B X
2-3-15

Design of the Metrics Suite [[java for

Java Program Complexity
(Av} 22399 BEFZE ZAE AT A [[1..9 AA)

2 e op

(Eun-Mi Kim)

ABSTRACT

In this paper we propose a suite of metrics Tl for evaluating the complexity of Java programs based on
a suite of metrics TTcs+, which we previously presented for C++ programs. So far, a lot of metrics for C++
are proposed for C++ programs. But since the specific properties of Java programs are not explicitly
considered in those metrics, it is hard to apply them to Java programs. Thus we aim to develop a metric
suite that is applicable to Java programs. At first, we decide if any properties are commonly possessed by
both C++ programs and Java programs, or not. For example, the multiple inheritance of the class in C++ is
not implemented in Java. On the other hand, the features such as package and interface are newly
implemented in Java, and therefore we cannot discuss the complexity of Java programs without considering
these new features. Then we define a new suite of metrics M. for Java programs by deleting 3 metrics
from Tlc+, and then incorporating 3 metrics which are newly defined or modified for Java programs to Tlcu+.
Finally, we analytically evaluate the new metric with regard to Weyuker’s measurement principles and also
compare it with conventional metrics for Java.

% Keywords : object-oriented, Java program, software metrics, program complexity

g 9

£ =RdMe C++ Z2aPS FA37] A3t ALE H= Mend 7NNeE Java Z2IY BIEE &
A7) A% Ax Mwed AQSch C++E FH3}7] 8 B HxEo] Ad=] goy o]gL Java T2
agte] 7HAE 54EE nEstA ¥3t7] Wi C++ Z2aYs o 4AE 7T Sl JavaZ2 Y|
o5& IUE HE3 AL olfoh mEbA, B =EAECH S Java Aol FFAF ZolHE B 2
oot £ d7ge] C++ e BFxE S Ad AL HAE Tewd MRBLE Java T2
EREE 2457 A AZE F% M AYTT AR AAT H=E Weyukerd] 4Zo] 283}
of BAstH, 71&9 HeEdE Huh

¥ 719E : A A%, AHIEZE O, AZEO] HE, 2T EFE

i

* 38 d . s9dgn HFEEE 2ug =EA4 1 2001, 3. 28
' AAFSE ;2001 4. 12.
¥ 2 =8 20004 SHC{SD wifstgoitxyu|of ofsf HTEUT.

408 HBIFATEEEHBEEE HEE 2001, 3, Vol. 2., No. 3, March

1. Introduction

In 1980s we were brought a major breakthrough

in software design with the introduction of

object-oriented design method, technologies and
language. Recently the object-oriented method has
become very popular in software development
because of its efficiency in software development
processes and reusing software modules.

Several languages such as Eiffel, Modular-3, C++,
Smalltalk and Java etc. that support object-oriented
design and programming have been proposed.
Among them C++, Java and Smalltalk are
object-oriented language used widely for developing
object-oriented software. C++ based on C language
allows programs to be written in a hybrid style
allowing mnon object-oriented code. Java and
Smalltalk are developed as a pure object-oriented
language. Java has most of the syntax of C++ but
many of features of C++, such as multi-inheritance,
have been removed or refined in order to promote
true object-oriented programming. Java is designed
to be simple, object-oriented and similar to C++
while removing the unnecessary complexities of
C++[1]. Smalltalk treats every data as an object,
including a number.

On the other hands, many software metrics have
been introduced for analyzing productivity, reliability,
maintainability, and complexity of software in order
to reduce the costs and improve the quality of
software products{2]. These metrics can also play a
significant role when reverse engineering an existing
software system.

In order to evaluate and support the object-
oriented development, the object-oriented metrics
have been introduced, since the traditional software
metrics were not appropriate for applying the

object-oriented development[3]. The object-oriented
metrics are evaluated and newly proposed in much
research [3,4,5,6,7].

Chidamber and Kemerer[3] have defined a suite
of metrics for an object-oriented design. The metrics

are based on measurement theory and confirmed by
the insights of experienced object-oriented software
developers. Li and Henry[4] have defined several
object-oriented software metrics, evaluated the
relationship among their metrics and applied them to
analyze the maintenance effort in two commercial
systems. Sharble and Cohen[7] have formally defined
nine metrics, and applied them to compare two
different development methods for an object-oriented
software. However these metrics tend to measure the
basis properties of object-oriented concept without
regarding the unique properties of each
object-oriented language, such as multi-inheritance in
C++ or Eiffel.

