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ABSTRACT

We propose an algorithm which can reconstruct the 3D information from geographical information. The
conventional techniques, the triangular patches and the Random Fractal Midpoint Displacement (RFMD)
method, etc., have often been used to reconstruct natural images. While the RFMD method using Gaussian
distribution obtains good results for the symmetric images, it is not reliable on asymmetric images immanent
in the nature.

Our proposed algorithm employs neural networks for the RFMD method to present the asymmetrical
images. By using a neural network for reconstructing the 3D images, we can utilize statistical characteristics
of irregular data. We show that our algorithm has a better performance than others by the point of view on
the similarity evaluation. And, it seems that our method is more efficient for the mountainous topography
which is more rough and irregular.
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1. Introduction

Traditionally 2D data are used for most of the It is because 2D data can -be easily obtained
existing Geographic Information Systems (GIS) and from either a map or a hand operated work, but
3D data are used only for some specific regions. difficult for 3D data to be constructed [1].
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However, it is very important to construct 3D
data because 3D GIS data are necessary in practical
fields such as in a missile route plan and a
selection of expected new construction area. This
paper proposes an improved algorithm that constructs
3D geographic data from the existing map data.

There are three existing methods in reconstructing
3D terrains from contour line information of a map:
spline interpolation and linear interpolation by using
regular grid data, contour line [2,3,4], spline surface
interpolation by using triangulation [5], and inter-
polation by applying fractal theory [6,7].

These methods can be classified into compu-
tational complexity, size of memory used, infor-
mation loss resulted from mesh composition, and
reality of reconstructed topography based on the
evaluation of reconstructing algorithm. In order to
represent naturally irregular 3D terrains there are
articles focusing on the reality by using random
fractal without any limitations on computational
complexity, and the size of memory used [6, 7, 8,
9, 10].

This study proposes the method of the recons-
tructing asymmetric terrain because it is closer to
the original ones more than the general terrain. The
size¢ of memory used and time necessary for
reconstructing it is not considered, but it does focus
on the approximation.

We implement the algorithm in the following
steps. First, we perform a polygonal approximation
which extracts the feature points from the contour
line data. Second, we obtain the triangular patches
from the approximated polygonal contours and
rectify them to reflect the characteristics of contour
map on an actual mountainous region with complex
ridges and valleys. Third, we propose the algorithm
to construct 3D shapes from the triangular patches,
using the Random Fractal Midpoint Dis, acement
(RFMD) method and the neural networks method
which reflect the statistical characteristics of irregular
shapes in data. The previous algorithms [6,7,8,9,10]
do not naturally represent the shape of asymmetric

nature because they use RFMD by Gaussian
distribution. In this paper, Artificial Neural Network
(ANN) is implemented into RFMD in order to
represent natural asymmetric shapes in the real
world [11,12]. The purpose of this work is to make
the reconstructed shapes to be close to the real
shapes. Statistical characteristics of irregular objects
and phenomena can be well applied by using ANN
learning and 3D reconstruction. The results of
implementation on mountainous terrains and flat
terrains using the ANN learning effect show that the
proposed method is more effective for mountainous
terrains.

Section 2 presents the construction methods of
polygon~! approximation and triangular patch that
belong to the preprocess of this study. An algorithm
to obtain 3D data based on interpolation using both
fractal modeling and ANN learning is proposed in
section 3. Section 4 presents the experimental results
of the algorithm and reality evaluation of results.
The experimental results also show that the proposed
algorithm is more effective in actual mountainous
terrains. The summary of this paper is included in
section 5.

2. Polygonal Approximation and
Triangular Patch

As raw data to reconstruct 3D terrain, a contour
line is used. This section summarizes the process of
data and

extracting  geographical characteristics

triangular patch.
2.1 Polygonal Approximation

In this paper, coordinate and grid data of a
contour line are raw data. The coordinate data are
the raw data for reconstruction, and the grid data
are ANN input data to estimate reconstructed shapes.

