An Efficient and Eco-friendly Approach to ${ }^{15} \mathrm{~N}$-Unsubstituted $\boldsymbol{\beta}$-Lactams: ${ }^{15} \mathrm{~N}$-Labled Synthons for Taxol and Its Analogs

Sang Hyun Park,* Sang Yup Lee, and Ajay K. Bose*
Metabolic and Biomolecular Engineering National Research Laboratory, Deparment of Chemical Engineering and BioProcess Engineering Research Center, Korea Acwanced Institute of Science and Technologv, 373-1 Kusong-dong, Fusong-gu, Taejon 305-701, Korea ${ }^{-}$Department of Chemistry and Chemical Biologv, Stevens Institute of Technologv, Hoboken, Hew Jersev 07030, USA Received January 30, 2001

Abstract

An efficient and eco-friendly approach to N -unsubstituted β-lactams has been developed using mostly water as the reaction medium. This methodology was applied to the synthesis of -unsubstituted 3-hydroxy-t-phenyl-2-azetidinone derivatives (including ${ }^{15} \mathrm{~A}$-labeled version) which are suitable precursors for the C - 13 side chain of taxol and its analogs.

Keywords : ${ }^{15} \mathrm{~N}$-Labled synthons for tavol. ${ }^{15} \mathrm{~N}$-Unsubstituted β-lactams.

Introduction

Taxol (paclitaxel) and taxotere (docetaxel) are newly introduced drugs that show great promise against ovarian and breast cancer and against several other types of tumor. Taxol and taxotere are manufactured by semi-synthesis. A convenient intermediate ${ }^{l}$ for the $\mathrm{C}-13$ side chain of these drugs is ($3 R, 45$)-3-hydroxy-4-phenyl-2-azetidinone 1 . Variants of this α-hydroxy- β-lactan derivative ${ }^{2}$ are suitable for the preparation of many types of analog of taxol.

1

In view of increasing emphasis on environmentally benign organic synthesis. we have sought eco-friendly reactions that could lead to various β-lactam synthons including 1 . We wish to report here an adaptation of simple method (Scheme 1) developed by Wells and coworkers ${ }^{3}$ in 1969 that led to N unsubstituted cis-3-azido-2-azetidinones $\mathbf{3}$ in low yield using mostly water as the reaction medium.
The hydrobenzamide 2 used as an intermediate in this synthesis is easily obtained from aromatic aldehydes and strong ammonia.

Results and Discussion

N -Unsubstituted 4-aryl-3-hydroxy-2-azetidinones. The β-lactan fonmation method of Wells and coworkers ${ }^{3.4}$ was modified: toluene was found to be better than methylene

[^0]

Scheme 1
chloride for conducting the condensation.
Acetoxyacetyl chloride + was allowed to react with a toluene solution of the hydrobenzamide 2 and trietlyylamine at 0 ${ }^{\circ} \mathrm{C}$ for several hours. Hydrolysis of this misture by stirring with silica gel led to the cis- β lactam 7 . The yield based on the acid chloride was $63-88 \%$. We have also used benzyloxyacetyl chloride, methosyacetyl chloride and various hydrobenzamides to obtain several N-unsubstituted α -hydroxy- β-lactam derivatives (Table 1).
The ${ }^{\mathrm{j}} \mathrm{H}$ NMR spectrum of the reaction mixture of an acid chloride 4 , hydrobenzamide and triethylamine showed the initial formation of two diastereomeric cis- β-lactams 5 and 6. Obviously, only one of the imino groups in 2 was undergoing cycloaddition at low temperature.

Bis- β-lactams. The reaction of the mixture of 5 and 6 with another equivalent of acid chloride at about $70^{\circ} \mathrm{C}$ led to the bis- β-lactams 8 and 9 (Scheme 2). These diastereomers. which were formed in unequal amounts. could be separated by column cluromatography or a single cry stallization from a suitable solvent. The β-lactam 10 and $\mathbf{1 1}$ were obtained by using two different acid chlorides in succession. Attempts to hydrolyze these bis- β-lactams (Table 2) with silica gel or dilute hydrochloric acid have been unsuccessful.

Mild alkaline hydrolysis of the 3-acetoxy-4-phenyl-2-azeti-

Table 1. Synthesis of N-unsubstituted -lactams 7

2
5
6

Compound	R^{1}	Ar	Yield (\%)	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$
7 a	AcO	Ph	88	$139-140$
7 b	BrO	Ph	63	$192-193$
7 c	MeO	Ph	65	74
7 d	AcO	p-Methoxyphenyl	81	$99-100$
7 e	BrO	p-Methoxyphenyl	69	$182-183$
7 f	MeO	p-Methoxyphenyl	72	$142-143$
7 g	AcO	m-Bromophenyl	78	$130-131$

dinone (7. $\mathrm{R}^{\prime}=\mathrm{OAc}$) provides 1 in high yield. We have described earlier a convenient method for resolving α hydroxy - β-lactanss via the Ferrier reaction involving iodine catalyzed α-gly cosylation. ${ }^{5}$ Extension of this method for the resolution of N -unsubstituded β-lactam is in progress.
${ }^{15} N$-Labeled β-lactams. Formation of hydrobenzamide 2 from an aromatic aldehyde and anmonium hydroxide has been conducted under various conditions. ${ }^{6}$ In the interest of "atom economy" (reduction of waste chemical production). we have developed a recycling method: the aromatic aldehyde is allowed to react with an excess of $\mathrm{NH}_{4} \mathrm{Cl}$. enough i -

Table 2. Synthesis of bis β-lactams $8 \& 9$ and mixed bis β-lactams $10 \& 11$

Compound	R'	Ar	R"	Yield (\%) ${ }^{a}$	$\operatorname{mp}_{\left({ }^{\circ} \mathrm{C}\right)^{4}}$	Ratio ${ }^{\text {c }}$
8\&9a	MeO	Ph		66 (41)	163-164	70:30
8\&9b	Bno	Ph		$84(61)$	103-104	75:25
8\&9c	MeO	p-Methosyphenyl		$66(38)$	119-120	70:30
8\&9d	Bno	p-Methoxyphenyl		73 (58)	${ }^{d}$	80:20
8\&9e	MeO	m-Bromophenyl		74(28)	163-164	70:30
$10 \& 11$	MeO	Ph	BnO	31(17)	157-158	70:30

${ }^{*}$ Yield of two diastreomers (Yield of major diastreomer): ${ }^{\text {b }} \mathrm{mp}$ of major diastreomer- ${ }^{\text {c }}$ Determined from a ${ }^{~}{ }^{\circ} \mathrm{H}$ NMR spectrum: ${ }^{\text {dT }}$ The diastreomers could not be separated.
propyl alcohol is added to ensure a homogeneous solution in the begiming: the pH is 9 or higher. The hydrobenzamide that crystallized out on standing is separated; the mother liquor can be recycled (at least tivice) after the addition of fresh $\mathrm{NH}_{4} \mathrm{Cl}$ and an aromatic aldehyde.