We have proposed a suite of metrics ITc++ for
C++, which tries to measure the unique properties
attributed to C++
object-oriented program[8]. The metric evaluates the

Syntax

as well as the general

following aspects of complexity: (1)
(2) Inheritance
Interaction complexity. Then, we defined each key

complexity, complexity and (3)
complexity as a function including five attributes,
respectively.

In this paper, we propose a new suite of metrics
T for
programs based on the suite of metrics C++

evaluating the complexity of Java

proposed in [8].

2. Preliminaries

2.1 Software metrics for JAVA
Java is a new object-oriented programming
language close to C/C++. Using Java, developers
can create dynamic and interactive programs that can
run inside Web pages. Moreover, it can be used to
create animations, games, and stand-alone
applications[9].
Recently, some evaluation metrics for Java
programs have been proposed together with that

tools developed for them[10,11]. J-Metric[10]

Design of the Metrics Suite IT jva for Java Program Complexity 409

proposed by Cain and Vasa measures the complexity
of Java as the units of project, package, class,
method and variable. For the project metric, it
measures the number of classes, methods, variables,
lines of code, statement count, the number of Inner
classes and the maximum depth of inner classes. For
package metric, it measures the number of classes,
methods, variables and summarized list of the main
metrics from classes, methods inside this package.
The number of methods and variables, lack of
cohesion of method, collaborators for a class, lines
of code, statement count, inner classes and
inheritance related metrics are measured for the class
metrics. Also, it measures cyclomatic complexity,
statement count and lines of code, instant variables
and the number of local variable as the method
metric. Finally, the number and times used of
instance variable are measured as the variable
metrics.

Next, Banda Java Source Metric[11] evaluates
Java program as the unit of the class, method,
application, person and scheduling. For the class and
method, it evaluates the complexity for size, the
inheritance and the

complexity. For the application and person, it

complexity of internal

evaluates the complexity for size.

Finally The metrics proposed by Chidamber and

Kemerer are often used to evaluate the complexity
of Java program[9]. Chidamber and Kemerer defined
the six metrics : Weighted method per class, Depth
of inheritance tree, Number of children, Coupling
between objects, Response for a class and Lack of
cohesion in methods.

However the attributes measured in these tools
are not different from the conventional metrics of
object-oriented language and cannot evaluate the
characteristic parties of Java exactly.

2.2 A Suite of Metrics (C++
2.2.1 Outline

We proposed a suite of metric Tlc. for
computing the complexity of an object-oriented
program[8].
aspects of the object-oriented paradigm: (1) Syntax
(2) Inheritance complexity and (3)
Interaction complexity. Then, we expanded each key

The metric evaluates the following
complexity,

complexity to five attributes in detail.(With respect
to the detail of attributes, please refer to [8].)

COMP(P) = f(SX(P), IH(P), IT(P))
where
Syntax complexity of program P :

SX(P) = fl(IMC, NOM, NOCL, LCOM, UOC)
Inheritance complexity of program

P : IH(P) = f2(DIT, NODC, NODA, DOR. NOD)
Interaction complexity of program P : IT(P)

= f3(CBI, RFC, UCL, VOD, MPC)

COMP(P) evaluates the complexity of a given
program P, as a function f of three parameters:
SX(P), IH(P) and IT(P). SX(P), IH(P) and IT(P)
evaluate the complexity of each dimension by
computing values for each attribute. Here, we use
the definition of software complexity defined by
Zuse[2]. That is, we define software complexity as
the effort or time which is consumed to maintain

the program.
2.2.2 Attributes for syntax complexity

In order to evaluate the syntax aspect of a
program, we introduced the following five attributes
which corresponded to the size of a program and
the coding efforts. Here, IMC, NOCL and UOC
were newly proposed in [8].

@ IMCM): Degree of internal method complexity
for a method M.

410 HEAFEEEHRGTES HLaE 2001 3, Vol. 2., No. 3, March

@ NOM(C)[3]: Number of methods in a class Ci.

