Correlation between the Infrared Band Frequency of Asymmetric $S=O$ Stretching Vibration in NiSO $4 / G_{\mathrm{Al}_{2}} \mathrm{O}_{3}$ Catalyst and Activity for Ethylene Dimerization

Jong Rack Sohn* and Won Cheon Park
Department of Industrial Chemistry, Engineering College, Kyungpook National Unnersity, Taegu 702-701, Korear Recened Augusi 31. 2001

Keywords : $\mathrm{NiSO}_{4} \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$. Ethylene dimerization. Asymmetric stretching $\mathrm{S}=\mathrm{O}$ band.

Ethylene dimerization is an important reaction and worthy of study. A considerable number of papers have dealt with the problems of nickel-containing catalysts for ethylene dimerization. ${ }^{1-9}$ In the previous papers from our laboratory. it has been shown that supported nickel sulfate catalysts are very active for ethylene dimerization. ${ }^{8-10}$ High catalytic activities in the reaction were attributed to the enhanced acidic properties of the supported nickel sulfate catalysts. which originated from a strongly electrophilic nature of $S=0$ bonds of the complex formed by the interaction of oxides with sulfate ion. However. it is expected that the acidic properties and catalytic activities of the sulfated cataly'sts are different depending on the frequency of asymmetric $S=0$ stretching vibration and pretreatment conditions. Therefore. in this paper we report the correlation between the band frequency of the asymmetric $\mathrm{S}=\mathrm{O}$ stretching vibration in $\mathrm{NiSO}_{4} / \gamma-\mathrm{Al}_{3} \mathrm{O}_{3}$ catalysts and ethy lene dimerization activity.
The catalysts containing $20 \mathrm{wt} \%$ nickel sulfate were prepared by impregnation of $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ powder (JRC-ALO-2. surface area $=240 \mathrm{~m}^{2} / \mathrm{g}$) with aqueous solution of NiSO_{4} $6 \mathrm{H}_{2} \mathrm{O}$ followed by calcining at $600^{\circ} \mathrm{C}$ for 1.5 h in air. The catalytic activity for ethylene dimerization was determined at $20^{\circ} \mathrm{C}$ by a conventional static system following pressure change from an initial pressure of 290 Torr. ${ }^{8-16}$ Fresh catalyst sample of 0.2 g was used for every run and the catalytic activity was calculated as the amount of ethylene consumed in the initial 5 min . Reaction products were analyzed by gas chromatography with a VZ-7 column at room temperature.
The FTIR (Fourier transform infrared) spectra were obtained in a heatable gas cell at room temperature using Mattson Model GL6030E spectrometer. The self-supporting catalyst wafers contained about $9 \mathrm{mg} / \mathrm{cm}^{2}$.
The absorption of asymmetric stretching frequency of $S=O$ bonds is commonly found in the range of $1360-1410 \mathrm{~cm}^{-1}$. Infrared spectra of $\mathrm{NiSO}_{4} / \gamma-\mathrm{Al}_{3} \mathrm{O}_{3}$ after evacuation at 100 $600^{\circ} \mathrm{C}$ for 1 h are shown in Figure 1. There are the sharp bands at $1362-1398 \mathrm{~cm}^{-1}$ accompanied by four broad but split bands at $1250,1157,1038$. and $941 \mathrm{~cm}^{-1}$. indicating the presence of two kinds of sulfated species. The bands at $1362-1398 \mathrm{~cm}^{-1}$ corresponds to asymmetric $\mathrm{S}=\mathrm{O}$ stretching frequency of sulfate ion bonded to $\gamma-\mathrm{Al}_{3} \mathrm{O}_{3}$ under the dehydrated condition. while the latter four bands are assigned to bidentate sulfate ion coordinated to $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3 .}{ }^{11.12}$ These results are very similar to those of other worker. ${ }^{11-13}$ However. the frequency shift of this band is different depending on the evacuation temperature as shown in Figure 1. At $100^{\circ} \mathrm{C}$ an
asymmetric stretching band of $\mathrm{S}=\mathrm{O}$ bonds was not observed because the water molecule are adsorbed on the surface of $\mathrm{NiSO}_{4} / \mathrm{KAl}_{2} \mathrm{O}_{3}{ }^{11.12}$ However, from $200^{\circ} \mathrm{C}$ the band began to appear at $1362 \mathrm{~cm}^{-1}$ as a shoulder. and the band intensity increased with the evacuation temperature and the position of band was shifted to higher wavenumber. It is likely that the surface sulfur complexes formed by the interaction of oxides with sulfate ion in highly active catalysts have a strong tendency to reduce its bond order by the adsorption of basic molecules such as $\mathrm{H}_{2} \mathrm{O}{ }^{11.12}$ Consequently, as shown in Figure 1, an asymmetric stretching band of $\mathrm{S}=\mathrm{O}$ bonds for the sample evacuated at lower temperature appears at lower frequency compared with that for the sample evacuated at higher temperature because the adsorbed water reduces the bond order of $\mathrm{S}=\mathrm{O}$ from a highly covalent double-bond character to a lesser double-bond character. Therefore. it is obvious that the asymmetric stretching frequency of the $S=O$ bonds can be related to the acidic properties and catalytic

