Stereoselective Synthesis of trans- $(\mathbf{2 R , 3 S})$ - and cis-(2R,3R)-Disubstituted Pyrrolidines

Young-Ah Kim, Sang-Mi Oh, and So-Yeop Han ${ }^{\circ}$
Department of Chemistry and Division of Molecular Life Sciences, Ewha Homans Chmersity, Seoul 120-750, Korea Recerved January 5, 2001

Keywords : Pyrrolidines, D-Serine. BOP-Cl. β-Ovo ester. β-Keto ester.

Pyrrolidines, the 5-membered aza-heterocycles. are known to constitute major frameworks of alkaloids. which display diverse and potent biological activities. ${ }^{1}$ Numerous strategies for the synthesis of pyrrolidines have been developed including 1,3 -dipolar cycloaddition with azomethine ylide. ${ }^{2}$ nucleophilic opening of aziridine, ${ }^{3}$ internal displacement in aminocarbohydrate, ${ }^{\text {+ }}$ intramolecular cyclization involving radical, ${ }^{5}$ acylnitrilium ion. ${ }^{6} \beta$-oxo ester ${ }^{7}$ and organometallic complex. ${ }^{8}$ Synthesis of 2.3-disubstituted pyrrolidines attracts much interest because they carry a basic nitrogen atom and a diol that potentially allow extension of the side chain or ring closure. We wish to report herein that trans-($2 R .3 S$)- and cis($2 R .3 R$)-disubstituted pyrrolidines could be efficiently synthesized from D-serine by use of an appropriate coupling reagent.
trans-($2 R, 3 S$)-Disubstituted pyrrolidine was prepared as outlined in Scheme 1 and Scheme 2. D-Serine was treated with di-fert-butyl dicarbonate and tert-butyldimethylsilyl chloride sequentially to afforded compound 2 in a quantitative yield. Monosilylation on the hydrosyl group was achieved while the carbosylic acid was intact. and thus the cleavage of silyl ester was not necessary as previously reported. ${ }^{7}$ This may be due to the enhanced nucleophilicity of hydroxyl oxygen by hydrogen bonding with DMF. β Keto ester 3 was obtained by careful treatment of acid 2 with $1, \mathrm{I}^{\prime}$-carbonyldiimidazole followed by ethyl lithioacetate in 61% yield. After reduction of β-keto ester with KBH_{4} in ethanol, ${ }^{5}$ the resulting diastereoneric mixture was protected to silyl ether 4 without separation. The 5 -membered aza-heterocycle formation reaction was challenging to us. Since selective removal of the Boc group under various conditions was difficult. both Boc and the silyl group on the primary alcohol were removed using B-bromocatechol borane to afford $\mathbf{5}$ which was cyclized to 6 in ammonia-saturated methanol. The 2.3 -disubstituted pyrrolidinone 7 was obtained after reprotection of compound 6 in low yield.
A much better approach toward intramolecular lactamization was studied as shown in Scheme 2. Hydrolysis of compound $\mathbf{4}$ was carried out using lithium hydroxide in aqueous ethanol. Intramolecular cyclization of the resulting acid with Boc-protected amine to form the five-membered lactam was first attempted with DPPA without success. The cyclization

[^0]