® NOCL(P): Number of classes in a program P.

@ LCOM(C)[3]: Degree of lackness of cohesion
in a class Ci.

(B UOCP): Ratio of used classes to defined classes
in a program P(0<UOC(P)).

2.2.3 Attributes for inheritance complexity

In order to evaluate the inheritance aspect of a
program, we introduced the following five attributes
which corresponded to the degree of reuse by
inheritance. Here, NODA, DOR and NOD were
newly proposed in [8].

@ DIT(C)I3): Depth of inheritance trees for a
class Ci.

& NODC(C)[3]: Number of children of a class Gi.

® NODA(C): Number of all inheriting ancestors
of a class Ci.

@ DOR(C): Degree of reuse by inheritance
(0DOR(Ci)<1) for each Ci.

(® NOD(P): Number of disjoint inheritance trees
in a program P.

2.2.4 Atributes for interaction complexity

In order to evaluate the interaction aspect of a
program, we introduced five attributes which
corresponded to the degree of coupling. Specifically,
CBI reflects the ’is kind of® relationship, and UCL
reflects the 'is part of’ relationship. Here, CBI and
UCL were newly proposed in [8].

@ CBIC): Degree of coupling of inheritance in
a class Ci.

(@ RFC(C)[3]: Degree of response in a class Ci.

® UCL(C): Number of classes used in a class
Ci except for ancestors and children.

@ VOD(C)H[7]: Number of violation of the law
of Demeter in a class Ci.

® MPC(C)[4]: Number of send statements in a
class Ci.

3. A New Suite of Metric (Java

3.1 Comparison between C++ and Java

Java has most of the syntax of C++ but many of
features of C++, such as multi-inheritance, have
been removed or refined in order to promote
object-oriented programming. Therefore, there exist
some similarities and differences between C++ and
Java.

We analyze the two languages from the static
viewpoint because the metric we try to propose is
considered the static viewpoint of the language.
<Table 1> shows the similarities and differences
between Java and C++. Here, (O means each item
exists in the language, X means the item doesn’t
exist in the language.

While all function and method definitions in Java
are contained within the class definition, in C++,
functions can be defined as stand-alone or global or
member of a class. Next, Java can call functions

. written in another language, commonly referred to as

native method, C++ can also call functions written
in C, but it is not general. Java supports classes,
but doesn’t support structures or unions. Java
doesn’t also manipulate operator overloading,
pointers, typedef, define and goto statement.

Java also allows single inheritance only. Thus,
each class can have only one superclass. When a
subclass is created, we have to define only the
differences between that class and its superclass. By
default, a new class with no explicit inheritance
inherits from the Object class, the top class in Java.
When an object is created, a slot for each non-static
variable defined in the object class and in all its
superclasses is reserved[12]. But, in C++ muliiple

inheritance enables a programmer to derive a class

Design of the Metrics Suite /7 jva for Java Program Complexity 41

from multiple parent classes.

Moreover, Interfaces provide templates of behavior
that other classes are expected to implement. A
class, in Java, can implement one or more
interfaces. Package in Java is similar to #include in

C and the classes of Java must belong to packages.

3.2 Outline of new metrics suite Mjaya

The new metric suite (Java includes or modifies
the attributes which is extracted from the previous
metric suite TTc.. for C++. Also, the new metric
suite (Java includes the additional ones that measure
the unique properties for Java. Thus, the new metric

suite (Java is defined as the following:

Mcommon = {NOM LCOA’[, DIT,' NODC, DOR,
RFC, UCL, YOD, MPC}
Mc..={IMC, NODA, NOD, CBI}

Myoas={NOCL, UOC}
Miavo={NOP}
NOP = the number of package
A suite of metric T+ = Meommon v Mutodity v Mc++
A suite of metric Tlrava
= Meommon v MModify o Mo

Here, Mcommon tepresents a set of attributes that
are commonly shared by C++ and Java. Mc.s
represents a set of that are attributes included in
C++ metric but deleted in Java metric. Mypap
represents a set of that are attributes included in
C++ metric but modified in Java metric. My
represents a set of attributes that are added newly in
Java metric.

