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Monte Carlo simulations of hard-spheres confined in parallel hard walls have been carried out extensively at
various densities and for various wall distances. The compressibility factors in the directions parallel and
normal to the wall have been calculated from the radial free space distribution function (RFSDF) with the
results showing that the compressibility factors normal to the wall are smaller than those in parallel direction
and that a solid phase is formed in the direction normal to the wall while a fluid phase remains in the parallel
direction. An order parameter is found to classify the phases whether a system (or a molecule) is in a fluid or a
solid state. The compressibility factors of narrow wall are very small compared to those when the wall is put
away. A plausible mechanism of the rise of sap in xvlem vessel has been proposed.
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Introduction

The hard-sphere system is a simple model but it often
represents dense fluid and solid systems reasonably. The
systems of hard-spheres in a wall or near a wall have been
examined by molecular dvnamics'> and the Monte Carlo
(MC) method®* and they have been also studied theoreti-
cally.>®

Different from the hard-spheres in a bulk phase. the hard-
spheres near a wall have reduced-dimensional motion. i.e..
the two-dimensional hard-discs near a wall are pushed
against the wall and are constrained fo a quasi-one-
dimensional motion > It is also found that the hard-spheres in
a wall have a directional anisotropy. The pressure parallel to
the wall and normal to the wall observed by molecular
dynamics simulations are different.! The pressure normal to
the wall was lower than the parallel one. however their phase
difference was not observed. The phase separation in
confined system is of interest in general. ™!’ In this paper.
the hard-spheres confined in parallel hard walls at various
densities and for various wall distances have been exten-
sively studied by the MC method and the compressibility
factors parallel and normal to the wall are calculated using
the radial free space distribution fiunctions (RFSDF). differ-
ently from the velocity analysis method as in the usual
melecular dynamics simulations. The RFSDF is found to be
a very useful function fo calculate various thermodynamic
properties such as the pressure. entropy (or chemical
potential)’>"* and even the compressibility.'® It is not easy fo
differentiate the parallel and normal pressure to the wall of
the hard-sphere system by an MC method. since the velocity
components of molecules are not calculated with MC
method and the pressure components are not given analy-
tically for this hard-sphere system. However. the RFSDFs
parallel and nommal to the wall are defined. and the two
different compressibility factors parallel and normal to the
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wall are calculated from the slope of each function.
Method

The RFSDF. {(#), 1s obtained mn the MC procedure by the
following ratio:

Acceptances of displacement of r
Trials of displacement of »

L= (L)
where 7 1s the distance reduced with hard-sphere diameter ¢.
The RFSDF represents the cavity structure formed by
neighboring molecules. When the cavity 1s not 1sotropic. we
can define the function in a directional way. The (radial) free
space distribution function parallel to the wall, £ (#). 1s
defined and calculated by attempting the trials of move only
to the parallel direction to the wall. and that normal to the
wall, { _ (#). 1s calculated by the same way but the trials of
move are performed only to the normal direction to the wall.
The RFSDF starts from 1 at # = 0 and decreases exponenti-
ally. n general. Therefore it has been expressed well in the
following form’

Li(r) = exp(—ayr — by 2
and
Ci(r) =exp(—a_r—b.F). (3)

With the same way to the exact relation between the
compressibility factor and RFSDF'7" in the case of usual
symmetric boundary condition (see for an example Eq. (3.9)
of ref. 18). the compressibility factor parallel to the wall.
P V/RT. and that normal to the wall. p_V/RT. are calculated,
respectively, by the slope of the loganthm of each RFSDF at
#= 0. as follows.

I [ + 3 a (C))
.2 5
RT 1 + 3 a._ (&)
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The MC simulations are carried out at various densities and
for various wall distances. The periodic boundary condition
15 apphed only to the Y-Z plane and the walls are put
perpendicular to the X-axis departed from the distance L.
The number density. p=N/} used mn this calculation is
defined by assuming the volume, ¥, only where the centers
of molecules locate, /.e., the forbidden marginal space of
half diameter of hard-sphere molecule from both walls 1s
dunimished. And & is the number of molecules used in the
simulation. Since the sides of peniodic unit box decrease.
significantly. in Y-Z plane in the case of long wall distance,
a large number of molecules must be required in the
simulations. Therefore. 300 molecules are used when £ =

11 6. 900 molecules are used when 16 < L= 316, and 1200
molecules when L 1s longer than 31¢. The initial configu-
ration 1s a randomly packed one in a unit box and 2 million
configurations from the beginning are discarded, and there-
after 3 million samplings are averaged. Among these 3
million samplings. one third of them are for parallel moves
only, another one third are for normal moves only, and the
other one third are moved to umform radial directions.

