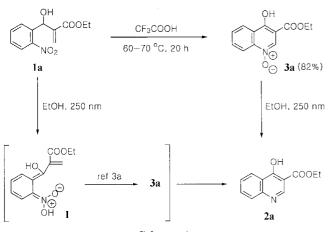
Synthesis of 4-Hydroxyquinolines from the Baylis-Hillman Adducts of *o*-Nitrobenzaldehydes

Jae Nyoung Kim, Ka Young Lee, Heui-Suk Ham, Hyoung Rae Kim, and Eung K. Ryu[†]

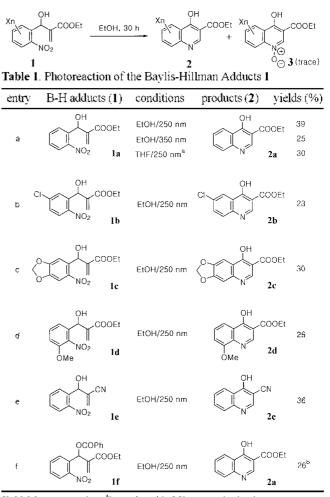
Department of Chemistry and Institute of Basic Science, Chonnam National University, Kwangju 500-757, Korea [†]Korea Research Institute of Chemical Technology, P.O. Box 107, Yusong, Taejon 305-600, Korea Received December 13, 2000


Keywords: 4-Hydroxyquinolines, Baylis-Hillman adducts, o-Nitrobenzaldehydes, Photoreaction,

The Baylis-Hillman reaction is one of the most powerful carbon-carbon bond-forming methods in organic synthesis.¹ The Baylis-Hillman adducts, which are allylic alcohol derivatives, can be formed most often by the reaction of activated vinyls and carbonyl compounds.¹ Besides the usefulness of these Baylis-Hillman adducts themselves, further derivatization with various nucleophilic reagents toward synthetically useful compounds has been studied in depth by us and other groups.² There were some reported papers on the formation of heterocyclic compounds including quinolines from the Baylis-Hillman adducts.³

Quinolines and their derivatives occur in numerous natural products.⁴ Many quinolines display interesting physiological activities and have found attractive applications as pharmaceuticals and agrochemicals as well as being general synthetic building blocks.^{4b} Although many synthetic methods have been developed for the preparation of quinolines.⁵ due to their great importance, the development of novel synthetic methods remains an active research area.⁶

Recently, we have reported on the synthesis of 4-hydroxy-3-ethoxycarbonylquinoline *N*-oxide derivatives from the Baylis-Hillman adducts of 2-nitrobenzaldehydes in acidic conditions.^{3a} As a continuous work, we intended to examine the possibility of transforming the Baylis-Hillman adducts of 2-nitrobenzaldehydes into the quinoline *N*-oxides by the photochemical method.


A solution of **1a** in ethanol (0.16 M solution) was irradiated with 250 nm wavelength in a quartz reaction vessel.⁷

We could isolate quinoline *N*-oxide **3a** in trace amount from the reaction. Instead the deoxygenated 4-hydroxy-3-ethoxycarbonylquinoline **2a** (39%) was obtained as the major product.⁸ The reaction might proceed *via* the *aci*-nitro compound **I**, which was generated through the benzylic hydrogen abstraction by the excited *ortho*-nitro group.⁹ **I** was converted to the quinoline *N*-oxide **3a** as described in our previous paper.^{3a} Elimination of oxygen atom of **3a** and the fate of oxygen atom is uncertain at this point (*vide infra*). In other cases **1b-d** and the nitrile analogue **1e**, we could obtain the similar results as in Table 1.⁸

In the reaction mixture we could observe the quinoline N-

^a0.03 M concentration. ^bbenzoic acid (25%) was obtained.

136 Bull. Korean Chem. Soc. 2001, Vol. 22, No. 2

oxides in trace amounts (< 5%), which might indicate the intermediacy of quinoline *N*-oxides for the formation of quinolines **2**. Moreover, irradiation of pure **3a** (250 nm, 20 h) in ethanol produced **2a** in 58% isolated yield. Such deoxygenation of quinoline *N*-oxides to quinolines indeed occurred very slowly in ethanol solution without UV irradiation.

Change of the reaction conditions such as wavelength, solvent, or concentration did not improve the yields (entry a in Table 1). Heating **1a** in ethanol (70-80 °C, 48 h) or diphenyl ether (200 °C, 48 h) without UV irradiation did not give any quinoline **2a** nor quinoline *N*-oxide.

Photochemical rearrangements and fragmentations of onitrobenzyl compounds were well-known.⁹ Transfer of oxygen atom of nitro group to the benzylic position and concomittant removal of the alkoxy, carboalkoxy, or phosphate group occurs. In these respects the o-nitrobenzyloxy moiety was studied and used as a photochemically labile protecting group.⁹ In order to examine the possibility of the Baylis-Hillman adducts as a photochemical protecting group, we performed the photochemical reaction of O-benzoyl analogue **1f** in the same reaction conditions. From the reaction we could obtain **2a** (26%) and benzoic acid (25%) as expected. However, to our disappointment, starting material **1f** was recovered in 64% yield.

Acknowledgment. This work was supported by Korea Research Foundation Grant (KRF-2000-015-DP0275). The support of the Korea Basic Science Institute (Kwangju branch) is also acknowledged.