From <Table 1>, all functions in Java exist only
the member of the class. So, to measure the
complexity of a method is meaningless, we exclude
IMC from the new metric. Since Java doesn’t
support multiple inheritance, the attributes NODA,

<Table 1> Comparison between Java and C++

Items Java C++
Main m
Function Stand-alone X
Global X
Method (member of a m m
class)
Calling functions written in another m m
language
Class m m
Struct or Union X m
Inheritance Single Multi
Operator overloading X m
Pointer X m
Interface m X
Access control (private, public, protected) m(the meaning .
is different)
Typedef or define X
Goto statement X
Package m

m: The item exists, X : The item doesn’t exist

412 HBZFEE EHEEE HEE '2001. 3, Vol. 2., No. 3, March

NOD and CBI are deleted from the new metric.

Among the characteristics of Java, the interface
and package are important factors which influence
the complexity of Java (we explain the reason in
the section 4). So, we adopt the new attribute NOP
and modify two attributes NOCL and UOC to
evaluate Java.

4. Heuristics Procedures

We explain the heuristics for new attributes in
MModify and Mlava proposed in the previous
section.

4.1 Procedure NOCL

The complexity of program is related to the
number of classes, and the number of classes is
related to the degree of reuse of class. The lager
the number of classes is, the greater the .efforts of
programmer and the less the degree of reuse of
class is.

Generally, all the classes in Java are classified
into three types : class, interface and exceptions. A
class consists of attributes and behavior. Attributes
are individual characteristics used to differentiate one
object from another and usually describe the. object’s
state. An interface is a program unit, such as class.
It is similar to a class, but with only declarations of
its methods. Its behavior is similar to that of
abstract class[l]. In Java
between interfaces and
summarized as follows: interface provides a form of
multiple inheritance, but a class extends only one

program, differences

abstract classes are

class[13]. Therefore, the complexity of program is
related to the number of interfaces, and the number
of interfaces is ‘related to the degree of inheritance.
Finally, exception is an event happening during
execution of a program that disrupts the normal

- flow of control.

However these classes have different contribution
to the program respectively. For example, It is not
sufficient that the interface is only defined. The
declaration and wuse of interface are different
problem. Generally, some of the defined interfaces
can be used in the program P. Therefore NOCL is
computed by the following weighting formula.

NOCL(PA) = the number of class X wg + the
number of interface X wg + the number of

exception X Wg

Here, NOCL is computed for a package PA, and
wey, wez and wes are the weighting constants.

4.2 Procedure UOC

Sometimes, It is not sufficient that the class or
interface is only defined. The declaration and use of
them are different problem. Generally, some of the
defined class can be used in the program P. In this
case, we consider that the usability of the class
decreases and the complexity of use of the class
increases.

However an interface defines a protocol of
behavior that can be implemented by any class
anywhere in the class hierarchy. An interface defines
a set of methods but does not implement them. A
class that implements the interface agrees to
implement all the methods defined in the interface,
thereby agreeing
interface is useful to implement the large program-

to certain behavior. Therefore
which is composed of several related modules. Then
the use of interface can decrease the complexity of
the program. Thus UOC is also computed by the
following weighting formula.

voc(p)=

Thevmberofusedclass(w 4 + The vmber of used interfacex w,2
The vmber of def €ed clausst+ The vmber of def € ed interface

Design of the Metrics Suite /7 1ava for Java Program Complexity 413

Here, UOC is computed for a program P, and
wy; and w,; are the weighting constants.

4.3 Procedure NOP

Software maintenance requires understanding
existing code. Java programs are organized as sets
of packages. To understand the entire program, we
should understand the packages which are included
in a program. Therefore, the complexity of a
program is influenced by the packages in a program.
The larger the number of packages, the more
complex the program is. Packages use its fully
qﬂaliﬁed name, or import all or part of the package.
NOP is the number of package and is computed for

a program P.

NOP(P) = the number of package declaration X w,,
+ the number of import declaration X wp;
+ the number of packages used in the
declaration of class or interface type X wps

Here, wp, wpz and wys are the
constants.

weighting

5. Discussion

5.1 Analysis using Weyuker's Properties

In this section, we adopt the Weyuker’s
properties[14] to evaluate the new metric. Weyuker’s
properties suffer the following criticisms from some
peoplef3,15] : First, Zuse pointed out that Weyuker’s
properties are not consistent with the principles of
scaling. Next, Cherniavisky and Smith suggested that we
should be careful with Weyuker’s properties, since the
properties may give only necessary conditions for good
complexity metric. However, since these properties are
widely known and accepted, we also adopt them to
evaluate the new metric.