Since ${ }^{15} \mathrm{NH}_{4} \mathrm{Cl}$ is readily available at a reasonable price. we have used it for introducing an ${ }^{15} N$ label in β-lactam. For this purpose. we have modified the preparation of hydrobenzamides. Thus, benzaldehyde was treated with an aqueous solution ($\mathrm{pH}=9$) of ${ }^{15} \mathrm{NH}_{4} \mathrm{Cl} . \mathrm{NaOH}$ and a small amount of $\mathrm{NH}_{4} \mathrm{OH} .{ }^{15} \mathrm{~N}$-labeled hydrobenzamide $\mathbf{1 2}$ was collected by filtration. The ($+/-$)- ${ }^{15} \mathrm{~N}$ cis-3-acetoxy-4-phenyl-2-azetidinone 13 was characterized by ${ }^{1} \mathrm{H}$ NMR and mass spectra (Scheme 3). ${ }^{\text {? }}$

The expected ${ }^{15} \mathrm{~N}-\mathrm{H}$ coupling of 90 Hz was observed and

Scheme 2

Scheme 3
the level of ${ }^{15} \mathrm{~N}$ enrichment was deduced to be $80-86 \%$ from ${ }^{1} \mathrm{H}$ NMR and mass spectral data. This ${ }^{15} N$-labeled β-lactams would be very useful for the preparation of stable isotope labeled taxol. taxotere and analogs for metabolic studies. The ${ }^{15} N$-labeled β-lactams and compounds derived from them could also serve as internal standards for quantitation by mass spectral methods.
In summary, a simple, eco-friendly reaction has been devised for the preparation of N-unsubstituted α-lyydroxy- β lactam derivatives which are synthons for a variety of physiologically active compounds including taxol and analogs. ${ }^{15} \mathrm{~N}$-labeled intermediates for taxol should be useful for preparing internal standards for mass spectral quantitation and for metabolic studies. The chemical reactions. which are envirommentally more benign than many of the alternative processes, are convenient for the large scale preparation of intermediates for taxol and taxotere.

Experimental Section

Unless otherwise noted. all starting materials were obtained from commercial suppliers and used without further purification. Melting points were determined on a Mel-Temp ($50 / 60$ cycles, $110-120$ volts, 250 watts) apparatus and are uncorrected. Toluene was distilled from sodium benzophenone ketyl immediately prior to use. Methylene chloride was distilled from calcium hydride immediately prior to use. Reactions involving air or moisture sensitive reagents or intermediates were performed under an inert atmosphere of Argon in glassware that had been oven and/or flame dried. Infrared spectra were recorded on a Perkin-Elner 1420 Ratio Recording Infrared spectrophotometer. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 500 - or $200-\mathrm{MHz}$ FTNMR spectrometer. Mass spectra were obtained on a Scientific Research Instruments Biospect mass spectrometer. Flash column chromatography was perfonmed on silica gel 60 ($230-400$ mesh. Merck) using an ethyl acetatehexane mixture as the eluent unless specified otherwise. All chromatographic separations were monitored by TLC analyses, performed using glass plates precoated with $0.25-\mathrm{mm}$ $230-400-\mathrm{mesh}$ silica gel impregnated with a fluorescent indicator (254 mm). Solvent removal was accomplished at aspirator pressure using a rotary evaporator.
General procedure for the preparation of imines 2. To an approximately 10 -fold excess of an aqueous solution of $\mathrm{NH}_{3}(29-30 \%)$, a solution of aldehyde (30 mmol) in ethanol or isopropyl alcohol (20 mL) was added dropwise with stirring. The mixture was then stirred for 12 h . The precipitated product was filtered and dried in a desiccator by connecting it to vaccum. Recrystallization from ethanol or isopropyl alcohol gave 2
2a. Benzaldehyde (3.18 g . 30 nmol) in isopropyl alcohol (20 mL) was added to an aqueous solution of $\mathrm{NH}_{5}(200 \mathrm{~mL})$. Recrystallization from isopropyl alcohol gave $2.53 \mathrm{~g}(85 \%)$ of the title compound as a white solid: mp $92^{\circ} \mathrm{C}$ (lit. ${ }^{6} 102$ $\left.{ }^{\circ} \mathrm{C}\right)$: IR $(\mathrm{KBr}) \vee 1645$ and $1638(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.98(\mathrm{~s} .1 \mathrm{H} . \mathrm{PhCH}), 7.20-7.90(\mathrm{~m} .15 \mathrm{H} . \mathrm{Ar}), 8.59$
(s, 2H. $\mathrm{N}=\mathrm{CH}$): ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 93.3$ (PhCH). 127.3, 127.7, 128.4, 128.5. 128.6. 128.7, 130.9. 131.0. 136.2, 141.9, $160.6(\mathrm{C}=\mathrm{N})$: CIMS $\left(\mathrm{CH}_{4}\right) 299[\mathrm{M}+\mathrm{l}]^{+} .194$ (base peak). 106, 91 .
2b. p-Anisaldehyde (4.08 g .30 mmol) in isopropyl alcohol (20 mL) was added to an aqueous solution of $\mathrm{NH}_{3}(200$ mL). Recrystallization from isopropyl alcohol gave 3.41 g (88%) of the title compound as a white solid: $\mathrm{mp} 124-125^{\circ} \mathrm{C}$ (lit. ${ }^{6} 125^{\circ} \mathrm{C}$): IR (KBr) $\vee \mathrm{I} 638$ and $1610 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.79$ (s. $3 \mathrm{H} . \mathrm{OCH}_{3}$), $3.84\left(\mathrm{~s} .6 \mathrm{H} . \mathrm{OCH}_{3}\right)$, 5.84 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{PMPCH}$). 6.90 (d. $J=8.7 \mathrm{~Hz} .2 \mathrm{H} . \mathrm{Ar}), 6.93(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz} .4 \mathrm{H}, \mathrm{Ar}) .7 .43$ (d. $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) .7 .80$ (d. $J=$ $8.7 \mathrm{~Hz} .4 \mathrm{H}, \mathrm{Ar}), 8.48$ (s. $2 \mathrm{H} . \mathrm{N}=\mathrm{CH}$).