References and Notes

- (a) Ciganek, E. Organic Reactions; John Wiley & Sons: New York, 1997; Vol. 51, pp 201-350. (b) Drewes, S. E.; Roos, G. H. P. Tetrahedron **1988**, 44, 4653. (c) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron **1996**, 52, 8001.
- (a) Kim, H. S.; Kim, T. Y.; Lee, K. Y.; Chung, Y. M.; Lee, H. J.; Kim, J. N. *Tetrahedron Lett.* **2000**, *41*, 2613. (b) Lee, H. J.; Seong, M. R.; Kim, J. N. *Tetrahedron Lett.* **1998**, *39*, 6223. (c) Lee, H. J.; Kim, H. S.; Kim, J. N. *Tetrahedron Lett.* **1999**, *40*, 4363, and references cited therein.
- (a) Kim, J. N.; Lee, K. Y.; Kim, H. S.; Kim, T. Y. Org. Lett. 2000, 2, 343. (b) Familoni, O. B.; Kaye, P. T.; Klaas, P. J. J. Chem. Soc., Chem. Commun. 1998, 2563. (c) Bode, M. L.; Kaye, P. T. J. Chem. Soc., Perkin Trans. 1 1993, 1809. (d) Bode, M. L.; Kaye, P. T. J. Chem. Soc., Perkin Trans. 1 1990, 2612.
- (a) Michael, J. P. Nat. Prod. Rep. 1997, 14, 605. (b) Balasubramanian, M.; Keay, J. G. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1996; Vol. 5, pp 245-300.

- 5. Jones, G. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Per-
- gamon Press: Oxford, 1996; Vol. 5, pp 167-243.
 (a) Ranu, B. C.; Hajra, A.; Jana, U. *Tetrahedron Lett.*2000, 41, 531. (b) Cho, C. S.; Oh, B. H.; Shim, S. C. *Tetrahedron Lett.* 1999, 40, 1499. (c) Cacchi, S.; Fabrizi, G.; Marinelli, F. *Synlett* 1999, 401. (d) Suginome, M.; Fukuda, T.; Ito, Y. *Org. Lett.* 1999, 1, 1977. (e) Katritzky, A. R.; Arend, M. J. Org. Chem. 1998, 63, 9989.
- For the photolysis experiments a Raynot photochemical reactor (model RPR-2080, the Southern N. E. Ultraviolet Co.) was used. The built-in monochromatic UV light sources (RUL-250 nm UV lamp) was positioned approximately 17 cm from the reaction quartz tube.
- 8. Typical procedure for the synthesis of 2a and some selected spectroscopic data: A stirred solution of 1a (400 mg, 1.59 mmol) in ethanol (10 mL) was irradiated (250 nm) for 30 h. After removal of ethanol, column chromatographic purification (CH₂Cl₂/EtOH, 14 : 1) gave 2a as a white solid, 135 mg (39%): mp 267-268 °C (lit.^{3a} 269-270 °C): IR (KBr) 3434, 3169, 2982, 2904, 1706, 1623, 1529, 1476, 1380, 1292, 1202, 1141, 766 cm⁻¹; ¹H NMR (DMSO-d₆) *δ* 1.29 (t, *J* = 7.1 Hz, 3H), 4.23 (q, *J* = 7.1 Hz, 2H), 7.42 (t, *J* = 8.1 Hz, 1H), 7.63 (d, *J* = 8.1 Hz, 1H), 7.71 (t, *J* = 8.1 Hz, 1H), 8.17 (d, *J* = 8.1 Hz, 1H), 8.56 (s, 1H), 12.41 (br s, 1H); ¹³C NMR (DMSO-d₆) *δ* 14.52, 59.77, 109.94, 118.98, 124.90, 125.82, 127.44, 132.61, 139.15, 145.11, 165.00, 173.68.
 - **2e**: 36%, mp 303-305 °C (dec.) (lit.¹⁰ 301 °C); IR (KBr) 3174, 2959, 2873, 2223, 1618, 1561, 1535, 1352, 760 cm⁻¹, ¹H NMR (CD₃OD) δ 7.52 (td, J = 7.6 and 1.2 Hz, 1H), 7.61 (d, J = 8.1 Hz, 1H), 7.79 (td, J = 7.1 and 1.4 Hz, 1H), 8.25 (dd, J=8.2 and 1.3 Hz, 1H), 8.53 (s, 1H).¹³C NMR (CD₃OD) δ 94.55, 115.71, 118.99, 125.30, 125.44, 126.01, 133.74, 139.59, 146.43, 176.50; MS (70 eV) *m*/z (rel intensity) 63 (45), 76 (33), 114 (41), 115 (49), 142 (93), 170 (M⁺, 100).
- (a) Woodrell, C. D.; Kehayova, P. D.; Jain, A. Org. Lett. 1999, 1, 619. (b) Pirrung, M. C.; Lee, Y. R.; Park, K.; Springer, J. B. J. Org. Chem. 1999, 64, 5042. (c) Pirrung, M. C.; Shuey, S. W. J. Org. Chem. 1994, 59, 3890. (d) Walker, J. W.; Reid, G. P.; McCray, J. A.; Trentham, D. R. J. Am. Chem. Soc. 1998, 110, 7170. (e) Givens, R. S.; Matuszewski, B. J. Am. Chem. Soc. 1984, 106, 6860. (f) Amit, B.; Zehavi, U.; Patchornik, A. J. Org. Chem. 1974, 39, 192. (g) Givens, R. S.; Athey, P. S.; Kueper, L. W., III; Matuszewski, B.; Xue, J.-y. J. Am. Chem. Soc. 1992, 114, 8708. (h) Givens, R. S.; Athey, P. S.; Matuszewski, B.; Kueper, L. W.; Xue, J.-y.; Fister, T. J. Am. Chem. Soc. 1993, 115, 6001. (i) Pillai, V. N. R. Synthesis 1980, 1. (j) Givens, R. S.; Kueper, L. W. III. Chem. Rev. 1993, 93, 55.
- Bredereck, H.; Effenberger, F.; Botsch, H.; Rehn, H. Chem. Ber. 1965, 98, 1081.