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As gas chromatography/infrared spectrometry (GC/IR) becomes routinely available, methods must be deve
loped to deal with the large amount of data produced. We demonstrate computer methods that quickly search 
through a large data file, locating those spectra that display a spectral feature of interest. Based on a modified 
library search routine, these selective data reduction methods retrieve all or nearly all of the compounds of in
terest, while rejecting the vast majority of unrelated compounds. To overcome the shifting problem of IR spec
tra, a search method of moving the average pattern was designed. In this moving pattern search, the average 
pattern of a particular functional group was not held stationary, but was allowed to be moved a little bit right 
and left.
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Introduction

One of great challenges of modern analytical chemistry is 
to try to make sense of data as fast as instruments can spew it 
forth. To that end, we have been interested for some time in 
developing computerized methods of selective data reduc
tion. The goal of this method is the rapid sorting of hundreds 
of spectra to find the relative few which may be important 
enough in a given analysis to warrant further attention. For 
example, if a complex mixture of unknown compounds is to 
be analyzed, the sample might be chromatographed and the 
GC effluent be directed into a continuously scanning spec
trometer. After 30 minutes of analysis, 900 spectra might 
have been collected and stored in a data file. Let us assume, 
in this particular case, that the analyst is interested in finding 
and identifying all of the chlorinated compounds in the mix
ture. If the GC effluent had been detected with a chlorine
selective detector, such as the electron-capture detector 
(ECD), the chlorinated compounds would have been easy to 
locate; but the ECD contributes little structural information 
for the identification of unknowns. In the present case, the 
spectrometer provides full spectral data, useful for identifi
cation, assuming the spectra of the chlorinated compounds 
can be located. Each of the 900 spectra could be visually 
examined, searching for spectral indications of the presence 
of chlorine; a tedious and time consuming approach. The 
data system could perform a library search on each of the 
900 spectra-again, time consuming and inefficient. If the 
data system was sufficiently sophisticated, it could perform 
some sort of artificial intelligence of automated interpreta
tion scheme as described above on each of the 900 spectra, 
but the time involved would surely be prohibitive. The sensi
ble approach is to somehow select some of the 900 spectra 
for further attention, but to select them in a way that maxi
mizes the probability of selecting chlorinated compounds. 
All of the usual identification routines-manual interpreta
tion, library search, or automated interpretation-could be 
applied to this smaller subset. This kind of data reduction 

technique is very valuable in GC/IR analysis since, in most 
cases, only a small fraction of the data is of interest in any 
particular analysis. A computer can be employed to selec
tively reduce the volume of data, thereby improving the effi
ciency of the analysis. This selection is the process we refer 
to as selective data reduction.1

Selective data reduction is any data processing method 
that somehow selects certain data as being more “important” 
or more “interesting” to the analyst. The selection of impor
tant data can be based on a number of criteria. The selection 
criteria often used are the total intensity of the spectra, or the 
presence of some spectral feature of interest. Commercial 
spectrometers frequently have simple routines built into the 
data systems: peak finding routines are just selective data 
reduction using spectral intensity as a criterion. Routines 
based on spectral features vary with the type of spectrometer 
used. In GC-MS, one has mass chromatograms2 or the pres
ence of isotope clusters3,4 to use as indicators of compound 
class. In the example above, the presence of chlorine isotope 
clusters can be used to indicate chlorinated compounds.4

In GC/IR, “chemigrams”5 are used to indicate the pres
ence of absorptions of interest. There are plots of integrated 
absorbance in a defined spectral window. Rather than look
ing at 900 spectra, with the use of chemigrams, the analyst 
sorts out only those that are likely to contain a particular 
functional group. Although useful, chemigrams are not 
always very selective, in that they show only the integrated 
absorbance over a chosen frequency window.

In this work we show that the use of patterns of absor
bances provides a much more selective criterion for data 
reduction. Computer algorithms have been written to search 
through hundreds of spectra, retrieving only those that dis
play the pattern of interest, and these algorithms have great 
potential for the analysis of GC/IR data. Although our rou
tines are based on the presence of spectral patterns, they are 
distinct from pattern recognition methods in both purpose 
and approach. Pattern recognition statistically sorts a large 
database into a number of clusters, and assigns a spectrum to 
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a compound class based on the nearness of some metric 
representing the spectrum to one of the clustered units. Our 
approach seeks only to reduce the number of spectra which 
must be further interpreted by the analyst, and so looks only 
for similarity within a defined spectral window. The data
base is not really required, and the fact, one need not know 
in advance what functional group is responsible for the pat
tern of interest.