2c. 3-Bromobenzaldelyde (5.55 g .30 mmol) in isopropyl alcohol (20 mL) was added to an aqueous solution of NH_{3} $(200 \mathrm{~mL})$. The precipitated gummy product was extracted with methylene chloride and dried over anhydrous sodium sulfate. Removal of solvent by using a rotary evaporator gave $4.82 \mathrm{~g}(90 \%)$ of the title compound as an oil: IR (KBr) $v 1642(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.88(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N}=\mathrm{CH}), 7.05-8.00(\mathrm{~m} .12 \mathrm{H} . \mathrm{Ar}) .8 .44$ (s, $2 \mathrm{H}, \mathrm{N}=\mathrm{CH}$).

Modified preparation of hydrobenzamide 2a.

Method A: Benzaldelyde ($3.18 \mathrm{~g}, 30 \mathrm{mmol}$) in isopropyl alcohol (10 mL) was added to a solution ($\mathrm{pH}=9$) of water (15 mL), sodium hydroxide (600 mg). conc. ammonium hydroxide (4 mL , approx. 60 mmol) and $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~g} .56 \mathrm{mmol}$). The precipitated product was filtered and dried in a desiccator by connecting it to vaccum. Recrystallization from isopropyl alcohol gave $2.6 \mathrm{~g}(87 \%)$ of the title compound as a white solid: $\mathrm{mp} 92^{\circ} \mathrm{C}$ (lit. ${ }^{6} 102^{\circ} \mathrm{C}$); IR (KBr) $v 1645$ and $1638(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.98(\mathrm{~s}, \mathrm{lH}, \mathrm{PhCH})$, 7.20-7.90 (m. $15 \mathrm{H} . \mathrm{Ar}$), 8.59 (s. $2 \mathrm{H} . \mathrm{N}=\mathrm{CH}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 93.3(\mathrm{PhCH}), 127.3,127.7,128.4,128.5,128.6$. 128.7, 130.9. 131.0. 136.2. 141.9. 160.6 ($\mathrm{C}=\mathrm{N}$): CIMS $\left(\mathrm{CH}_{4}\right) m=299[\mathrm{M}+1]^{-}, 194$ (base peak). 106,91 .

Method B: Benzaldehyde (3.18 g .30 mmol) in isopropyl alcohol (10 mL) was added to a solution ($\mathrm{pH}=9$) of water (15 mL), sodium hydroxide (600 mg) and $\mathrm{NH}_{4} \mathrm{Cl}$ (3 g . 56 mmol). The precipitated product was filtered and dried in a desiccator by comecting it to vaccum. Recrystallization from isopropyl alcohol gave $1.5 \mathrm{~g}(50 \%)$ of the title compound as a white solid: mp $92^{\circ} \mathrm{C}$ (lit. ${ }^{6} 102^{\circ} \mathrm{C}$), IR (KBr) v 1645 and $1638(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.98(\mathrm{~s} .1 \mathrm{H}$. $\mathrm{PlCH}), 7.20-7.90(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ar}), 8.59$ (s. $2 \mathrm{H} . \mathrm{N}=\mathrm{CH}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 93.3(\mathrm{PhCH}), 127.3$. 127.7, 128.4. 128.5, $128.6,128.7$. 130.9 . $131.0 .136 .2,141.9,160.6(\mathrm{C}=\mathrm{N})$; CIMS $\left(\mathrm{CH}_{4}\right) m=299[\mathrm{M}+\mathrm{l}]^{-} .194$ (base peak), 106,91 .