Scheme 1. (a) ($\mathrm{Boc} h_{2} \mathrm{O}, \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, 18 \mathrm{~h}$; (b) TBDMS-Cl, imidazole, DMF, 18 h : (c) (1) $1,1^{\prime}$-carbonyldimidazole, THF, $0^{\circ} \mathrm{C}$, 1.5 h ; (2) LDA, EtOAc, THF, $-78{ }^{\circ} \mathrm{C}, 61 \%$ from 2: (d) KBH_{+}, $\mathrm{EtOH}, 2.5 \mathrm{~h}, 98 \%$ (e) TBDMS-OTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 10$ min, 95%; (f) B-bromocatechol borane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}$; (g) dry $\mathrm{NH}_{3} / \mathrm{MeOH}, 30 \mathrm{~min}$, two steps 71%. (h) TBDMS-OTf, 2,6lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}, 57 \%$ (i) (Boc$)_{2} \mathrm{O}$, DMAP, NEt_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30$ minn, 40%.
was achieved by using $\mathrm{BOP}-\mathrm{Cl}$ as the coupling reagent to afford compounds 7 a and 7 b in a combined yield of 69%. These two diastereomers were chromatographically separable and the desired trans isomer 7 a was obtained as the major product (trans : cis $=3$: 1). The ${ }^{1} \mathrm{H}$ NMR analysis performed on the minor diastereomer 7 b permitted the assigment of the relative configuration of the stereocenter created, corresponding to the cis relationship of compound $7 \mathbf{b}$. ${ }^{74}$ Coupling constant ($J_{C 2 H . c ̧ H}$) determined by the ${ }^{1} \mathrm{H}$ NMR decoupling experiment for the trons isomer 7a is almost 0 Hz whereas the cis isomer 7 b is 8.0 Hz . Borane reduction of the trans isomer 7 a to afford compound $\mathbf{8 a}$ required shorter reaction period and lower temperature compared with the cis isomer $\mathbf{7 b}$ to afford compound $\mathbf{8 b}$. Thus, the two diastereomers $\mathbf{8 a}$ and $\mathbf{8 b}$ were synthesized in eight steps from D-serine.
The synthetic route of $c i s$ - $(2 R, 3 R)$-disubstituted pyrrolidine is shown in Scheme 3. This compound was prepared by using a modified procedure of Jouin and Joullié. ${ }^{\text {P }}$ Conver-

Scheme 2. (a) $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{OFEtOH}, 4 \mathrm{~h}, 70 \%$; (b) $\mathrm{BOP}-\mathrm{Cl}$, DMAP, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 6 \mathrm{~h}, 69 \%$; (c) $\mathrm{BH}_{3}, \mathrm{SMe}_{2}$, THF, $65-70$ ${ }^{\circ} \mathrm{C}, 10 \mathrm{~min}, 83 \%$; (d) $\mathrm{BH}_{3} \mathrm{SMe}_{2}, \mathrm{THF}, 70-75^{\circ} \mathrm{C}, 30 \mathrm{~min}, 90 \%$.
sion of compound 2 to the β-oxo ester 9 with less expensive BOP-Cl instead of isopropenyl chloroformate as the carbosyl activator required considerable experimentation. It is noteworthy to mention that the pre-activation of the acid 2 with $\mathrm{BOP}-\mathrm{Cl}$ or longer reaction time caused appreciable racemization. The best result for the coupling reaction toward compound 9 was obtained under the condition using 1.2 equiv. of BOP-Cl. 1.2 equiv: of Meldrum's acid, 2.0 equiv. of $\mathrm{Et}_{3} \mathrm{~N}$ and 2.0 equiv. of DMAP for 3 h at $0^{\circ} \mathrm{C}$ under argon atmosphere. Intramolecular cyclization to compound 10 at reflux followed by NaBH_{4} reduction at the least hindered site produced optically pure 11 in 53% overall yield from D-serine. The cis-disposition of compound $\mathbf{1 1}$ as the single diastereomer was determined by the value of the ${ }^{1} \mathrm{H}$ NMR coupling constant ($J_{\mathrm{CHP} \mathrm{\cdot C3H}}=8.0 \mathrm{~Hz}$. decoupling experiment) as well as the optical rotation value. ${ }^{7 /}$ Thus. the synthesis of pyrrolidinone 11 was carried out without purification of internediates in a 5 -step sequence from D-serine. Compound 11 was easily transformed to either disilylated pyrrolidinone $7 \mathbf{b}$ or cis-($2 R .3 R$)-disilylated pyrrolidine $\mathbf{8 b}$. The obscure splitting pattern in the ${ }^{i} \mathrm{H}$ NMR spectrum of compound 8b implies the interconversion of cis-trans amide rotamers. ${ }^{19}$ Therefore. we were able to optimize the reaction condition ${ }^{7}$ utilizing readily available $\mathrm{BOP}-\mathrm{Cl}$ as the coupling reagent. The products $\mathbf{7 b}$ and $\mathbf{8 b}$ provided the same physical

Scheme 3. (a) BOP-Cl, Meldrum's acid, DMAP, NEt ${ }_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0$ ${ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (b) EtOAc retlux, $90-95^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; (c) $\mathrm{NaBH}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0$ ${ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$, overall 53% from 1; (d) TBDMS-OTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, $10 \mathrm{~min}, 73 \%$ (e) (1) $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$, THF, $80^{\circ} \mathrm{C}, 3 \mathrm{~h}$, 88%; (2) TBDMS-OTf, 2,6 -lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}, 94 \%$.
properties with the minor products produced by β-keto ester pathway as shown in Scheme 2. From this result. we could confirm the stereochemistry of the major products to be trons-(2R.3S)-disubstituted pyrrolidines $7 \mathbf{a}$ and $\mathbf{8 a}$ in Scheme 2.