Figure 1. Infrared spectra of $\mathrm{NiSO}_{4} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ evacuated at different temperatures.
activity discussed later.
The catalytic activities of $\mathrm{NiSO}_{4} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ for the reaction of ethylene dimerization were examined and the results are shown as a function of evacuation temperature in the Figure 2, where the catalysts were evacuated for 1.5 h before reaction. The catalytic activity increased with increasing the evacuation temperature. reaching a maximum at $600^{\circ} \mathrm{C}$. To examine the effect of evacuation temperature on surface area, BET surface area of $\mathrm{NiSO}_{4} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ at various evacuation temperatures ($300-700^{\circ} \mathrm{C}$) was measured. However, the particular change of surface area was not observed. giving about $190-193 \mathrm{~m}^{2} / \mathrm{g}$ regardless of evacuation temperature. Therefore, it seems likely that the variation of catalytic activity is not related to the change of surface area but to the easy formation of active site depending on the evacuation temperature. On all the catalysts of $\mathrm{NiSO}_{4} / \gamma-\mathrm{Al}_{3} \mathrm{O}_{3}$, ethylene was selectively dimerized to n-butenes.
Comparing Figures 1 and 2 , catalytic activity is closely correlated to the asynmmetric stretching frequency of the $S=O$ bonds. Namely. the higher the frequency of the $S=O$ bonds, the higher the catalytic activity for ethylene dimerization. It was reported that the catalytic activity of nickel-containing cataly sts in the ethylene dimerization as well as in the butene isomerization was closely correlated with the acidity of the cataly st. ${ }^{+8,9}$ The acidity of $\mathrm{NiSO}_{4} / \gamma \mathrm{Al}_{2} \mathrm{O}_{3}$ after evacuation at different temperatures was determined by the amount of NH_{3} irreversibly adsorbed at $230^{\circ} \mathrm{C}$. ${ }^{4.6}$ The results are listed in Table 1 together with the asymmetric frequency of the $\mathrm{S}=\mathrm{O}$ bonds and catalytic activity for ethylene dimerization. The higher the frequency. the larger the acidity and catalytic activity of catalyst. showing maxina for frequency, acidity and catalytic activity at the evacuation temperature of 600 ${ }^{\circ} \mathrm{C}$. The decrease of catalytic activity after the evacuation at

Figure 2. Catalytic activities of $\mathrm{NiSO}_{4} / 2-\mathrm{Al}_{2} \mathrm{O}_{3}$ for ethylene dimerization as a function of evacuation temperature.

Table 1. Asymmetric stretching frequency of the $\mathrm{S}=\mathrm{O}$ bonds, acidity and catalytic activity for $\mathrm{NiSO}_{4} / \gamma \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst evacuat- ed at different temperatures

Evacuation Temperature, ${ }^{\circ} \mathrm{C}$	Frequency, cm^{-1}	Acidity, $\mu \mathrm{mol} / \mathrm{g}$	Catalytic activity, $\mathrm{mmol} / \mathrm{g} \cdot 5 \mathrm{~min}$
100	-	48	0
200	1362	75	1.4
300	1381	154	2.3
400	1389	216	3.1
500	1395	283	3.7
600	1398	320	4.3
700	1378	375	1.8

$700^{\circ} \mathrm{C}$ can be explained in terms of that the high evacuation temperature resulted in the decrease of sulfate group bonded to the surface of $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ as well as the decrease of acidity, and the change of oxidation state of nickel ion. It is known that the active sites responsible for ethylene dimerization consist of a low valent nickel. Ni^{+}and an acid. ${ }^{11}$ An asymmetric frequency of the $\mathrm{S}=\mathrm{O}$ bonds is a measure of ability (acid strength) of a sulfur complex to pull basic molecules such as $\mathrm{H}_{2} \mathrm{O}$ and NH_{3}, and is a driving force to generate highly acidic properties, acid strength and acidity. ${ }^{11,12}$ In view of Figures 1 and 2. and Table 1, there is a good correlation between the infrared band frequency of the asymmetric $\mathrm{S}=\mathrm{O}$ stretching vibration in $\mathrm{NiSO}_{4} / \mathrm{KAl}_{3} \mathrm{O}_{3}$ and catalytic activity for ethylene dimerization. Therefore, it is concluded that we can use the asymmetric stretching frequency of the $\mathrm{S}=\mathrm{O}$ bonds in $\mathrm{NiSO}_{4} / \gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst as a measure of catalytic activity for ethylene dimerization.

Acknowledgment. This work was supported by grant NO. (2001-1-30700-006-2) from the Basic Research Program of the Korea Science Engineering Foundation.

References

1. Urabe, K.; Koga, M.; Izumi, Y. J. Chem. Soc., Chem. Commm. 1989807.
2. Bernardi, F:; Bottoni, A:; Rossi, I. J. Am. Chem. Soc. 1998, 120, 7770.
3. Choo, H.; Kevan, L. J. Phys. Chem. B 2001, 105, 6353.
4. Sohn, J. R.; Ozaki, A. J. Catal. 1980, 61, 29.
5. Wendt, G.; Fritsch, E.: Schöllner, R.: Siegel, H. Z. Anorg. Allg. Chem. 1980, $467,51$.
6. Sohn, I. R.: Shin, D. C.J. Catal. 1996, 160, 314.
7. Bendt, G. F.: Thomson, S. J.; Webb, G. I. J. Chem. Soc: Faradoy Trans. 1 1983, 79, 195.
8. Sohn, J. R.: Park. W. C. Buhl. Korean Chem. Soc. 1999, 20, 1261.
9. Sohn, J. R.; Park, W. C. Bull. Korean Chem. Soc. 2000, 21, 1063.
10. Sohn, J. R.; Park, W. C. J. Mol. Catal. A: Chemical 1998, 133, 297.
11. Jin, T.; Yamaguchi, T.; Tanabe, K. J. Phys. Chem. 1986, 90, 4794.
12. Yamaguchi, T. Appl. Catal. 1990, 61, 1.
13. Saur, O.: Bensitel, M.; Saad, A. B. M.; Lavalley, I. C.; Tripp, C. P.; Monow, B. A. J. Catal. 1986, 99, 104.
