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Monte Carlo simulations of hard-spheres confined in parallel hard walls have been carried out extensively at 
various densities and for various wall distances. The compressibility factors in the directions parallel and 
normal to the wall have been calculated from the radial free space distribution function (RFSDF) with the 
results showing that the compressibility factors normal to the wall are smaller than those in parallel direction 
and that a solid phase is formed in the direction normal to the wall while a fluid phase remains in the parallel 
direction. An order parameter is found to classify the phases whether a system (or a molecule) is in a fluid or a 
solid state. The compressibility factors of narrow wall are very small compared to those when the wall is put 
away. A plausible mechanism of the rise of sap in xylem vessel has been proposed.
Keywords : Radial free-space distribution function, Hard-wall, Order parameter, Anisotropic phase transition, 
Sap rise.

Introduction wall are calculated from the slope of each function.

The hard-sphere system is a simple model but it often 
represents dense fluid and solid systems reasonably. The 
systems of hard-spheres in a wall or near a wall have been 
examined by molecular dynamics1,2 and the Monte Carlo 
(MC) method3-5 and they have been also studied theoreti- 
cally.6-9

Different from the hard-spheres in a bulk phase, the hard- 
spheres near a wall have reduced-dimensional motion, i.e., 
the two-dimensional hard-discs near a wall are pushed 
against the wall and are constrained to a quasi-one- 
dimensional motion.2 It is also found that the hard-spheres in 
a wall have a directional anisotropy. The pressure parallel to 
the wall and normal to the wall observed by molecular 
dynamics simulations are different.1 The pressure normal to 
the wall was lower than the parallel one, however their phase 
difference was not observed. The phase separation in 
confined system is of interest in general.10,11 In this paper, 
the hard-spheres confined in parallel hard walls at various 
densities and for various wall distances have been exten
sively studied by the MC method and the compressibility 
factors parallel and normal to the wall are calculated using 
the radial free space distribution functions (RFSDF), differ
ently from the velocity analysis method as in the usual 
molecular dynamics simulations. The RFSDF is found to be 
a very useful function to calculate various thermodynamic 
properties such as the pressure, entropy (or chemical 
potential)12-15 and even the compressibility.16 It is not easy to 
differentiate the parallel and normal pressure to the wall of 
the hard-sphere system by an MC method, since the velocity 
components of molecules are not calculated with MC 
method and the pressure components are not given analy
tically for this hard-sphere system. However, the RFSDFs 
parallel and normal to the wall are defined, and the two 
different compressibility factors parallel and normal to the

Method

(1)

The RFSDF, g(r), is obtained in the MC procedure by the 
following ratio:

Z () _ Acceptances of displacement of r 
Trials of displacement of r

where r is the distance reduced with hard-sphere diameter a. 
The RFSDF represents the cavity structure formed by 
neighboring molecules. When the cavity is not isotropic, we 
can define the function in a directional way. The (radial) free 
space distribution function parallel to the wall, Zii(r), is 
defined and calculated by attempting the trials of move only 
to the parallel direction to the wall, and that normal to the 
wall, Z 丄(r), is calculated by the same way but the trials of 
move are performed only to the normal direction to the wall. 
The RFSDF starts from 1 at r = 0 and decreases exponenti
ally, in general. Therefore it has been expressed well in the 
following form17

z l l (r) = exp(—에 r 一 伽户) (2)
and

Z (r) = exp(-a丄 r - b 丄 r3). (3)

With the same way to the exact relation between the 
compressibility factor and RFSDF17-19 in the case of usual 
symmetric boundary condition (see for an example Eq. (3.9) 
of ref. 18), the compressibility factor parallel to the wall, 
pil VRT, and that normal to the wall, p±V^RT, are calculated, 
respectively, by the slope of the logarithm of each RFSDF at 
r = 0, as follows,

piiV_1 + 2 
"河- = 1 + T 이 | Rt 3 
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The MC simulations are carried out at various densities and 
for various wall distances. The periodic boundary condition 
is applied only to the Y-Z plane and the walls are put 
perpendicular to the X-axis departed from the distance L. 
The number density, p = N/V used in this calculation is 
defined by assuming the volume, V, only where the centers 
of molecules locate, i.e., the forbidden marginal space of 
half diameter of hard-sphere molecule from both walls is 
diminished. And N is the number of molecules used in the 
simulation. Since the sides of periodic unit box decrease, 
significantly, in Y-Z plane in the case of long wall distance, 
a large number of molecules must be required in the 
simulations. Therefore, 500 molecules are used when L < 
11b, 900 molecules are used when 11b< L< 31b, and 1200 
molecules when L is longer than 31b. The initial configu
ration is a randomly packed one in a unit box and 2 million 
configurations from the beginning are discarded, and there
after 3 million samplings are averaged. Among these 3 
million samplings, one third of them are for parallel moves 
only, another one third are for normal moves only, and the 
other one third are moved to uniform radial directions.