We have also developed computer algorithms to evaluate 
the selectivity of chemigram method, i.e. how selectively 
chemigram algorithms pick up a specific functional group 
by monitoring the absorbances over specified IR spectral 
region. Chemigrams have been used for specific functional 
group detection since their development in 1979,5 just as 
specific ion detection is used in GC/MS. Even though selec
tivity is vital in chemigram-type approach, it has never been 
evaluated statistically. The algorithms we developed can 
give good evaluations for different functional groups, and at 
different threshold values for each functional groups. To find 
an optimum threshold value is very important because it 
affects the selectivity of chemigram, i.e., how many mem
bers of a particular compound class are recovered and how 
many members of other functional group are eliminated. 
Particularly, when the chemigram is used for quantitative 
analysis of trace components, its selectivity increases the 
sensitivity of the analysis of trace components, by being 
insensitive to interfering spectral contributions.

Our algorithms have been compared with chemigram 
algorithms in all mid-IR region (4000-400 cm-1). A greater 
degree of selectivity was observed than with chemigram 
algorithms, especially in O-H stretching and carbonyl 
stretching regions. For example, carboxylic acids have O-H 
stretching and carbonyl stretching regions. One hundred 
eighty five spectra of carboxylic acids were averaged in the 
3800-3400 cm-1 window. The resulting pattern showed a 
single sharp band centering around 3560 cm-1. The same 
100 spectra from the database were again considered; this 
time, MSQ for each was calculated - a measure of similarity 
of the spectrum to the average pattern for carboxylic acids. 
The results were striking. Four carboxylic acids (100%) had 
the lowest Msq values: 3-chlorobutyric acid, 0.14; butyric 
acid, 0.26; heptanoic acid, 0.30; isobutyric acid, 0.40. The 
next lowest Msq was for 2-bromo-p-cresol with an Msq = 
1.70. Not only were the acids located as best matching the 
average pattern, but there was a large distance between the 
worst acid (Msq = 0.40) and the next closest nonacid (Mq = 
1.70). When the experiment was repeated on the entire data
base, more than 92% of the carboxylic acid spectra had Msq 
values of 1.5 or less; fewer than 4% of the non-carboxylic 
acids had Msq of 1.5 or less.

Experiment지 Section

The computer programs described were written in FOR
TRAN and run on an IBM 370 computer. The database cho
sen was the EPA Vapor Phase Collection of 3300 spectra, 
available from Dr. James de Haseth at the University of 

Georgia. The spectra were stored in digital format at 1600 
bpi on nine track magnetic tapes. The format of the vapor 
phase tapes is the following; each file represents one spectral 
entry. There is an end of file mark between each file and 
there is an end of file mark at the beginning of each tape. 
There are thirteen records in each file. Record 1 is the header 
record and that is 1148 bytes in length. Records 2 through 5 
contain the reference interferogram of 2058 bytes in each. 
Record 10 is the first part of the spectrum, with 2058 bytes. 
Record 1 1 is the second part of the spectrum, with 1646 
bytes. Records 12 and 13 contain the inverse Fourier trans
form of the spectrum. In records 11, 12 the first two bytes 
contain an integral serial number corresponding to the serial 
number in the header record. Each spectrum is divided up 
into record of 1024 data points (20480 bytes). The ordinates 
are expressed to 0.002 absorbance units from 0.000 to 1.998. 
In order to save space, the absorbance units are expressed as 
integers (0 to 1998) by multiplying each ordinate by 1000. 
The spectra is measured at 2 cm-1 resolution from 4000 cm-1 
to 450 cm-1. The header record includes compound name, 
formula, molecular weight, Chemical Abstracts Service (CAS) 
registry number, melting point, boiling point, Wiswesser 
Line Notation (WLN), etc. More detail on the format of the 
records has appeared in the literature.6

The basic strategy of our method was to use spectra from 
the database to identify patterns of absorbance that charac
terize certain functional groups; and then to search for those 
patterns in a series of ‘unknown’ spectra. Representatives of 
a functional group were identified by computer searching 
the Wiswesser Line Notation (WLN) in the database header 
records. The list of spectra retrieved by WLN was checked 
against the compound names to avoid coding errors. An 
“average spectrum” was calculated by taking the mean 
absorbance of all the normalized spectra at each frequency 
interval (2 cm-1) throughout the range. Since the goal of the 
project is rapid screening, only a small portion of the full IR 
range was used, a portion chosen surrounding a characteris
tic band of that functional group. For example, when search
ing for carboxylic acids or alcohols, the O-H stretching 
region was used (3800-3400 cm-1).