One of the objectives of this study is to
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condense the amount of data saved on the natural
phenomena to be represented. The random fractal
can be produced in detail through the process of
amplifying the data. Thus, we perform a polygonal
approximation that extracts the feature points from
the contour line data, using Roberge’s algorithm
[13]. The input parameter radius of algorithm which
is extracted from the feature point differs based on
the contour line height. And the radius value
resulted in a smaller parameter value for a higher
contour line rather than a lower one. Eventhough
the rate of condensing the data is different based on
threshold value of each feature point extraction, the
threshold value is controlled subjectively more for
the purpose of reflecting characteristics of the
intended reconstruction form than merely for the
effect of condensing it.

[Fig. 1]-(a) represents a raw input contour line
and (b) shows a polygonal approximated contour
line.

@

Q

() Input Contour Line

(b) Polygonal Approximated Contour Line

[Fig. 1] Extracted Feature Points of Contour Line

2.2 Structuring Process of Triangular
Patches

2.2.1 Case I. Structuring Triangular Patches For
Two Contour Lines Having No Canyons

First, we start with a peak point of contour. The
P in [Fig. 2] is the peak point. Then, a nearest
contour line surrounding the peak point is selected.
Sample out points from the contour line and connect
these points with the peak point. To produce
triangular patches, repeat the above steps for all
peak points. Second, select another contour line that
directly outlines the previously selected contour line.
Comnect all the sample points of outer line to those
of inner line, which are shortest in distance to the
sample points of the outer line. This will mostly
produce triangular patches, but some other polygons,
too. The polygons can be divided into a set of
triangles. In polygons, comnect all the points
diagonally. Then select the shortest diagonal lines.
This process will divide polygons into a set of
triangles. Repeating the above steps will complete

triangular patches.

2.2.2 Case II: Structuring Triangular Patches For
Contour Lines Having Canyons

A canyon is defined when a progress angle
changes from an acute angle to an obtuse angle.
After the canyon is detected, draw the dummy
contour line by finding middle points of the canyon.
The middle point of the canyon is average of inner
products of the points in the neighborhood of the
canyon. Connecting the middle point with the closest
contour line will form a line and this is defined as
"dummy contour line”. The DP in [Fig. 2] is the
dummy point and middle point of the canyon. Bold
line in [Fig. 2] illustrates the example of the
dummy contour line. The height of canyon’s center
point is the average of two neighbor contour lines.
A triangle patch is formed by connecting the center
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point of the canyon and the lower contour line
feature points. Complete triangular patches are
applied in case I to the dummy contour line.

Triangular patching is completed through case 1
and 2. [Fig. 2] illustrates the example of finial state
of triangular patching.

[Fig. 2] Triangular Patches

3. 3D Data Interpolation

3.1 Fractals and ANNs: A Stochastic
Terrain Model

Perhaps the most common natural phenomenon
which can be represented by computer graphics
would be terrain. Since terrain is generally
characterized by randomly distributed features that
are recognizable by their overall properties as
opposed to the specific macroscopic features, its
strong stochastic properties make it a good choice
for the application of a stochastic model.

A recurrent problem in generating real pictures by
computers is to represent natural irregular objects
and phenomena. We develop a powerful solution to
this computer graphics problem by modeling objects
as sample paths of stochastic processes. Of particular
interest are those stochastic processes which have
been previously found to be useful models of the

natural phenomena to be represented. One such
model applicable to the representation of terrains,
known as “fractional Brownian motion,” has been
developed by Mandelbrot [14].

The fractal algorithm does not naturally represent
the shape of the asymmetric nature because it uses
the RFMD by Gaussian distribution. In this paper,
ANN is imported to RFMD to naturally represent
the asymmetric shapes of the real world.

In order to use a npeural network to this
application, our study has focused on neural
networks for classification with input patterns that
are linearly separable. Networks have been able to
acquire experiential knowledge during the supervised
training  process. The experiential knowledge
acquisition has been based on the convergent
training of single-layer discrete perceptron networks,
which can adjust their weights incrementally in order
to achieve correct classification of linearly separable
sets of patterns.

To this point, we have studied networks that use
a linear combination of inputs with weights being
proportionality coefficients. Such networks work with

the argument of the nonlinear elements simply

. computed as a scalar product of the weight and

input vectors.