Results and Discussion

Testing the validity of this method of anisotropic calcu
lations in Eqs. (4) and (5), the compressibility factors, p\[V/RT 
and p丄V/RT are obtained to be 7.00 and 6.45 (at pcb = 
0.8839, L/b = 6) and 2.71 and 2.66 (at pb3 = 0.4714, L/b = 
7), respectively. These values are in good agreement with the 
molecular dynamics calculations of Alley and Alder,1 that 
are 7.03, 6.31, 2.71, and 2.57, respectively. The RFSDFs are 
plotted in Figure 1, in which Z|(r) has the deeper slope at r = 
0 but larger value at long distance than Z丄(r) does. The 
compressibility factors and the coefficients for the least 
square fit values of RFSDF to Eqs. (2) and (3) were listed in 
Table 1 for several wall distances along various densities and

Figure 1. The directional RFSDFs of L/b = 6. The solid lines are 
Z丄(r) and dotted lines are Z| (r), respectively. The densities pb are 
denoted on the curves. 

in Table 2 at several densities along various wall distances. 
In general, the compressibility factors parallel to the wall are 
larger than the respective ones normal to the wall. And both 
compressibility factors are smaller than those when the wall 
is put away. The compressibility factors of short wall 
distances (L/b M 6) are much smaller than those when the 
wall disappears. The molecules near the wall are two- 
dimensionally packed against the wall and thus they have 
large free spaces. n(b/2) is the contact value of the wall and 
hard-sphere molecules for the density profile along X-axis. 
At very low densities the wall repels the molecules, and 
therefore the highest peak is off the surface of the wall. At

Table 1. The compressibility factors and the coefficients for 
RFSDF at various densities

po3 n(b/2) pV/RT pV/RT 이 I 애 a丄 b丄

L/b = 3
0.1 0.87 1.18 1.17 0.2757 -0.02056 0.2527 -0.02710
0.2 1.05 1.41 1.38 0.6130 -0.05305 0.5724 -0.05734
0.3 1.19 1.67 1.63 1.008 -0.09200 0.9469 -0.08358
0.4 1.40 2.00 1.95 1.503 -0.1527 1.418 -0.1137
0.5 1.72 2.39 2.32 2.084 -0.2167 1.973 -0.1360
0.6 1.87 2.91 2.68 2.862 -0.3487 2.525 0.3164
0.7 2.23 3.50 3.24 3.748 -0.5460 3.358 0.4652
0.8 2.88 4.26 3.93 4.885 -1.101 4.401 1.284
0.9 3.34 5.56 4.73 6.082 -1.222 5.598 5.021

L/b = 6
0.1 0.72 1.23 1.22 0.3442 -0.03190 0.3262 -0.01729
0.2 0.94 1.51 1.49 0.7647 -0.07523 0.7281 -0.04123
0.3 1.22 1.85 1.82 1.270 -0.1269 1.230 -0.07254
0.4 1.52 2.28 2.24 1.918 -0.2107 1.853 -0.09146
0.5 1.85 2.82 2.76 2.725 -0.3099 2.632 -0.06884
0.6 2.37 3.54 3.37 3.816 -0.5271 3.556 0.4546
0.7 3.00 4.46 4.20 5.192 -0.6926 4.796 1.576
0.8 4.12 5.79 5.35 7.188 -2.358 6.521 2.622
0.9 4.94 7.31 6.67 9.460 -1.357 8.498 10.003

L/b = 11
0.1 0.69 1.23 1.23 0.3509 -0.03005 0.3407 -0.02298
0.2 0.89 1.53 1.51 0.8000 -0.07799 0.7684 -0.05241
0.3 1.25 1.91 1.89 1.362 -0.1361 1.331 -0.1003
0.4 1.62 2.39 2.36 2.089 -0.2234 2.039 -0.1237
0.5 2.10 3.03 2.98 3.049 -0.3602 2.967 -0.1377
0.6 2.69 3.87 3.76 4.304 -0.5630 4.138 0.06814
0.7 3.52 5.02 4.82 6.016 -0.9219 5.731 0.8711
0.8 4.56 6.58 6.29 8.371 -1.989 7.938 2.548
0.9 6.09 8.67 8.19 11.50 -1.590 10.78 6.340