In conclusion. we were able to fund the suitable conditions to synthesize trans-($2 R .35$)- and cis- $(2 R .3 R)$-disubstituted pyrrolidines from D-serine which served as a chiral template. The pathway utilizing β-keto ester 3 afforded trans($2 R, 3 S$)-disubstituted pyrrolidine $\mathbf{8 a}$ as the major product in eight steps from D-serine and 17% overall yield and cis($2 R, 3 R$)-disubstituted pyrrolidine $\mathbf{8 b}$ as the minor product in 6% yield. The pathway utilizing β-oxo ester 9 resulted in cis($2 R .3 R$)-disubstituted pyrrolidine $\mathbf{8 b}$ as a single diastereomer in seven steps and overall 44% yield. In both strategies utilizing β-keto ester and β-oxo ester, and BOP-Cl served as the common coupling reagent. These two diastereomers as well as synthetic intermediates were characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR, IR. HRMS and/or elemental analy sis. ${ }^{11}$ There 2.3-disubstituted pyrrolidines could be widely applicable to the synthesis of natural products as their chiral intermediates.

Acknowledgment. Financial support from the Korea Research Foundation (1999-015-DI0072) and the Brain Korea 21 program (Y.A. Kim) are gratefully acknowledged.

References

1. (a) Kato, A:; Adachi, I.; Miyauchi, M.: Ikeda, K.; Komae, T.: Kizu, H.: Kameda, Y.; Watson, A. A.; Nash, R. J.; Wonnald, M. R.; Fleet, G. W. I.; Asano, N. Carbohyd: Res. 1999, 316, 95. (b) Shibano, M.; Kitagawa, S; Kusano, G. Chem. Phom. Bull. 1997, 45, 505. (c) Auvin, C.; Lezenven, F.; Blond, A.; Augeven-Bour, I.; Pousset, T.-L.; Bodo, B. J. Nat. Prod. 1996, 59, 676. (d) Cui, C.-B.; Kakeya, H.; Osada, H. Tetrahedron 1996, 52, 12651.
2. Fokas, D.; Ryan, W. J.; Casebler, D. S.; Coffen, D. L. Tetrahedron Lett. 1998, 39, 2235.
3. (a) Fort, S.: McCort, I.: Duréault, A.: Depezay, I.-C. Synlett 1997, 1235. (b) Ungureanu, I; Bologa, C.; Chayer, S : Mann, A. Tetrahedron Lett. 1999, 40, 5315.
4. Han, S.-Y.; Liddell, P. A.: Joullié, M. M. Swh. Commum. 1988, $18,275$.
5. (a) Aurrecoechea, I. M.; Femández, A.: Gorgojo, I. M.; Saornil, C. Tetrahe dron 1999, 55, 7345. (b) Gilbert, B. C.; Kalz, W.; Lindsay, C. I.; McGrail, P. T; Parsons, A. F.; Whitaker, T. E. Tetrahedron Lett. 1999, 40, 6095. (c) Bachi, M. D.; Melman, A. Pure \& Appl. Chem. 1998, 70, 259.
6. Kercher, T.; Livinghouse, T. J. Org. Chem. 1997, 62, 805.
7. (a) Ewing, W. R.: Joullié, M. M. Heterocycles 1988, 27, 2843. (b) Jouin, P.: Castro, B.: Nisato, D. J. Chem. Soc., Perkin I 1987, 1177.
8. (a) Daley, V.; d'Angelo, J.; Cavé, C.; Mahuteau, I.: Chiaroni, A.: Riche, C. Tetrahedron Lett. 1999, 40, 1657. (b) Arredondo, V. M.; Tian, S.; McDonald, F. E.: Marks, T. I. J. Am. Chem. Soc. 1999, 121, 3633. (c) Sato, Y.; Saito, N.; Mori, M. Tetrohedron 1998, 54, 1153. (d) Okamoto, S.; Iwakubo, M.; Kobayashi, K.; Sato, F. J. Am. Chem. Soc.