For training patterns that are linearly separable,
the modification could involve either a departure
from the concept of the linear discriminant function
or a major change in network architecture. Typical
nonlinear discriminant functions are chosen to be
quadratic or piecewise linear. The piecewise linear
discriminant functions can be implemented by a
single-layer linear network employing perceptrons
[15]. However, our chosen architecture will be that
of the
multilayer network is composed of a linear network;

multilayer network. Each layer of a

it is based on the original concept of the linear
discriminant function.

This standard class of neural networks architecture
can approximate virtually any multivariable function
of interest, sufficiently provided that many hidden
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neurons are available. The studies of Funanashi,
Homik, Stinchcombe, and White prove that multi-
layer feedforward networks perform as a class of
universal approximators [16,17]. The results also
provide a fundamental basis for establishing the
ability of multilayer feedforward networks to learn
the connection strengths that achieve the desired
accuracy of approximation.

3.2 Learning Pattern

For the approximation of a topographic charac-
teristics function, backpropagation neural networks
composed of an input layer, hidden layer and output
layer are used. The neural network inputs are
calculated as follows. Let T be the patched triangle
and defined by

T= {P1(x1,y1,21), Py(x2, 92, 29), P3(x3,y3,23)}
1)

[Fig. 3] showing triangle T and height value G at
the center of T.

(X1,Y1,21)

-

(X3,Y3,23)

(X2,Y2, 22

[Fig. 3] Triangle T and Height Value G

Learning data are obtained from T and G. In
order to get the features of the patched triangle to
reflect the terrain’s characteristics, its steepness,
width, tilt and length are defined. Steepness is the
angle between horizontal plane and triangle. Width
is the angle between two sides which faces the base
of the triangle. Tilt is the angle between the base of

the triangle and the tangent line of the lowest point
of the triangle. The length refers to the base of the
triangle.

(21—22)

—tan ! 2
S=tan (J(XI—XZ)Z‘}'(J’I_YZ)Z) @

1) Steepness :

2) Width :
We cos (x—x)(x3—2)) + (J’ZIEIJ;l)(lJZ!al;lM)+(Zz—21)(23_21)
(3
12120 =V (x; = 202+ (31 — 32) 7+ (21— 25)°
where
[213|=\[(x‘—x3)2+(y1—y3)z+(z,—z3)2
3) Tilt : 7= tan 12223 )

(x2— x3)

4) Length : L=\/(xa—x2)2+(y31;y2)2+(23_22)z ®

where N is a normal constant.

[Fig. 4] shows the feature data defined in
equations (2) through (5).

Steepness

(a) Steepness

(b) Width
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(© Tilt (a) Relationship of Adjacency
Triangular Patches

(d) Length
(b) Details in Relationship of

[Fig. 4] Feature Data I ]
Adjacency Triangular Patches

For concrete feature data, equations (6), (7) and
(8), are defined with the angles of intersection
between the patched triangle and the triangles
adjacent to the patched one. L is meaning left side
of the patched triangle, R is right side of it, BT is
bottom or top side of it. Mid is the middle point

[Fig. 5] Feature Data II

on the adjacent edge.

1) Left_adjacency: ©)

1 (%3 = Xmi) (X1 — Xmia) + (V3 — Vi) (VL — YE) +(z3— Zn_;i_d()(zl_ — 2 5ig)

side L= cos V (3= Xaia) 2+ (V3= Veria) >+ (23— Zaia)® ¥ (XL = Xmia)* + (V1= Vi) 2+ (21— Zuia)
2) Right_adjacency: Q)]
1 (%3~ Xmit) (X8 ~ Xmia) T (V2 = Ymi) (YR = Yimia) 1{22 = Zmia) (2R — Zimia)

side _R = cos V(%= Xmi) 4 (V2= Vo) * + (20— Zowia)” V (Xg = Xmid) + (YR~ Yimia) 2+ (28~ Zma)”
3) Base/Top_adjacency: ®
(X, ~ XmaXXpr _Xn_ﬁg) + (v~ YmieXyBr — Ymia) + (21 = Zmia) (28T — Zmis)
V (%1~ X + (91~ V)2 + (21— 2 ¥ (X1 — X i) + (Vo1 = Vi) * + (21— 20

side_BT = cos !