<Table 2> shows the evaluation results of our
attributes
properties. In the following analysis, we will discuss
evaluation result only for the attribute, NOP among
them that we defined. In addition, we will exclude
discussions on Property 2 and Property 8 in this
paper. Since the universe of discourse deals with at

proposed with regard to Weyuker’s

most a finite set of applications, each of which has
a finite number of classes and methods, Property 2
will be met by any metric measured at the class
level[3]. Next, since none of the metrics proposed in
this paper depend on the names of the class or
methods and instance variables, they also satisfy
Property 8.

Property 1 reflects an intuition that any measure
should not rank all programs as equally complex.
Clearly, Property 1 is satisfied by all of our
proposed attributes. Any measure, which assigns a
unique numerical name to each program and treats
this name as the program’s complexity, would fail
to satisfy this property[14]. Clearly, Property 3 is
satisfied by all of our proposed attributes.

Properties 1, 2 and 3 are exactly the real
properties to be satisfied by measures and do not
directly reflect the fact that we are dealing with
programs which have syntax and semantics[14]. All
the proposed attributes satisfy these properties. Thus,
attributes have
essential properties as software metrics.

we can conclude that the proposed

Property 4 intuitively implies that even if two
programs compute the same function, the complexity
can be different and be
details of their

of these programs
determined based on the
implementations. From a pragmatic point of view,
Property 1

equivalent{2]. Since the NOP satisfy Property 1, it

and Property 4 are essentially
also satisfies Property 4.

Consider the attribute NOP. Let P and Q be two
programs with n and m packages respectively. That
is, [Pl=n and [Q|=m. [P;Ql=n+m-p, [P|<|P;Q| and |Q|
<|P;Q|. Here, p is the number of packages that P
and Q have in common and the range is 0<p<n(if

414 BERATEEEKEBE H sk 2001, 3, Vol 2, No. 3, March

n is smaller than m). Therefore, Property 5 is also
satisfied by the NOP.

Assume that [P|=|QJ=n, |R|=m for the attribute
NOP. Assume also that a package is commonly
included in programs P and R, and the sets of
packages in programs Q and R are disjoint. Then
|P;Rl=n+m-1 and |Q;R|=n+m. Thus, [P|=|Q| and [P;R|
<|Q;R} hold and so Property 6 is satisfied

Property 7 asserts that program complexity should
reflect the order of statements in the program, and
hence the potential interaction among statements.
Since the order of statements within class or method
is not related to actual execution or use of class or
method, Property 7 is not satisfied by any attribute
proposed in this paper.

Property 9 reflects the fact that interaction may
exist between concatenated subprograms. In such
case, the attribute NOP satisfy Property 9.

As the result of evaluation, all attributes proposed

fact the proposed attributes do not satisfy Property
7. Moreover, some of the attributes do not satisfy
the Property 9. These property allows for the
possibility that, as a program grows from its
component program, additional complexity is
introduced due to the potential interactions among
these component parts[14].

Chidamber suggested that failure in satisfying
Property 9 implies that a complexity metric could
increase when classes are divided into many more
Also,

designers found that

subclasses. experienced object-oriented

memory management and
run-time detection of errors are both more difficult
when there are a large number of classes to deal
with[3]. Therefore, satisfying Property 9 may not be
an essential feature for an object-oriented software
design complexity metric[3]. We agree with him. In
order to confirm the opinion, we will examine
Property 9 through experimental evaluations using a
data regarding the development process and software

by our metric satisfy Properties 1, 2, 3, 4, 5, 6 and products collected from practical software
8. Cherniavisky and Smith described that Property 7 development projects.‘
is not appropriate for object-oriented metrics, and in
<Table 2> Evaluation result of Weyuker’s properties
Property 1 2 3 4 5 6 7 8 9
Attribute '
NQOP m m m m m m X m X
NOM m m m m m m X m X
NOCL m m m m m m X m X
LCOM m mooom m m m X m X
UoC m m m m X m X m m
DIT m m m m X om X m X
NODC m m m m m m e m X
DOR m m m m Xom X m X
RFC m m m m m m b4 m X
UCL m m m m m m X m x
VOD m m m m X m X m X
MPC m m m m X m X m X