General procedure for the preparation of N-unsustituted β-lactams 7 . A solution of acid chloride 4 (1.1 mmol) in anhydrous toluene (10 mL) was added to a solution of imine 2 (1 mmol) and triethylamine (2 mmol) in anhydrous toluene (10 mL) at $0.5^{\circ} \mathrm{C}$ under Argon. After the addition the reaction mixture was allowed to warm gradually to room temperature and stirred ovemight. The reaction mixture was then filtered through Florisil ${ }^{\text {w }}$ in order to remove the ammonium salt (triethy lammonium chloride). Silica gel (1 g) was added to the filtrate. The misture was concentrated and left
overnight. Column chromatography on silica gel (hexaneethyl acetate) gave the N-unsustituted β-lactams 7. Before treating silica gel with the mixture mono- β-lactans $5 \& 6$ were also isolated to show expected ${ }^{1} \mathrm{H}$ NMR and IR spectra
cis-3-Acetoxy--phenylazetidin-2-one (7a). The imine $\mathbf{2 a}$ (298 mg, I mmol) on treatment with acetoxyacetyl chloride (150 mg .1 .1 mmol) in the presence of triethylamine ($200 \mathrm{mg}, 2 \mathrm{mmol}$) gave 180 mg (88%) of the title compound as a white solid: $\mathrm{mp} 139-140^{\circ} \mathrm{C}$ (EtOAc-Hexane): IR (KBr) $v 3200,1750,1720 \mathrm{~cm}^{-1}(\mathrm{NC}=\mathrm{O})$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.67$ $\left(\mathrm{s} .3 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CO}\right), 5.04(\mathrm{~d}, J=4.6 \mathrm{~Hz} .1 \mathrm{H} . \mathrm{C} 3 \mathrm{H}) .5 .88(\mathrm{dd}, J$ $=2.6 \& 4.6 \mathrm{~Hz} . \mathrm{IH} . \mathrm{C} 4 \mathrm{H}) .6 .58(\mathrm{~s}, \mathrm{IH} . \mathrm{NH}) .7 .20 \cdot 7.40(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{5}\right) \delta$ 19.7. 57.9. 78.3, 127.5. 127.7. 128.2, 128.5, 134.7. 165.6 (β-lactam CO). 169.0 (acetoxy CO); Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{3}$: C. $64.37 ; \mathrm{H}, 5.40 ; \mathrm{N}, 6.83$. Found: C. 64.36 ; H. 5.27 : N. 6.79 .
$5 \& 6 \mathrm{a} . \mathrm{mp}$ oil (two diastereomers): IR $\left(\mathrm{CHCl}_{3}\right)$ v 1775 $(\mathrm{C}=\mathrm{O}), 1755(\mathrm{C}=\mathrm{O}) .1645(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 1.61 (s. total $3 \mathrm{H} . \mathrm{CH}_{3} \mathrm{CO}$). 4.68 and 5.23 (d, $J=4.9 \mathrm{~Hz}$, total $1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}) .5 .69$ and 5.75 (d. $J=4.9 \mathrm{~Hz}$ total $1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}$). 6.17 and 6.21 (s , total $\mathrm{IH} . \mathrm{PhCH}$). $6.90-7.80(\mathrm{~mm}, 15 \mathrm{H}, \mathrm{Ar})$, 8.39 and 8.41 (s. total $1 \mathrm{H}, \mathrm{N}=\mathrm{CH}$) ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $60.9,61.3,77.9,78.1,127.5 .127 .6,127.7 .128 .2 .128 .5$, $128.7,128.8,129.1,131.4 .131 .6,134.2$. 135.7, 137.5, 137.9, $163.2(\mathrm{C}=\mathrm{N}), 163.8(\mathrm{C}=\mathrm{N}), 164.2(\beta$-lactam CO$)$, 165.0 (β-lactan CO). 168.7 (acetoxy CO).
cis-3-Benzyloxy-t-phenylazetidin-2-one (7b). The imine (298 mg .1 mmol) 2a on treatment with benzyloxyacetyl chloride ($203 \mathrm{mg}, 1.1 \mathrm{mmol}$) in the presence of triethylamine ($200 \mathrm{mg}, 2 \mathrm{nmol}$) gave 160 mg (63%) of the title compound as a white solid: mp 192-193 ${ }^{\circ} \mathrm{C}$ (EtOAc-Hexane): $\mathrm{IR}(\mathrm{KBr}) \vee 3180(\mathrm{NH})$ and $1760 \mathrm{~cm}^{-1}(\mathrm{NC}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{\mathrm{j}}\right) \delta 4.26$ (q. $\left.J=4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PhCH}_{2}\right) .4 .84(\mathrm{~d}, J$ $=4.4 \mathrm{HZ}, \mathrm{IH} . \mathrm{C} 3 \mathrm{H}), 4.9 \mathrm{I}(\mathrm{dd}, J=2.4 \& 4.4 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{C}+\mathrm{H})$. $6.84-7.50(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Arm}), 7.74(\mathrm{~s}, 1 \mathrm{H} . \mathrm{NH}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 57.4\left(\mathrm{CH}_{3} \mathrm{O}\right), 71.5(\mathrm{C} 4) .84 .4(\mathrm{C} 3), 127.2,127.3$. 127.4, 127.5, 127.6, 127.7, 136.5, 136.6, 167.5 (β-lactam CO).
$\mathbf{5} \& \mathbf{6 b}$. major diastereomer; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \vee \mathrm{I} 755(\mathrm{C}=\mathrm{O})$. $1645(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta+15(\mathrm{~d} . J=11 \mathrm{~Hz}$. 1H, benzy loxy). 4.29 (d. $J=11 \mathrm{~Hz}, 1 \mathrm{H}$. benzyloxy), 4.85 (d. $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}+\mathrm{H}), 4.95(\mathrm{~d}, J=4.5 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}) .6 .27$ (s. 1H, benzylic). 6.90-7.95 (m. 20H. Ar). 8.43 (s, 1H. $\mathrm{N}=\mathrm{CH}$).
cis-3-Methoxy--phenylazetidin-2-one (7c). The imine ($298 \mathrm{mg}, 1 \mathrm{mmol}$) 2 a on treatment with methoxyacetyl chloride ($119 \mathrm{mg}, 1.1 \mathrm{mmol}$) in the presence of triethylamine (200 mg .2 nmiol) gave 115 mg (65%) of the title compound as a white solid: $\mathrm{mp} 74^{\circ} \mathrm{C}$ (EtOAc-Hexane); IR (KBr) v $3150(\mathrm{NH})$ and $1745 \mathrm{~cm}^{-1}(\mathrm{NC}=\mathrm{O})$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $3.15\left(\mathrm{~s} .3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.74(\mathrm{dd}, J=2.7 \& 4.6 \mathrm{~Hz}, 1 \mathrm{H} . \mathrm{C} 4 \mathrm{H})$. $4.85(\mathrm{~d}, J=4.6 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}) .6 .66(\mathrm{~s} .1 \mathrm{H}, \mathrm{NH}) .7 .36(\mathrm{~s} .5$ H. Ar): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{5}\right) \delta 58.02,58.06,86.63,127.65$. 128.29. 135.82. 167.97 (β-lactan CO); Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2}: \mathrm{C}, 67.78$; H, 6.23: N, 7.91. Found: C. 68.12: H. 6.05: N. 8.06.
$5 \& 6 c$. two diastereomers: IR (KBr) $v 1758(\mathrm{C}=\mathrm{O}), 1640$ $(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.04$ and 3.07 (s, total 3 H . $\mathrm{CH}_{3} \mathrm{O}$), 4.55 and 4.68 (d. $J=4.7 \mathrm{~Hz}$, total $1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}$). 4.63 and $5.10(\mathrm{~d} . J=4.7 \mathrm{~Hz}$, total $\mathrm{lH}, \mathrm{C} 3 \mathrm{H}) .6 .21$ and $6.26(\mathrm{~s}$, total $1 \mathrm{H}, \mathrm{PhCH}$). $7.00-7.85$ (m. $15 \mathrm{H}, \mathrm{Ar}$), 8.32 and 8.45 (s, total $1 \mathrm{H}, \mathrm{N}=\mathrm{CH})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 58.1 .61 .2$. 61.4 . 85.2. 85.4, 127.5. 127.6. 127.7. 128.0, 128.1, 128.4, 128.5, 128.6, 128.7, 128.8. 129.1. 131.2, 131.4. 135.1. 135.7, 137.7, 137.8, $162.9(\mathrm{C}=\mathrm{N})$. $163.4(\mathrm{C}=\mathrm{N}), 166.8$ (β-lactam CO), 167.1 (β-lactam CO). Anal. Calcd for $\mathrm{C}_{2} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}$, 77.81: H. 5.98: N, 7.55. Found: C, 75.87 ; H. 6.03: N, 7.43.
cis-3-Acetoxy-4-(p-anisyl)azetidin-2-one (7d). The imine (388 mg, I mmol) $\mathbf{2 b}$ on treatment with acetoxyacetyl chloride (150 mg . 1.1 mmol) in the presence of triethylamine (200 mg .2 mmol) gave $190 \mathrm{mg}(81 \%)$ of the title compound as a white solid: mp 99-100 ${ }^{\circ} \mathrm{C}$ (EtOAc-Hexane); IR (KBr) $\vee 3420(\mathrm{NH}), 1780(\mathrm{CO})$ and $1755(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.71\left(\mathrm{~s} .3 \mathrm{H} . \mathrm{COCH}_{3}\right) .3 .81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.98(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H} . \mathrm{C} 3 \mathrm{H}), 5.81(\mathrm{dd}, J=2.6 \& 4.5 \mathrm{~Hz}, \mathrm{l}$ $\mathrm{H}, \mathrm{C} 4 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) .6 .88(\mathrm{~d} . J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.23 (d. $J=8.7 \mathrm{~Hz} .2 \mathrm{H} . \mathrm{Ar}$): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 19.2 .55 .3$. 57.4. 78.2. 113.8, 126.6. 128.9. 160.0, 165.7 (β-lactam CO). 169.0 (acetoxy CO); Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4}: \mathrm{C}, 61.27$; H, 5.57; N. 5.96. Found: C. 61.65: H, 5.55; N. 5.79
cis-3-Benzyloxy-t-(p-anisyl)azetidin-2-one (7e). The imine (388 mg . 1 mmol) $\mathbf{2 b}$ on treatment with benzyloxyacetyl chloride (203 mg .1 .1 mmol) in the presence of triethylamine (200 mg .2 mmol) gave $195 \mathrm{mg}(69 \%$) of the title compound as a white solid: $\mathrm{mp} 182-183^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{3}-\right.$ Hexane); IR (KBr) v3175(NH). $1760(\mathrm{CO})$ and $1715 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.26$ (d. $J=11.4$ Hz . benzylic), 4.35 (d. $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}$, benzylic), 4.80 (d. J $=4.5 \mathrm{~Hz}, \mathrm{IH} . \mathrm{C} 3 \mathrm{H}$). 4.89 (dd, $J=2.6 \& 4.5 \mathrm{~Hz} . \mathrm{C} 4 \mathrm{H}), 6.15$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}) .6 .88-7.10(\mathrm{~m}, 3.6 \mathrm{H} . \mathrm{Ar}), 7.20-7.36(\mathrm{~m} .5 .4 \mathrm{H}$. $\mathrm{Ar}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 55.4(p-\mathrm{MeO}) .57 .9$ (C4). 72.2 $\left(\mathrm{PhCH}_{2} \mathrm{O}\right)$. 114.0. 127.8, 128.0, 128.3. 129.2. 137.0, 159.9. 167.7 (β-lactam CO); Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3}: \mathrm{C}, 72.06$; H, 6.05 ; N. 4.94. Found: C. 71.72 : H, 5.85; N. 5.00.
$5 \& 6 e$. major diastereomer: mp $105-106^{\circ} \mathrm{C}$ (EtOAc and hexane): IR (KBr) $v 1755(\mathrm{C}=\mathrm{O}), 1645(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right): 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$: 4.15 (d. $\left.J=12 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{PhCH}_{2}\right) .4 .22(\mathrm{~d}, J=12 \mathrm{~Hz} .1 \mathrm{H}$, $\left.\mathrm{PlCH}_{2}\right), 4.89(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{lH}, \mathrm{C} 4 \mathrm{H}), 4.76(\mathrm{~d} . J=4.6 \mathrm{~Hz}$. 1H. C3 H), 6.15 (s. 1H. PMPCH). 6.80-7.60 (m. 17H. Ar), 8.33 (s. $\mathrm{lH}, \mathrm{N}=\mathrm{CH}$).
cis-3-Methoxy-4-(p-anisyl)azetidin-2-one (7f). The imine (388 mg , 1 mmol) $\mathbf{2 b}$ on treatment with methoxyacetyl chloride (119 mg .1 .1 mmol) in the presence of triethy lamine (200 mg .2 mmol) gave $150 \mathrm{mg}(72 \%$) of the title compound as a white solid: mp $142-144^{\circ} \mathrm{C}$ (EtOAcHexane); IR (KBr) $v 3200(\mathrm{NH})$ and $1770(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.18(\mathrm{~s}, 3 \mathrm{H} . \mathrm{C} 3 \mathrm{OMe}) .3 .82(\mathrm{~s}, 3 \mathrm{H}, p-$ $\mathrm{MeO}), 4.71(\mathrm{dd}, J=2.6 \& 4.5 \mathrm{~Hz}, \mathrm{lH}, \mathrm{C} 4 \mathrm{H}) .4 .80(\mathrm{~d}, J=$ $4.5 \mathrm{~Hz}, 1 \mathrm{H} . \mathrm{C} 3 \mathrm{H}), 6.26(\mathrm{~s} .1 \mathrm{H}, \mathrm{NH}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz} .2 \mathrm{H}$, $\mathrm{Ar}), 7.31$ (d. $J=8.6 \mathrm{~Hz} .2 \mathrm{H}, \mathrm{Ar}) \cdot{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{2}\right) \delta 55.3$ ($p-\mathrm{MeO}$), $57.6(\mathrm{MeO}), 58.1$ (C4), 86.8 (C3). 113.9. 127.7. 129.0, 159.9. 167.9 (β-lactam CO); Anal. Calcd for