[Fig. 5]-(a) shows triangles adjacent to the
patched triangle and (b) depicts the adjacency in
detail.
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3.3 Learning Algorithm

We define the output of neural network in the
following equations:

yi=r( ,21 u) ®

o= & 2w (10)

uy denotes weight from 1‘th neuron input layer to
i‘th neuron hidden layer. w, denotes weight from i‘th
neuron hidden layer to k'th neuron output layer. y, o,
denotes the value of hidden layer and output layer
respectively. Activation function f(x) should be a
non-linear function, it is sigmoid. g(x) is a function
which maps feature data to a desired output. It is a
first-order function which increases monotonically. The
learning algorithm used is an erroreous backpropagation
learning rule. To improve the learning time, a
momentum method is adapted to the learning.

4. Implementation and Reality
Evaluation

Input data for reconstruction are both contour
map and grid data. The flat topography in [Fig.
6]-(a) and mountainous topography in figure 6-(b)
are used for implementation.
data for topography,
contour lines are divided at an interval of 10m. A
section between 110m and 230m is selected as the
height of topography. The grid data matrix size is

As input mountainous

157 rows by 139 columns.

In the case of flat topography, contour lines are
divided at an interval of Sm. A section between
360m and 405m is selected as the height of
topography. The grid data matrix size is 111 rows
by 117 columns. For mountainous topography, 1548
feature points are extracted from 2579 raw data. For
flat topography, 410 feature points extracted from
513 raw data are selected.

(b) Input Contour Map(Mountainous Topography)

[Fig. 6] Input Contour Line

The polygons which approximate the contour lines
are patched with triangles. The observation is based
on the patched triangles. The number of learning
triangles is 72 for flat topography, and 288 for
mountainous topography.

The structure of the learning neural network is
simple. It has one input layer, one hidden layer and
one output layer. Input parameters of the ANN are
composed with 7 neurons: steepness, width, tilt,
length, and three neighbours. The desired output is
the height of the centroid of the triangle and the
output layer has one neuron. The number of neurons
in the hidden layer differs; 15 neurons for flat area
and 16 neurons for a mountainous area. The
learning rate is a constant that determines the
efficiency of the learning process. The learning
parameters are 0.1 and 0.01 respectively. <Table 1>
shows input

parameters for learning in flat

topography and mountainous topography.
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<Table 1> Input Parameters

(a) Flat Topography

SRCEE 72001, 3, Vol 2., No. 3, March

(b) Mountainous Topography

ANN Parameters Set Value ANN Parameters Set Value
Number of Layers (Hidden+Output) 2 Number of Layers (Hidden+Output) 2
Number of Input Neurons 7 Number of Input Neurons 7
Number of Training Patterns 7 Number of Training Patterns 288
" Number of Hidden (1) Neurons 16 ‘Number of Hidden (1) Neurons 15
Number of Hidden (2) Neurons Number of Hidden (2) Neurons 0
Number of Output Neurons 1 Number of Output Neurons 1
Learning Parameter 0.1 Learning Parameter 0.01
Momentum Parameter 0.7 Momentum Parameter 0.7
Maximum Error 20 Maximum Error 10
Parameter of a Sigmoid Function 15 Parameter of a Sigmoid Function 25
<Table 2> is parts of leamning data for flat and
mountainous topography.
<Table 2> Learning Data
(a) Flat Topography
Steepness Width Tilt Length Side_L Side_R Side_BT Bias Height
0324 0.800 1.249 1.296 2107 1.010 1.285 -1.000 4227
0430 1.058 1.456 1.095 1.106 1.989 2626 -1.000 2453
0.282 0.964 0.581 1.479 2,001 1.536 0432 -1.000 2,080
0.206 0.330 1.494 1.609 2295 1.811 1.573 -1.000 3.148
0487 0.696 0.759 0.758 1428 1.174 0.703 -1.000 2.689
0.325 1.280 1421 1.605 1.908 1.802 0.508 -1.000 1.445
0122 0.459 0.351 0.694 0.000 0.994 0.000 -1.000 4.319
0.335 0.124 0.803 0.594 0.878 1.165 1.534 -1.000 3.801
0.245 1.123 1.347 0.757 0.000 1.210 0.000 -1.000 3.767
0.359 0.524 0.694 0.893 0.000 2.234 0.000 -1.000 2152
(b) Mountainous Topography
Steepness Width Tilt Length Side_L Side_R Side_BT Bias Height
0.426 0.910 0.398 2.102 2295 1.811 1.573 -1.000 3.702
0.281 1.133 0.358 2.178 1428 1.174 0.703 -1.000 4.160
0.316 0.795 1.055 3262 1908 1.802 0.508 -1.000 5757
0272 1.579 0.173 2299 0.000 0.994 0.000 -1.000 7497
0.369 0.856 0.689 3.898 0.878 1.165 1.534 -1.000 5.614
0.363 0.629 1.046 2239 0.000 1.210 0.000 -1.000 3.480
0417 1452 0.588 1.654 2489 2234 1.469 -1.000 2072
0.282 1.004 1411 3.060 2,090 2,103 1.871 -1.000 4538
0432 1.106 0.543 3.029 1.469 1.097 2.405 -1.000 7.123
0.481 0938 1.499 2.147 2.305 1461 0.976 -1.000 6.589
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Each triangle can be subdivided into four smaller
triangles by connecting the midpoints of the sides of
the trangles. The original triangle is a fractal
triangle whose irregular surface consists of many
smaller triangular facets. This process continues with
smaller triangles until the desired resolution is
obtained, resulting in a fractal quadrilateral whose
surface is composed of many smaller quadrilateral
facets. The traditional RFMD processing unit and
the newly proposed processing unit are shown in
[Fig. 7]-(a) and (b), respectively. Each height at the
midpoints of the sides of the wiangles is obtained
from displacement of the RFMD. The height of the
center of the triangle is obtained by the learning