Design of the Metrics Suite 7 jva for Java Program Complexity 415

<Table 3> Comparison of Java metrics

Program | Package | Class | Interface | Method | Variable
J-Metric m m m m m
BISM m m m
C&K Metric m m m m
New Metric m m m m m

BJSM : Banda Java Source Metric, C&K Metric : Metric proposed by Chidamber and kemerer

5.2 Comparison

In this chapter, we compare the proposed metric
with the conventional metrics for Java.

From the <Table 3>, we can see that. J-Metric
does not consider the metric with regard to the
interface. BISM does not consider the metric for the
package, interface and method for Java. C&K metric
also does not consider the metric for package and
interface of Java.

Therefore we can see the proposed metric
evaluates the unique characteristics of Java well.

6. Conclusion

In this paper, we propose a new suite of metrics
M for evaluating the complexity of Java
programs based on the metric suite Tlc.. which we
proposed. Also we analytically evaluate the new
metric with tegard to Weyuker’'s measurement
principles and also compare it with conventional
metrics for Java.

Currently, as the future research work, we are
planning to develop the tool for calculating the
values of attribute automatically. Also, we decide the
weight for each metric and evaluate the usefulness
of the proposed metric Tljava using the tool.

¥ REFERENCES

[1] G. James, The Java language environment : http:
//java.sun.com/doc [language_ environ-ment/.

[2] H. Zuse, Software complexity-measures and
methods, 1991.

[3] S. R. Chidamber and C. F. Kemerer, “A metric
suite for object-oriented design,” IEEE Trans. On
Softw. Eng, 20, 6, pp. 476-493, 1994,

[4] W. Li and S. Henry, "Object-oriented metric that
predict maintainability,” The Journal of Systems
and Software, 23, pp.111-122, 1993.

[5] D. R. Moreau and W. D. Dominick,
“Object-oriented graphical information systems :
Research plan and evaluation metric,” The
Journal of Systems and Software, 10, 1,
pp.23-28, 1989.

[6] S. L. Pfleeger and J. D. Palmer, “Software
estimation for object-oriented program”, Proc. of
FPUGFC90, pp.181-190, 1990.

[71 R. C. Sharble and S. S. Cohen, “The
object-oriented brewery: A comparison of two
object-oriented development methods”, ACM
SIGSOFT Software Engineering Notes, 18, 2,
pp.60-73, 1993,

[8] E. M. Kim, S. Kusumoto and K. Kikuno, “A
new metric for C++ program complexity and its
evaluation in academic environment,” IEICE
trans. J79-D-1, 10, pp.729-737, 1996.

[9] T. Systa and P. Yu, “ Analyzing java software
by combing metrics and program visualization,”
Proc. of the Conference on Software
Maintenance and Reengineering, pp. 1-10,1998.

416

AT EEEHEES # LEE "2001. 3, Vol. 2, No. 3, March

f10] A, Cain and R Vasa , Java Metric Analyser,

[11]

[12]

http://jmetric.it.swin.edu.aw/products/ jmetric/.

W. B Brian : BANDA Java
Packages, http://www.sladen.com/Java/docs/
banda/metric/.

A. S. boujarwah, K. Saleh and J. Al-Dallal,
“Dynamic data flow analysis for Java
programs,” The Journal of Information and
Software Technology, 42, pp. 765-775, 2000.

[13} G. James, Java language specification, http://

java.sun.com/docs/books/jls/html/.

(14] .E. J. Weyuker, “Evaluating software complexity

(13]

measures,” IEEE Trans. on Softw. Eng., 14, 9,
pp.1357-1365, 1988. _

J. C. Chemiavisky and C. H. Smith, "On
Weyuker’s axioms for software complexity
measures,” IEEE Trans. on Softw. Eng., 17,
pp636-638, 1991.

19913 HEstm HAHe A

g 19933 AESw e

A EA(CIE4AD

1 1997 B 2 AT

71&2TgATH JRIEAT

EACE LAY

T EA sensa AREGR
zag

#aliol : ARG A2,
STEJ] HE,

ATE] AFPY