L/b = 21
0.1 0.63 1.24 1.23 0.3581 -0.03251 0.3505 -0.02627
0.2 0.88 1.54 1.53 0.8109 -0.07387 0.8011 -0.06290
0.3 1.22 1.91 1.89 1.365 -0.1363 1.335 -0.1014
0.4 1.60 2.46 2.44 2.182 -0.2253 2.154 -0.1631
0.5 2.11 3.16 3.12 3.241 -0.3949 3.178 -0.2352
0.6 2.86 4.09 4.00 4.628 -0.6682 4.505 0.03102
0.7 3.87 5.32 5.22 6.479 -0.6423 6.328 0.1075
0.8 5.23 7.08 6.92 9.123 -0.7533 8.873 2.270
0.9 7.09 9.67 9.39 13.00 -3.918 12.58 4.126
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Table 2. The compressibility factors and the coefficients for RFS- 
DF of various wall distances

L/o n(o/2) pV/RT pV/RT 이 I bII a丄 b丄

po3 = 0.4
3 1.40 2.00 1.95 1.503 -0.1527 1.418 -0.1137
4 1.44 2.15 2.11 1.717 -0.1797 1.664 -0.08857
5 1.48 2.22 2.18 1.833 -0.1196 1.777 -0.07080
6 1.47 2.28 2.24 1.918 -0.2107 1.853 -0.09146

11 1.52 2.39 2.36 2.089 -0.2204 2.039 - 0.1237
16 1.51 2.42 2.40 2.148 -0.2228 2.099 -0.1286
21 1.60 2.46 2.44 2.182 -0.2253 2.154 -0.1631
26 1.68 2.47 2.45 2.200 -0.2262 2.176 -0.1662
31 1.77 2.48 2.47 2.222 -0.2333 2.199 -0.2043
36 1.82 2.49 2.47 2.232 -0.2356 2.206 -0.2033

po3 = 0.6
3 1.87 2.91 2.68 2.862 -0.3487 2.525 0.3164
4 2.08 3.25 3.01 3.374 -0.5858 3.015 0.5281
5 2.26 3.43 3.22 3.648 -0.5788 3.330 0.5610
6 2.35 3.54 3.37 3.816 -0.5271 3.556 0.4546

11 2.69 3.87 3.76 4.304 -0.5630 4.138 0.06814
16 2.87 4.01 3.91 4.515 -0.5297 4.371 0.1232
21 2.86 4.09 4.00 4.628 -0.6682 4.505 0.03102
26 2.83 4.13 4.05 4.691 -0.6268 4.575 -0.02613
31 2.95 4.14 4.11 4.716 -0.5419 4.664 -0.2864
36 2.95 4.19 4.13 4.779 -0.6594 4.696 -0.2286

po3
3

= 0.8
2.88 4.22 3.94 4.828 -0.8548 4.413 0.7432

4 3.22 4.94 4.48 5.908 -1.438 5.223 3.101
5 3.60 5.38 4.95 6.574 -1.393 5.922 4.200
6 3.84 5.79 5.35 7.188 -2.358 6.521 2.622

11 4.56 6.58 6.29 8.371 -1.989 7.938 2.548
16 5.10 6.89 6.69 8.840 -1.199 8.534 2.783
21 5.23 7.08 6.92 8.873 -0.910 8.823 1.920
26 5.25 7.25 7.11 9.374 -2.053 9.171 1.099
31 5.41 7.32 7.21 9.487 -1.759 9.317 0.7622
36 5.15 7.36 7.29 9.537 -0.4351 9.430 0.7724
41 5.03 7.42 7.33 9.635 -0.6790 9.499 0.5478