$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3}$: $\mathrm{C}, 63.75$; $\mathrm{H}, 6.32$: $\mathrm{N}, 6.76$. Found: C. 63.67: H . 6.15: N. 7.03.
$5 \& 6$. two diastereomers: IR $(\mathrm{KBr}) \vee 1755(\mathrm{C}=\mathrm{O}), 1645$ $(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.07$ and $3.08(\mathrm{~s}$, total 3 H.$$ $\mathrm{CH}_{3} \mathrm{O}$). 3.78-3.85 (m. total 9H. $p-\mathrm{MeO}$); 4.49 and 4.63 (d. J $=4.7 \mathrm{~Hz}$, total $1 \mathrm{H}, \mathrm{C}+\mathrm{H}) .4 .57$ and $5.00(\mathrm{~d} . J=4.7 \mathrm{~Hz}$. total $1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}), 6.10$ and $6.14(\mathrm{~s}$, total 1 H , benzylic), $6.80-7.30$ (m. $12 \mathrm{H}, \mathrm{Ar}$), 8.33 and 8.34 (s, total $\mathrm{IH} . \mathrm{N}=\mathrm{CH}$).
cis-3-Acetoxy-d-(m-bromophenyl)azetidin-2-one (7g). The imine (535 mg , I mumol) 2c on treatment with acetosyacetyl chloride ($150 \mathrm{mg}, 1.1 \mathrm{mmol}$) in the presence of triethylamine ($200 \mathrm{mg}, 2 \mathrm{nmol}$) gave 222 mg (78%) of the title compound as a white solid: mp $130.5-131.5^{\circ} \mathrm{C}$ (EtOAcHexane): IR (KBr) v $3200(\mathrm{NH}) .1775$ (acetoxy CO) and 1760 (β-lactam CO) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.69(\mathrm{~s}, 3 \mathrm{H}$. $\mathrm{AcO}), 4.94(\mathrm{~d}, J=4.7 \mathrm{~Hz} . \mathrm{IH} . \mathrm{C} 3 \mathrm{H}) .5 .85(\mathrm{dd}, J=2.8 \& 4.7$ $\mathrm{Hz}, \mathrm{IH} . \mathrm{C} 4 \mathrm{H}), 6.18$ (s. IH. NH). $7.15-7.44$ (m. $4 \mathrm{H}, \mathrm{Ar}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 19.8 .57 .4,78.4,122.5,126.3 .129 .9,130.6$. 131.4, 131.8. $164.9,169.0$ (β-lactan CO), Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{3} \mathrm{Br}:$ C. $46.50: \mathrm{H}, 3.55$; N, 4.93. Found: C. 47.11: H. 3.83. N, 5.28.
$5 \& 6 \mathrm{~g} \mathrm{mp}$ oil (one diastereomer): IR $\left(\mathrm{CHCl}_{3}\right) \vee 1775$ (acetoxy CO) and 1755 (β-lactam CO) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.71(\mathrm{~s} .3 \mathrm{H}, \mathrm{AcO}), 4.70(\mathrm{~d} . J=4.8 \mathrm{~Hz} . \mathrm{IH} . \mathrm{C} 4 \mathrm{H})$. 5.78 (d. $J=4.8 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}) .6 .24$ (s, 1 H , benzylic), $7.10-$ 7.80 (m. 12H. Ar), 8.39 (s, 1H. $\mathrm{N}=\mathrm{CH}$): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 19.7 (acetoxy methyl). 60.7 (C4). 76.6. 77.1, 122.0. 122.9. $123.0,126.0 .127 .4,127.8,129.3,130.1 .130 .3,130.5$, 131.1, 131.6, 132.0, 132.1. 134.6, 136.4, 136.9. 138.8. 162.6 $(\mathrm{N}=\mathrm{C}), 163.9$ (β-lactan CO), 168.6 (acetoxy CO).
General procedure for the preparation of bis- β-lactams $8 \& 9 \mathrm{a}-8 \& 9 \mathrm{e}, 10 \& 11$. A solution of acetyl chloride (2.2 mmol) 4 in anhydrous toluene (10 mL) was added to a solution of imine (1 mmol) 2 and triethylanine (4 mmol) in anhydrous toluene (10 mL) at $0.5^{\circ} \mathrm{C}$ under Argon. After addition the reaction mixture was allowed to warm gradually to roon temperature and stirred for lh . The reaction mixture was then heated to $70^{\circ} \mathrm{C}$ and kept overnight. After cooling it to room temperature. it was filtered through Florisil ${ }^{\text {t }}$ in order to remove the ammonium salt (triethylanmonium chloride). The filtrate was concentrated by using a rotary evaporator. Recrystallization or column chromatography on silica gel (hexane-ethyl acetate) gave the two diastereomeric bis- β-lactams $8 \& 9,10 \& 11$ in good yield. Mono- β-lactams $5 \& 6$ were also isolated to show expected ${ }^{l} \mathrm{H}$ NMR and IR spectra prior to heating to $70^{\circ} \mathrm{C}$.
$\mathbf{8 \& 9}$ a . The imine ($298 \mathrm{mg}, 1 \mathrm{mmol}$) $\mathbf{2 a}$ on treatment with methoxyacetyl chloride (238 mg .2 .2 mmol) in the presence of triethylamine ($400 \mathrm{mg}, 4$ nmol) gave 181 mg (41%) of the title compound as a white solid: mp (major diastereomer) $163-164^{\circ} \mathrm{C}$ (EtOAc-Hexane). IR (KBr) v $1760(\mathrm{CO})$ and $1755(\mathrm{CO}) \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.03(\mathrm{~s}$. $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.13\left(\mathrm{~s}, 3 \mathrm{H} . \mathrm{OCH}_{3}\right) .4 .63(\mathrm{~d}, J=4.6 \mathrm{~Hz}, \mathrm{IH.C} 4$ H). 4.80 (merg. $2 \mathrm{ds}, J=4.6 \& 4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 3 \mathrm{H} \& \mathrm{C}+\mathrm{H})$. 5.15 (d. $J=4.8 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}) .5 .68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}){ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 58.2,63.2$. 64.1, 66.4, 84.6. 85.2. 127.7. 127.9, 128.3. 128.4, 128.6, 128.8. 33.0. 134.0, 134.5, 167.0
(b-lactam CO), 168.0 (β-lactam CO); Anal. Calcd for: C . 73.28: H. 5.92: N, 6.33. Found: C, 72.21 ; H. 5.89: N, 6.21.
$\mathbf{8 \&} \mathbf{9 b}$. The imine (298 mg , 1 mmol) $2 \mathbf{2}$ on treatment with benzyloxyacetyl clloride (406 mg .2 .2 mmol) in the presence of triethylamine (400 mg .4 mmol) gave $363 \mathrm{mg}(61 \%)$ of the title compound as a white solid: mp (major diastereomer) 103-104 ${ }^{\circ} \mathrm{C}$ (EtOAc-hexane); IR (KBr) v 1761 (CO) and $1750(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.0-4.35(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{O}$), 4.80 (merg. $2 \mathrm{ds}, J=4.6 \& 4.7 \mathrm{~Hz} .2 \mathrm{H} . \mathrm{C} 4 \mathrm{H}$), 4.96 (d. $J=4.6 \mathrm{~Hz} . \mathrm{lH}, \mathrm{C} 3 \mathrm{H}) .5 .12(\mathrm{~d}, J=4.7 \mathrm{~Hz}, \mathrm{IH} . \mathrm{C} 3$ H), $5.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 6.30-7.40(\mathrm{~m}, 25 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 63.4 .64 .3,66.3 .72 .3,72.4,82.5 .83 .1,127.7$. $127.8,127.9,128.0 .128 .2$. 128.3, 128.4. 128.7. 129.0, 133.1, 134.1. 134.3, 136.4. 136.5, 166.6 (β-lactam CO), 167.4 (β-lactam CO); Anal. Calcd for: $\mathrm{C}, 78.76 ; \mathrm{H}, 5.76$: N , 4.71. Found: C. 78.55 ; H. 5.93: N, 4.59.
$\mathbf{8 \&} \mathbf{9}$ c. The imine ($388 \mathrm{mg}, 1 \mathrm{mmol}$) $\mathbf{2 b}$ on treatment with methoxyacetyl chloride (238 mg .2 .2 mmol) in the presence of triethylamine ($400 \mathrm{mg}, 4 \mathrm{mmol}$) gave 202 mg (38%) of the title compound as a white solid: mp (major diastereomer): $119-120^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: Hexane): IR (KBr) v 1775 (CO) and $1755(\mathrm{CO}) \mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3$ $\left.\mathrm{CH}_{3} \mathrm{O}\right), 3.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3 \mathrm{CH}_{3} \mathrm{O}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H} . \mathrm{CH}_{3} \mathrm{O}\right) .3 .73$ (s . $3 \mathrm{H} . p-\mathrm{CH}_{3} \mathrm{O}$). $3.76\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3} \mathrm{O}\right) .4 .60(\mathrm{~d} . J=4.6 \mathrm{~Hz}, \mathrm{l}$ $\mathrm{H}, \mathrm{C} 4 \mathrm{H}), 4.73$ (merg. $2 \mathrm{ds} . J=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} 3 \mathrm{H} \& \mathrm{C} 4 \mathrm{H}$), $5.07(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}), 5.60(\mathrm{~s} .1 \mathrm{H} . \mathrm{NCHN}), 6.50-$ $7.20(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ar}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 55.1 .55 .2 .58 .0$, $58.1 .62 .3,63.3$. $65.6,84.3 .85 .0,113.3,113.6,113.7,125.5$, $125.8,125.9,129.5$. $129.6 .129 .7,159.4,159.8,166.6(\beta-$ lactam CO), 167.3 (β-lactam CO). Anal. Calcd for C, 67.65 ; H, 6.06; N. 5.26 . Found: C. 67.70: H, 6.01; N. 5.28.
$\mathbf{8 \&} 9$ d. The imine ($388 \mathrm{mg}, 1 \mathrm{nmol}$) $\mathbf{2 b}$ on treatment with benzyloxyacetyl chloride ($406 \mathrm{mg}, 2.2 \mathrm{mmol}$) in the presence of triethylamine ($400 \mathrm{mg}, 4 \mathrm{mmol}$) gave 363 mg (61%) of the title compound (a mixture of 2 diastereomers ($80: 20$)) as a white solid: $\operatorname{IR}(\mathrm{KBr}) v 1758(\mathrm{CO})$ and 1750 $(\mathrm{CO}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.60-3.90\left(\mathrm{~m} .9 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.05-4.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right) .4 .62$ (d. $J=4.6 \mathrm{~Hz} . \mathrm{C} 4 \mathrm{H}$ in minor product): 4.75 (m, C 4 H in major product \& $\mathrm{C} 3 \mathrm{H} . \mathrm{C} 4$ H in minor product). 5.58 (s . NCHN in major product). 5.67 (s, benzylic in minor product). $6.50-7.35$ (m. $2 \mathrm{H}, \mathrm{Ar}$): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 55.2\left(\mathrm{OCH}_{3}\right) ; 62.0(\mathrm{C} 4) .62 .6(\mathrm{C4}) .63 .6$ (C4), $63.9(\mathrm{C} 4) .65 .6(\mathrm{~N}-\mathrm{C}-\mathrm{N}), 72.3\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 82.3(\mathrm{C} 3)$, 82.4 (C3), 82.9 (C3), $83.0(\mathrm{C} 3), 113.3,113.6 .113 .8,113.9$. $125.6,126.0,126.1$. 126.2 . $127.8,127.9$. 128.0. 128.2, $129.0,129.6,129.7$. 129.9. 130.2, 138.1. 138.2. 138.3, 159.3, 159.5. 159.9. 160.2, 176.4 (β-lactam CO). $176.5(\beta-$ lactam CO), 177.3 (β-lactam CO), 177.4 (β-lactam CO); Anal Calcd for: C. 73.66 : H. 5.89; N, 4.09. Found: C, 73.85; H, 5.72; N. 4.10.
$\mathbf{8 \&} 9 \mathbf{e}$. The imine ($535 \mathrm{mg}, 1 \mathrm{mmol}$) $\mathbf{2 c}$ on treatment with methoxyacetyl chloride (238 mg .2 .2 mmol) in the presence of triethylamine ($400 \mathrm{mg}, 4 \mathrm{mmol}$) gave $190 \mathrm{mg}(28 \%)$ of the title compound as a white solid: mp (a diastereomer) $163-164^{\circ} \mathrm{C}$ (EtOAc-Hexane): IR (KBr) v 1768 (CO) and $1754 \mathrm{~cm}^{-1}(\mathrm{CO}):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.09$ (s. $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right)$, $3.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) .4 .71(\mathrm{~d} . J=4.7 \mathrm{~Hz} .1 \mathrm{H}) .4 .80(\mathrm{~d} . J=4.7$
$\mathrm{Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=4.7 \mathrm{~Hz} .1 \mathrm{H}) .5 .03(\mathrm{~s} .1 \mathrm{H}, \mathrm{NCHN}), 6.94-$ 7.39 (m. 12H, Ar); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{\mathrm{j}}\right) \delta 58.4\left(\mathrm{OCH}_{3}\right), 58.5$ $\left(\mathrm{OCH}_{3}\right) .62 .9(\mathrm{C} 4), 63.5(\mathrm{C} 4), 65.6$ (Benzylic), $84.9(\mathrm{C} 3)$. 85.1 (C3). 121.1. 122.7, 122.8, 126.7. 127.0, 127.1, 129.3. $129.8,130.0,131.4,131.5 .131 .7,131.8 .132 .3,134.8$, 136.2, 136.3, 166.7 (β-lactam CO). 167.1 (β-lactan CO); Anal. Calcd for: C, 47.74; H, 3.41: N, 4.13. Found: C, 47.73: H. 3.47: N, 4.09.

