , 'Surface-micromachined RF MEMS switches on GaAs substrates,' Int. J. RF Microwave CAE, vol. 9, pp. 348-61,1999
  9. Hyman D et al, 'GaAs-compatible surface- micromachined RF MEMS switches,' Electron. Lett., vol. 35,pp,224-6,1999 https://doi.org/10.1049/el:19990032
  10. Suzuki K, Chen S, Marumoto T, Ara Y and Iwata R, 'A micromachined RF microswitch applicable to phased-array antennas,' Tech. Digest, IEEE Microwave Theory Techniques Symp., pp.1923-6, 1999 https://doi.org/10.1109/MWSYM.1999.780350
  11. Sovero E A, Mihailovich R, Deakin D S, Higgins J A, Yao J J, DeNatale J F and Hong J H, 'Monolithic GaAs PHEMT MMICs integrated with high performance MEMS microrelays,' Proc. IMOC'99 (Rio de Janeiro, Brazil), 1999 https://doi.org/10.1109/IMOC.1999.867103
  12. Muldavin J Band Rebeiz G M, '30 GHz tuned MEMS switches,' Tech. Digest, IEEE Microwave Theory and Techniques Symp., pp. 1511-14, 1999 https://doi.org/10.1109/MWSYM.1999.780241
  13. Goldsmith C, Lin T-H, Powers B, Wu W-R and Norvell B, 'Micromechanical membrane switches for microwave applications,' Tech. Digest, IEEE Microwave Theory and Techniques Symp., pp. 91-4, 1995 https://doi.org/10.1109/MWSYM.1995.406090
  14. C. Goldsmith, J. Randall, S. Eshelman, and T. H. Lin, 'Characteristics of micromachined switches at microwave frequencies,' IEEE Microwave Theory and Technique Simp. Digest, pp.1141-1144 https://doi.org/10.1109/MWSYM.1996.511231
  15. Yao Z J, Chen S, Eshelman S, Denniston D and Goldsmith C, 'Micrornachined low-loss microwave switches,' IEEE Journal of MEMS, vol.8, pp. 129-34, 1999 https://doi.org/10.1109/84.767108
  16. S. Pacheco, C. T. Nguyen, and L. P. B. Katehi, 'Micromechanical Electrostatic K-Band Switches' 1998 IEEE MTT-S Digest, pp. 1569-1572 https://doi.org/10.1109/MWSYM.1998.700675
  17. Jae Y. Park, Geun H. Kim, Ki W. Cheong, and Jong U. Bu, 'Electroplated RF MEMS Capacitive Switches, IEEE 13th nternational MEMS Conference, Miyajaki, Japan, January, pp. 639-644, 2000 https://doi.org/10.1109/MEMSYS.2000.838593
  18. Young D J and Boser B E, 'A micromachined variable capacitor for monolithic low-noise VCOs,' Tech. Digest, Solid State Sensor and Actuator Workshop, pp. 86-9, 1996
  19. Dec A and Suyama K, 'Micromachined varactor with wide tuning range,' Electron. Lett., vo1.33, pp. 922-4, 1997
  20. Harsh K F, Zhang W, Bright V M and Lee Y C, 'Flipchip assembly for Si-based RF MEMS,' Proc. IEEE 12th Ann. Int. Workshop on Micro Electro MechanicatSystems, pp. 273-8, 1999 https://doi.org/10.1109/MEMSYS.1999.746833
  21. Jae Y. Park, Young J. Yee, Hyo J. Nam, and Jong U. Bu, 'Micromachined RF MEMS Tunable Capacitors using Piezoelectric Actuators,' Tech. Digest, IEEE Microwave Theory and Techniques Symp., May, 2001 https://doi.org/10.1109/MWSYM.2001.967330
  22. Yao J J, Park S and DeNatale J, 'High tuning-ratio MEMS-based tunable capacitors for RF communications applications,' Tech. Digest, Solid State Sensor and Actuator Workshop, pp. 124-7, 1998
  23. Jae Y. Park and Mark G. Allen, 'Micromachined High Q Inductors for High Frequency Applications', Micromachining & Microfabrication '98 Conference, SPIE, vol. 3514, pp. 218-228, Santa Clara, CA 1998 https://doi.org/10.1117/12.323890
  24. J. Chuang, S. Ghazaly, N. Zein, G. Maracas, and H. Gronkin, 'Low loss air-gap spiral inductors for MMICs using glass microbump bonding techniques '. IEEE-MTTS International Microwave Symposium Digest, vol. 2, pp. 131-133, 1998 https://doi.org/10.1109/MWSYM.1998.689340