high densities, the molecules are pushed against the wall, 
and the highest peak is at the surface. These data in Table 1 
and 2 are plotted in Figures 2 and 3, respectively. There exist 
fluid-to-solid phase transitions in the normal direction to the 
wall around pa" = 0.5~0.6. This is not clear in the scale as in 
Figure 2, however the difference between the compressibi
lity factors in parallel and normal direction plotted in Figure 
4 shows the phase difference obviously. Whenever the fluid- 
to-solid phase transitions occur, the coefficient b has been 
changed from minus to plus,14-17 and this is not the exception 
in this case. In Table 1, the sign of coefficient b is switched 
from minus to plus between po3 = 0.5 and 0.6. Therefore the 
coefficient b must be an order parameter to classify the 
phases whether the system is a fluid phase (when b is 
negative) or a solid phase (when b is positive). As is well 
known,20 the negative logarithms of the distribution functions 
are the corresponding potentials of average force (in units of 
kT), and their gradients yield the average forces in the given

Figure 2. The compressibility factors of various L denoted on the 
curves. The circles connected with dotted lines are for the parallel 
values, and the squares with solid lines are for the normal values. 
The uppermost thick solid line is for the compressibility factor of 
no walls [ref. 17].

Figure 3. The same as Figure 2, however the compressibility 
factors are plotted along wall distance. The uppermost thick lines 
of each density are of no walls [ref. 17].

set of particles.18 When b is negative (fluid phase), the mean 
field force at large distance is smaller than that of equili
brium position (at r = 0). This means that once the thermal 
pressure (bigger than the force at r = 0) is given onto the 
molecule by a kinetic collision, the molecule can slide out 
from the equilibrium position. On the contrary, when b is 
positive (solid phase), since the force at large distance is
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Figure 4. The differences of compressibility factors normal to the 
wall from those parallel to the wall of several wall distances listed 
on the curves. The lines are least square fits and each break point 
was chosen approximately.

Figure 5. The compressibility factors along X-axis. Squares are the 
compressibility factors in the parallel direction, and circles are 
those in the normal direction. Solid circles represent the solid phase 
while open symbols do the fluid phase.

bigger than that at r = 0 , the molecule is repelled back to the 
position and is confined in the cell. The fluid-to-solid phase 
transition occurs around pb3 = 1.0 for the usual hard-sphere 
system when the three dimensional periodic boundary 
condition is applied or the wall-effect disappears21,22 In 
Figure 4, the transition behavior in case of L/b = 3 (The 
centers of molecules are located within the wall distance of 
2b only.) is a bit different from others, probably because 
most of molecules are located near the surfaces of wall when 
the wall is very narrow, and the transition is made at a time, 
while the transitions are done layer by layer from the surface 
of wall with the increase of density when the wall distances 
are long. The phase change regions are not dependent of the 
wall distance in this hard-sphere system, while in the 
Lennard-Jones system, a slight change in pore width causes 
a large change in the freezing/melting hysteresis behavior.23 
With the increase of wall distance, the differences between 
the compressibility factors in parallel and normal direction 
become small and the transitions are not clearly seen. The 
RFSDFs, g||(r) and Z 丄(r) , are calculated in a space-averaged 
way. However, it is of interest to calculate Zl (r) and Z 丄(r) 
along X-axis and to see the phase changes depending on the 
distance from the wall, since the pressure along X-axis is 
proportional to the density profile2 and the behaviors of 
molecules near the wall are different from those more distant 
from the wall.14 The compressibility factors depending on 
the distance from the wall are calculated from RFSDF by 
spacing the positions of molecules in the X-axis finely and 
are plotted in Figure 5 that shows a very similar behavior to 
Figure 10 of ref. 2. The molecules near walls show the more 
anisotropic behavior than the molecules more distant from 
the surface. According to the sign of the coefficient b, the 
solid phases appear in a patched form at the distances of the 
multiple of b from the surface of wall. A close look at the 
walks in Figure 4 of ref. 4 informs that the molecules at the 

surface move only in the parallel direction, while the 
molecules far from the wall move all around, i.e., the 
molecules at the surface are in the solid state in the normal 
direction. If a fluid phase is differentiated from the solid 
phase by the coefficient b, it is of convenience to use this 
method for studying transition phenomena in various fields 
such as the melting at a surface.24 Though this simulation is 
for the hard-sphere interaction with no attractive force, the 
phenomena of anisotropic phases (a solid phase in the 
direction normal to the wall and a fluid phase in parallel 
direction) is associated with the situation of the rise of sap in 
a xylem vessel, as a climber goes up (a fluid phase) between 
a narrow crevice by bearing his weight with stretched arms 
and legs (a solid phase) normal to the wall.
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