Results and Discussion

Testing the validity of this method of anisotropic calcu-
lations in Egs. (4) and (5). the compressibility factors, p | J/RT
and p_V/RT are obtained to be 7.00 and 6.45 (at pa‘3 =
0.8839. L/ = 6) and 2.7] and 2.66 (at po” = 04714, L/G =
7. respectively. These values are in good agreement with the
molecular dvnamics calculations of Allev and Alder.! that
are 7.03. 6.31, 2.71, and 2.57, respectively. The RFSDFs are
plotted in Figure 1. in which {|(#) has the deeper slope at r =
) but larger value at long distance than () does. The
compressibility factors and the coefficients for the least
square fit values of RFSDF to Egs. (2) and (3) were listed in
Table | for several wall distances along various densities and

&(r)

Figure 1. The directional RFSDFs of L/¢ = 6. The solid lines are
£ .(#)and dotted lines are &) (#), respectivelv. The densities po™ are
denoted on the curves.
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i Table 2 at several densities along various wall distances.
In general. the compressibility factors parallel to the wall are
larger than the respective ones normal to the wall. And both
compressibility factors are smaller than those when the wall
1s put away. The compressibility factors of short wall
distances (L/0 = 6) are much smaller than those when the
wall disappears. The molecules near the wall are two-
dimensionally packed against the wall and thus they have
large free spaces. #(¢/2) 1s the contact value of the wall and
hard-sphere molecules for the density profile along X-axis.
At very low densities the wall repels the molecules. and
therefore the highest peak 1s off the surface of the wall. At

Table 1. The compressibility factors and the coefficients for
RFSDF at various densities

oG w(o2) pVIRT pVIRT  a b a, b_
Lic=3
0.1 087 1.18 117 02757 -0.02056 0.2527 -0.02710

02 105 141 138 06130 -0.05305 05724 -0.05734
03 119 167 163 1008 -0.09200 0.9469 -0.08358

04 140 200 195 1503 -01527 1418 -0.1137
05 172 239 232 2084 -02167 1973 -0.1360
06 187 291 268 2862 -03487 2525 03l64
07 223 350 324 3748 05460 3358 04652
08 283 426 393 488 -1.101 4401 1.284
09 334 556 473 6082 -1222 5.598  5.021

Lic=6
01 072 123 122
02 054 151 149

03442 -0.03190 0.3262 -0.01729
0.7647 -0.07523 0.7281 -0.04123

03 122 185 182 1270 -01265 1230 -0.07254
04 152 228 224 1918 -02107 1853 -0.09146
05 185 28 276 2725 -03099 2632 -0.06884
06 237 354 337 38l6 05271 3556 043546
07 300 446 420 5192 -06926 479 1576
08 412 579 535 718 -2358 6521 2622
09 494 731 667 9460 -1.357 8498 10.003
Liog=11
01 069 123 123 03509 -0.03005 0.3407 -0.02298
02 089 153 151 08000 -0.07799 0.7684 -0.05241
03 125 191 18% 1362 -01361 1331 -0.1003
04 162 239 236 208 -02234 2039 -0.1237
05 210 303 298 3049 -03602 2967 -0.1377
06 269 387 376 4304 -05630 4138 006814
07 352 502 482 6016 -09219 35731 0871l
08 456 658 629 8371 -198 7938 2548
09 609 867 819 1150 -1.590 1078 6.340

Lig=2]
01 063 124 123
02 08 154 153

0.3581 -0.03251 0.3505 -0.02627
0.8109 -0.07387 0.8011 -0.06250

03 122 191 18% 1365 -0.1363 1335 -0.1014
04 160 246 244 2182 -02253 2154 -0.1631
05 211 316 312 3241 -03%49 3178 -0.2352
06 28 4.09 400 4628 -06682 4505 003102
07 387 532 522 6479 -06423 6328 01075
08 523 7.08 692 9123 -07533 8873 2270
09 709 967 939 1300 -3918 1258 4126
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Table 2. The compressibility factors and the coefficients for RFS-
DF of various wall distances

Lic n(o2) pliRT pliRT g by a_ b,
poi=04
301400 200 195 1303 01327 1418 -0.1137
4 144 215 211 1717 01797 1664 -0.08857
5 148 222 2.18  1.833 -0.1196  1.777 -0.07080
6 147 228 224 1918 -02107 1853 -0.09146
11 1352 239 236 2089 -0.2204  2.039 -0.1237
16 1351 242 240 2148 -0.2228  2.099 -().1286
21 1600 246 244 2182 -0.2233 2134 -1.1631
26 168 247 243 2200 02262 2176 -0.1662
31 177 248 247 2222 02333 2199 -0.2043
3 182 249 247 2232 02336 2206 -0.2033
po =106
3187 291 2.68  2.862 -0.3487 23523 0.3164
4 208 323 301 3374 -03838 3.013  0.5281]
5 226 343 322 3648 -0.3788 3330 0.5610
6 235 354 3.3 3816 -0.3271 3556 04346
11269 387 376 4304 -0.3630 4138 0.06814
16 287 401 391 43515 -0.3297 4371 01232
21 286 409 400 4628 -0.6682 4305 (0.03102
26 283 413 405 4691 -0.6268 4375 -0.02613
31295 414 411 4716 -0.3419 4664 02864
36 295 419 413 4779 -0.6394 4696 -02286
poi =108
3 288 422 394 4828 -08348 4413 0.7432
4 322 494 448 53908 -1438 3223 3.1
5 3600 338 495 6374 -1.393 3922 4200
6 384 379 333 7188 -2338 6.321 2.622
11 4356 G638 6.29 8371 -1.989 7938 23548
16 310 6.89 6.69 8840 -1.199 8334 2.783
21 323 708 6.92 8873 -0910  BR23 1.920
26 325 123 711 9374 22033 9171 1.099
31 341 732 721 9487 -1739 9317 10.7622
36 315 736 729 9337 -04331 9430 0.7724
41 303 742 733 9635 -D6790 9499 0.5478