Mixed bis- β-lactam $10 \& 11$. To a solution of imine (298 mg. 1 nmol) 2a and triethylamine (400 mg .4 mmol) in anhydrous toluene (10 mL), a solution of methosyacetyl chloride ($119 \mathrm{mg}, 1.1 \mathrm{mmol}$) in anhydrous toluene (10 mL) and a solution of benzyloxyacetyl chloride (203 mg .1 .1 mmol) in anhydrous toluene (10 mL) were added at $0-5^{\circ} \mathrm{C}$ under Argon for 20 min. After addition the reaction mixture was allowed to warm gradually to room temperature and stirred for 1 h . The reaction mixture was then heated to $70^{\circ} \mathrm{C}$ and kept overnight. After cooling it to room temperature. it was filtered through Florisil ${ }^{\text {r }}$ in order to remove the anmonium salt (triethylanmonium chloride). The filtrate was concentrated by using a rotary evaporator. Crystallization from ethyl acetate and hexane gave $160 \mathrm{mg}(31 \%)$ of the two diastereomeric bis- β-lactams as a white solid. Recrystallization from ethyl acetate and hexane gave 100 mg of the title compound as a white solid: mp (najor diastereomer) $157-158^{\circ} \mathrm{C}$ (EtOAc-Hexane); IR (KBr) v 1755 (CO) and 1750 (CO) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.01\left(\mathrm{~s}, 3 \mathrm{H} . \mathrm{OCH}_{3}\right), 4.12(\mathrm{~d} . J=$ $11.1 \mathrm{~Hz}, \mathrm{IH} . \mathrm{PhCH}_{2} \mathrm{O}$). 4.29 (s. $\left.J=11.1 \mathrm{~Hz} .1 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{O}\right)$. $4.63(\mathrm{~d} . J=4.63 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}), 4.86(\mathrm{~d} . J=4.5 \mathrm{~Hz}, \mathrm{IH}, \mathrm{C} 4$ H). 4.98 (d. $J=4.5 \mathrm{~Hz}, \mathrm{IH} . \mathrm{C} 3 \mathrm{H}) .5 .17$ (d. $J=4.5 \mathrm{~Hz} . \mathrm{IH}$. C 3 H). 5.71 (s. IH. NCHPh): $6.80-7.30$ (m, 20H. Ar); ${ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{5}\right) \delta 58.2\left(\mathrm{OCH}_{3}\right) .63 .1$ and $64.3(\mathrm{C4}), 66.3$ (NCHPh). $72.4\left(\mathrm{PhCH}_{2} \mathrm{O}\right) .83 .1$ and $84.5(\mathrm{C} 3)$, 127.7. 127.9. $128.0,128.2 .128 .3,128.5,128.6,128.7 .132 .5,133.0$, $134.0,134.5,166.8$ (β-lactam CO), 168.0 (β-lactan CO).