algorithm.
1. 2
A a@ b
3. €

A
SNSN

(a) The Traditional RFMD
Processing Unit

1. 2
3. ¢

£\

{b) The Newly Proposed
Processing Unit

[Fig. 7} Basic Triangles for Reconstruction

[Fig. 8] shows the results of the three different
reconstruction methods by interpolation. [Fig. 8]-@) is a
surface produced using grid data method, and (b) is 2
surface produced using the fractal method. [Fig. 8i-c) is
a surface produced using the proposed method.

@ Mountainous Topography
(8) Representation by Grid Data Method

(D Fiat Topography

158

@ Mountainous Topography
(b} Reconstruction by Fractal Methed

305
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120

@ Flat Topography

@ Mountainous Topography

(c) Reconstruction by Proposed Method

[Fig. 8] Results of Three Different Reconstruction
Methods

Reality evaluation using SNR(Signal-to-Noise

Ratio) and MSE(Mean Square Error) is performed

between the raw grid data and extracted grid data

obtained from the reconstructed terrains, and the

results are shown in <Table 3>.

<Table 3> Results of Reality Evaluation

(a) Flat Topography

Method SNR(dB) MSE
Fractal Method 8.80 29.45
Proposed Method 9.18 2129

(b) Mountainous Topography

Method SNR(dB) MSE
Fractal Method 6.01 43,62
Proposed Method 9.51 29.17

The results show that the proposed algorithm is
more efficient in the reconstruction of mountainous
topography that possessed irregular characteristics
than the RFMD method.

5. Conclusion

We have proposed an algorithm which can
reconstruct a 3D terrain from contour line data. We
performed a polygonal approximation that extracts
the feature points from the contour line data. We
obtained the triangular patches from the approxi-
mated polygons and rectified them to reflect the
characteristics of contour line on an actual moun-
tainous region having complex ridges and valleys.

The proposed algorithm has been implemented
with respect to flat topography and mountainous
topography with asymmetry and randomness. This
implementation was compared with the other existing
method and is shown that the reconstruction of
mountainous topography is shown to be more
efficient in reality evaluation. By using the learning
of neural networks, we can utilize the statistical
characteristics of irregular data. We have shown that
the algorithm has better performance than the others
by the point of view from the similar evaluation.

The newly proposed learning algorithm requires
additional learning time in comparison with the other
traditional approaches. However, the learning is
achieved separately based on typical data. When it
is used after learning, the newly constructed algori-
thm does not require any excessive computation
time and memory.
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