The average spectrum was considered to represent the 
functional group. Other spectra were then tested in the same 
frequency window to see if they exhibited the same pattern 
of absorbance as the average. A score was assigned to each 
spectrum, reflecting the degree of similarity to the average. 
Since this process is similar to a library search routine, 
except in that it is applied only to a small region of the spec
trum, we used the same metric reported in the literature for 
library searching.

In most of the work described herein, the “difference 
squared” metric,7,8 was used.

Msq = £(S - Ri)2

where Msq is the similarity indicator and Si and Ri are the 
absorbance values of the sample and reference spectra in a 
frequency interval i. Clearly, the smaller the value of Msq, 
the better the match between the unknown and the reference 
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(or average) spectrum; a perfect match would give Msq = 0. 
XSi means the sum of the absorbance values of the sample 
spectra in a frequency interval i.

In the moving pattern search, a continuous incremental 
comparison of the average pattern was used. In the multiple 
patterns search, multiple regions were searched, a decision 
was made on the basis of multiple search results.

The speed of our search algorithms is about the same as 
chemigrams; both of them take about 100 sec to search 1000 
spectra. When the moving pattern search is employed, it 
takes about three times longer than the stationary pattern 
search or chemigram-type search.

Results and Discussions

One of the most powerful functions of infrared spectros
copy is establishing conclusively the identity of two samples 
that have identical spectra when determined in the same 
medium. The region 1500-600 cm-1 contains many absorp
tions caused by bending vibrations as well as absorptions 
caused by C-C, C-O, C-N and C-Cl stretching vibrations. As 
there are many more bending vibrations in a molecule than 
stretching vibrations, this region of the spectrum is particu
larly rich in absorption bands and shoulders. For this reason, 
it is frequently called the fingerprint region. Small differ
ences in the structure and constitution of a molecule result in 
significant changes in the distribution of absorption peaks in 
this region of the spectrum. As a consequence, a close match 
between two spectra in this fingerprint region usually gives a 
strong evidence for the identity of the compounds yielding 
the spectra. Since many bending vibrations give rise to 
absorption bands are thus composites of these various inter
actions and depend upon the overall skeletal structure of the 
molecule. Exact interpretation of spectra in this region is sel
dom possible because of their complexity; however, on the 
other hand, it is this complexity that leads to uniqueness and 
the consequent usefulness of the region for final identifica
tion purposes.

A number of important group frequencies are to be found 
in the fingerprint region. These include the aromatic ring 
stretching vibrations at 1620 to 1470 cm-1, the C-O-C 
stretching vibration in ethers and esters at about 1200 cm-1, 
the C-Cl stretching vibration at 800 to 600 cm-1, the C-F 
stretching vibration at 1400-1000 cm-1, C-O vibrations and 
C-C vibrations at 1250 to 1050 cm-1, and C-H bending 
vibration in the range of 1000-670 cm-1.9

When the spectrum of unknown material is obtained, there 
are some questions that can be asked by the analyst immedi
ately: does it contain a carbonyl group? is it alcohol? is it 
acid? is it aromatic? if so, what is the substitution type? 
Answers to questions such as these will give many clues for 
chemical work that can lead to the conclusive identification 
of the compound. Modern GC/IR instruments produce and 
enormous number of unknown spectra in a short time. It is 
amazing to note that these questions can be answered fairly 
quickly by examining selected fractions of the spectra for 
those tremendous amounts of data. This is possible by moni

toring certain spectral windows with the progress of chro
matographic fractionation. Selective data reduction by use of 
chemigrams and our approach in the fingerprint region, we 
selected aromatic compounds as the first compound class. 
This group has a great importance in many practical applica
tions and one of the best group frequencies for recognizing 
the presence of aromatic ring structures occurs in the 1620
1470 cm-1.