  25. J.Y. C. Chang, A. A. Abidi, and M. Gaitan, 'Large suspended inductors on silicon and their use in a 2 um CMOS RF amplifier', IEEE Electron Devices Letters, vol. 14, no. 5, May 1993 https://doi.org/10.1109/55.215182
  26. M. E. Goldfarb and V. K. Tripathi, 'The effect of air bridge height on the propagation characteristics of the microstrip', IEEE Microwave Guided Wave Letter, vol. 1, pp. 273-274, Oct. 1991 https://doi.org/10.1109/75.89093
  27. Y. J. Kim and M. G. Allen, 'Surface micromachined solenoid inductors for high frequency applications', IEEE Transactions on Component, Packaging, and Manufacturing Technology (Part-C), vol. 21, no. 1 pp. 26-33, Jan. 1998 https://doi.org/10.1109/3476.670025
  28. M. Yamaguchi, K. Ishihara, and K. Arai, 'Application of thin-film inductors to LC filters', IEEE Transactions on Magnetics, vol. 29, no. 6, pp. 3222-3225, 1993 https://doi.org/10.1109/20.281143
  29. V. Sadhir, I. Bahl, and D. Willems, 'CAD compatible accurate models of microwave passive lumped elements for MMIC applications', International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, vol. 4, no. 2, pp. 148-162, 1994 https://doi.org/10.1002/mmce.4570040206
  30. A. Massarini, M. Kazimierczuk, and G. Grandi, 'Lumped parameter models for single- and multiple-layer inductors', 27th Annual IEEE Power Electronics Specialists Conference, vol.l , pp. 295-301, 1996 https://doi.org/10.1109/PESC.1996.548595
  31. G. Grandi, M. Kazimierczuk, A. Massarini, and U. Reggiani, 'Stray capacitances of single-layer air-core inductors for high-frequency applications', IAS'96. IEEE Industry Applications Conference, pp. 1384-8 vol.3, 1996 https://doi.org/10.1109/IAS.1996.559246
  32. B. Breen, 'Multi-layer inductor for high frequency applications', 41st Electronic Components and Technology Conference, pp. 551-4, 1991 https://doi.org/10.1109/ECTC.1991.163931
  33. D. Cahana, 'A new transmission line approach for designing spiral microstrip inductors for microwave integrated circuits', IEEE-MTT-S International Microwave Symposium Digest, pp. 245-247, 1983
  34. W. O. Camp, S. Tiwari, and D. Parson, '2-6 GHz monolithic microwave amplifier', IEEE-MTT-S International Microwave Symposium Digest, pp. 46-49, 1983
  35. H. M. Greenhouse, 'Design of planar rectangular microelectronic inductors', IEEE Trans. Parts. Hybrids and Packaging, vol. PHP-10, pp. 101-109, June 1974
  36. Ping Li, 'A new closed form formula for inductance calculation in microstrip line spiral inductor design'. Electrical Performance of Electronic Packaging, pp. 58-60, 1996 https://doi.org/10.1109/EPEP.1996.564778
  37. H. Bryan, 'Printed inductors and capacitors', Tele-Tech & Electronic Industries, PP. 68, 1955
  38. R. B. Strokes and J. D. Crawfold, 'X-band thin film acoustic filters on GaAs,' IEEE Tran. Microwave Theory Tech., vol. 41, pp. 1075-1080, Jury 1993 https://doi.org/10.1109/22.238530
  39. S. H. Kim, J. S. Lee, H. C. Choi, and Y. H. Lee, 'The Fabrication of Thin-Film Bulk Acoustic Wave Resonators Employing a ZnO/Si Composite Diaphragm Structure Using Porous Silicon Layer Etching,' IEEE Electron Device Letter, vol. 20, NO.3, March 1999 https://doi.org/10.1109/55.748905
  40. K. M. Lakin, G. R. Kline, and K. T. McCarron, 'High Q Microwave Acoustic Resonators and Filters,' Proceedings of the 1993 IEEE MTT-S International Microwave Symposium, vol. 5, pp. 1517-1520, 1993 https://doi.org/10.1109/MWSYM.1993.276852
  41. W. W. Lau, Y. Song, and E. S. Kim, 'Lateral-Field-Excitation Acoustic Resonators For Monolithic Oscillators and Filters,' IEEE International Frequency Control Symposium, pp. 558-562, 1996 https://doi.org/10.1109/FREQ.1996.559925