${ }^{15} \boldsymbol{N}$-Labeled hydrobenzamide 12.

Method A; Benzaldehyde ($637 \mathrm{mg}, 6 \mathrm{mmol}$) in isopropyl alcohol (10 mL) was added to a solution ($\mathrm{pH}=9$) of water (7.5 mL). sodium hydroxide (300 mg), conc. ammonium hydroxide (0.6 mL , approx. 9 mmol) and ${ }^{15} \mathrm{NH}_{4} \mathrm{Cl}(500 \mathrm{mg}$. 9 mmol). The precipitated product was filtered and dried in a desiccator by connecting it to vaccum. Recrystallization from isopropyl alcohol gave 480 mg (80%) of 12a as a white solid: $\mathrm{mp} 92^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}) \vee 1645$ and $1638(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 5.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhCH}) .7 .20-7.90(\mathrm{~m}, 15 \mathrm{H}$. $\mathrm{Ar}) .8 .59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 92.3(\mathrm{PhCH})$. 127.3, 127.7. 128.4, 128.5, 128.6, 128.7. 128.8, 130.9. 131.0, 136.2. 141.9. 160.6; CIMS $\left(\mathrm{CH}_{4}\right) m z 301[\mathrm{M}+1]^{+}$. 299. 196, 195 (base peak). 194, 193. 108, 107, 106. 105, 91.