1997, 119, 6984.
9. Harris, B. D.; Toullié, M. M. Tetrahedron 1988, f4, 3489.
10. Nakatsuka, M.; Ragan, J. A.; Sammakia, T.; Smith, D. B.; Uehling, D. E.: Schreiber, S. L. J. Am. Chem. Soc. 1990, 112, 5583.
11. The spectral and analytical data of representative compounds are shown as follows. 3: $[\alpha]^{-5}{ }_{D}=-31$ (c 0.84 , $\left.\mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.02(6 \mathrm{H}, \mathrm{s}), 0.84$ $(9 \mathrm{H}, \mathrm{s}), 1.25(3 \mathrm{H}, \mathrm{t}), 1.42(9 \mathrm{H}, \mathrm{s}), 3.57(2 \mathrm{H}, \mathrm{d}), 3.79(1 \mathrm{H}$, $\left.\mathrm{dd}, J_{1}=4.4 \mathrm{~Hz}, J_{2}=10.4 \mathrm{~Hz}\right), 4.05\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=3.1 \mathrm{~Hz}, J_{2}\right.$ $=10.4 \mathrm{~Hz}), 4.17(2 \mathrm{H}, \mathrm{q}), 4.38(1 \mathrm{H}, \mathrm{t}), 5.41(1 \mathrm{H}, \mathrm{d}),{ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.64,1406,18.15,25.73$, $28.29,47.12,61.27,61.39,63.12,80.08,155.24,166.74$, 201.09; HRMS (EI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{2} \mathrm{NO}_{5} \mathrm{Si}$ (MOCMe_{3}) 316.1581 , found 316.1580 . 7a: mp $75-76{ }^{\circ} \mathrm{C}$; $[\alpha]^{-3}{ }^{5}=-30\left(c 0.98, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 0.00(6 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}), 0.04(6 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 0.83$ $(18 \mathrm{H}, \mathrm{s}), 1.50(9 \mathrm{H}, \mathrm{s}), 2.26(1 \mathrm{H}, \mathrm{d}, J=17.6 \mathrm{~Hz}), 2.81(1 \mathrm{H}$, dd, $\left.J_{1}=17.6 \mathrm{~Hz}, J_{2}=5.7 \mathrm{~Hz}\right), 3.75(2 \mathrm{H}, \mathrm{m}), 3.92(1 \mathrm{H}, \mathrm{m})$, $4.25(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-5.66,-4.77,17.91,18.13,25.64,25.77,28.03,42.84$, $62.07,67.60,68.75,82.79,150.06,173.21$: Anal. Calcd for $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}_{5} \mathrm{Si}_{2}$: $\mathrm{C}, 57.47$: H, 9.87: N, 3.05: Found: C, $57.62 ; \mathrm{H}, 9.98: \mathrm{N}, 2.74 .8 \mathbf{8}:[\alpha]^{-5} \mathrm{D}=-14\left(c 0.69, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.01(6 \mathrm{H}, \mathrm{s}), 0.04(6 \mathrm{H}, \mathrm{s})$, $0.84(9 \mathrm{H}, \mathrm{s}), 0.86(9 \mathrm{H}, \mathrm{s}), 1.43(9 \mathrm{H}, \mathrm{s}), 1.70(1 \mathrm{H}, \mathrm{m}), 1.96$ $(\mathrm{lH}, \mathrm{m}), 3.49(5 \mathrm{H}, \mathrm{m}), 4.34(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR (63 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.44,-4.73,17.98,18.19,25.76,25.86,28.54$, $31.91,33.01,44.71,45.21,61.81,62.58,67.60,67.77$, $73.54,73.89,78.88,79.22,154.74,154.91$ (signals from rotamer shown in NMR); HRMS (CI) m / z caled for $\mathrm{C}_{22} \mathrm{H}_{48} 8 \mathrm{NO}_{4} \mathrm{Si}_{2}\left(\mathrm{MH}^{+}\right) 446.3123$, found 446.3121 .

[^0]: ${ }^{\circ}$ To whom correspondence should be addressed: Tel: +82-2-32772377, Fax: +82-2-3277-2384, e-mail: syhan \boldsymbol{T} mmewha.ack