The average of 100 spectra of aromatic ring containing 
compounds from the database is shown in Figure 1. The pat
tern consists of two peaks which occur near 1586 and 1495 
cm-1. The moving pattern search method was used with a 20 
cm-1 window and a 2 cm-1 increment. The search results are 
shown in Figure 2. More than 76% of the aromatic com
pounds spectra had the lowest MSQ value of 16.0 or less; 
fewer than 15% of the non-aromatic compounds had the 
lowest MSQ of 16.0 or less.

These results were compared with the stationary pattern 
search (Figure 3) and the chemigrams (Figure 4). At the 
threshold level of finding 15% of non-aromatic compounds, 
chemigrams found 74% of aromatic compounds and the sta
tionary pattern search found 75% of aromatic compounds 
while the moving pattern search 77% of aromatic com
pounds. In the fingerprint region, the pattern search results 
were much less satisfactory than in the O-H stretching vibra
tion region or C=O stretching vibration region, although still 
better than chemigram result. Another thing to be noted was 
that the moving pattern search did not make a big difference 
in this region. All these undesirable results came from the 
fact that in fingerprint region, the spectra showed much vari
ation in peak positions, peak intensities and peak widths, and 
as a result, did not show a constant pattern of absorbances. 
Examination of non-aromatic compounds found and aro
matic compounds which were not found would be helpful in 
understanding these results.

The spectra of the non-aromatic compounds that were 
assigned MSQ < 16.0 were examined to see why they had

Wavenumbers (cnr1)

Figure 1. The average spectrum of 100 carbon aromatic 
compounds (1620-1470 cm-1). Boxed portion shows region used 
for comparison.
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Figure 2. The moving pattern search results of aromatic 
compounds (1620-1470 cm-1). Percentage A : percentage of non
aromatics ( )with an Msq value less than the threshold shown; 
Percentage B: percentage of aromatics ( ---  ) with an MSQ value
less than the threshold shown.

Figure 4. The chemigram search results of aromatic compounds 
(1620-1470 cm-1). Percentage A: percentage of non-aromatics 
( )with a XSi value less than the threshold shown; Percentage 
B: percentage of aromatics (——)with a ESi value greater than the 
threshold shown.

Figure 3. The stationary pattern search results of aromatic 
compounds (1620-1470 cm-1). Percentage A: percentage of non
aromatics ( ___ ) with an MSQ value less than the threshold shown; 
Percentage B: percentage of aromatics ( ---  ) with an MSQ value
less than the threshold shown.

been found. In most cases, these were nitrogen-containing 
heterocyclic ring compounds such as 4-lutidine, 2-methoxy- 
pyridine, 2,3-dihydroindole, 6-methoxyquinoline. Our aver
age pattern was generated only from carbocyclic aromatic 
compounds, i.e., heterocyclic aromatic compounds were not

Figure 5. The spectrum of 2,2-dichloroacetophenone. Boxed 
portion shows region used for comparison.

included. However, these results seem to be all right because 
it has been known10 that C=C bands in nitrogen heterocyclic 
compounds absorb infrared light at the same frequencies as 
in the carbocyclic aromatic compounds.

Similarly, the spectra of the aromatic compounds that were 
not assigned MSQ < 16.0 were examined. In many cases, the 
problem was a very low intensity, i.e. almost no intensity. 
These include isobutyl benzoate and the ethyl ester of 4- 
phenyl-2-butanone-p-toluic acid. Other cases, such as 2,2- 
dichloroacetophenone (Figure 5), and m-nitrotoluene, showed 
a different pattern, i.e., the interval between two peaks was 
large. It should be noted that all these negative interferences
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Figure 6. The spectrum of A, A, A, 4-tetrachlorotoluene. Boxed 
portion shows region used for comparison.

would not be reduced by employing the moving pattern 
search.

Another serious problem in our algorithms was found in 
this experiment. In the case of A, A, A, 4-tetracholrotoluene 
(Figure 6), surprisingly, even though two absorption peaks 
showed at exact same positions as the average pattern of aro

matic compounds, a very high MSQ value was assigned. The 
difference between two patterns was the peak width: A, A, 
A, 4-tetrachlorotoluene showed very narrow peaks while the 
average pattern showed somewhat broad peaks. This illus
trates very well that our algorithms have no tolerance for 
variation in peak width.
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