high densities. the molecules are pushed against the wall.
and the highest peak is at the surface. These data in Table |
and 2 are plotted in Figures 2 and 3. respectively. There exist
fluid-to-solid phase transitions in the normal direction to the
wall around po® = 0.5~0.6. This is not clear in the scale as in
Figure 2, however the difference between the compressibi-
lity factors in parallel and normal direction plotted in Figure
4 shows the phase difference obviously. Whenever the fluid-
to-solid phase transitions occur. the coefficient » has been
changed from minus to plus,"*'" and this is not the exception
in this case. In Table L. the sign of coefficient # is switched
from minus to plus between po® = 0.5 and 0.6. Therefore the
coefficient » must be an order parameter to classify the
phases whether the syvstem is a flmd phase (when # is
negative) or a solid phase (when 4 1s positive). As 1s well
known,™" the negative logarithms of the distribution functions
are the corresponding potentials of average force (in units of
k7). and their gradients vield the average forces in the given
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Figure 2. The compressibility factors of various L denoted on the
curves. The circles connected with dotted lines are for the parallel
values, and the squares with solid lines are for the nonmal values.
The uppenmost thick solid line 15 for the compressibility factor of
no walls [ref. 17].
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Figure 3. The same as Figure 2, however the compressibility
tactors are plotted along wall distance. The uppermost thick lines
of each density are of no walls [ref. 17].

set of particles.’® When 4 is negative (fluid phase). the mean
field force at large distance 1s smaller than that of equili-
brium position (at # = 0). This means that once the thermal
pressure (bigger than the force at » = 0) is given onto the
molecule by a kinetic collision. the molecule can shide out
from the equilibrium position. On the contrary, when 4 is
positive (solid phase), since the force at large distance is
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Figure 4. The differences of compressibility factors normal to the
wall from those parallel to the wall of several wall distances listed
on the curves. The lines are least square fits and each break point
was chosen approximately.

bigger than that at » = 0 . the molecule 1s repelled back to the
position and is confined in the cell. The fluid-to-solid phase
transition occurs around po”® = 1.0 for the usual hard-sphere
system when the three dimensional periodic boundary
condition is applied or the wall-effect disappears.”™> In
Figure 4, the transition behavior i case of L/6 = 3 (The
centers of molecules are located within the wall distance of
20 only)) is a bit different from others, probably because
most of molecules are located near the surfaces of wall when
the wall is very narrow. and the transition 1s made at a tume,
while the transitions are done laver by laver from the surface
of wall with the increase of density when the wall distances
are long. The phase change regions are not dependent of the
wall distance in this hard-sphere system, while in the
Lennard-Jones svstem, a slight change n pore width causes
a large change in the freezing/melting hysteresis behavior.-*
With the increase of wall distance. the differences between
the compressibility factors in parallel and normal direction
become small and the transitions are not clearly seen. The
RFSDFs. {i(#) and {_(#) . are calculated in a space-averaged
way. However. it is of interest to calculate £ () and {_(#)
along X-axis and fo see the phase changes depending on the
distance from the wall. since the pressure along X-axis is
proportional to the density profile- and the behaviors of
molecules near the wall are different from those more distant
from the wall."* The compressibility factors depending on
the distance from the wall are calculated from RFSDF by
spacing the positions of molecules in the X-axis finely and
are plotted in Figure 3 that shows a very similar behavior to
Figure 10 of ref. 2. The molecules near walls show the more
anisotropic behavior than the molecules more distant from
the surface. According fo the sign of the coefficient b. the
solid phases appear in a patched form at the distances of the
multiple of ¢ from the surface of wall. A close look at the
walks in Figure 4 of ref. 4 informs that the molecules at the
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Figure 5. The compressibility factors along X-axis. Squares are the
compressibility factors m the parallel direction, and circles are
those in the normal direction. Solid circles represent the solid phase
while open symbols do the fluid phase.

surface move only in the parallel direction, while the
molecules far from the wall move all around. 7e.. the
molecules at the surface are in the solid state n the normal
direction. If a fluid phase is differentiated from the solid
phase by the coefficient A, it 1s of convemence to use this
method for studying transition phenomena in various fields
such as the melting at a surface.™ Though this simulation is
for the hard-sphere mteraction with no attractive force. the
phenomena of amisotropic phases (a solid phase in the
direction normal to the wall and a fluid phase m parallel
direction) 1s associated with the situation of the nse of sap in
a xvlem vessel. as a climber goes up (a fluid phase) between
a narrow crevice by bearing his weight with stretched arms
and legs (a solid phase) normal to the wall.
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