Method B; Benzaldehyde ($637 \mathrm{mg}, 6 \mathrm{mmol}$) in isopropyl alcohol (10 mL) was added to a solution ($\mathrm{pH}=9$) of water $(7.5 \mathrm{~mL}$). sodium hydroxide (300 mg), conc. ammonium hydroxide (0.1 mL . approx. 1.5 mmol) and ${ }^{15} \mathrm{NH}_{4} \mathrm{Cl}(500$ mg . 9 mmol). The precipitated product was filtered and dried in a desiccator by connecting it to vaccum. Recrystalli-
zation from isopropyl alcohol gave 366 mg (61%) of $\mathbf{1 2 b}$ as a white solid: $\operatorname{mp} 92{ }^{\circ} \mathrm{C}: \mathrm{IR}(\mathrm{KBr}) \vee 1645$ and $1638(\mathrm{C}=\mathrm{N})$ $\mathrm{cm}^{-1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.98(\mathrm{~s} .1 \mathrm{H} . \mathrm{PhCH}), 7.20-7.90(\mathrm{~m}$, $15 \mathrm{H} . \mathrm{Ar}) .8 .59$ (s. $1 \mathrm{H} . \mathrm{N}=\mathrm{CH}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 92.3$ $(\mathrm{PhCH}), 127.3 .127 .7 .128 .4,128.5,128.6 .128 .7,128.8$, $130.9,131.0,136.2,141.9,160.6:$ CIMS $\left(\mathrm{CH}_{4}\right) \mathrm{mz} 301$ $[\mathrm{M}+1]^{-}, 299,196.195$ (base peak), 194. 193, 108, 107. 106. 105.91.

${ }^{15} \mathrm{~N}$-Labeled β-lactam 13.

Run 1. The imine 12a (300 mg , 1 mmol) on treatment with acetoxyacetyl chloride (150 mg .1 .1 mmol) in the presence of triethylamine ($200 \mathrm{mg}, 2 \mathrm{mmol}$) gave 169 mg (82%) of 13 a as a white solid: mp $139-140^{\circ} \mathrm{C}$ (EtOAc-Hexane): IR (KBr) v $3200(\mathrm{NH}) .1750,1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 5.05(\mathrm{~d} . J=4.7 \mathrm{~Hz}$, 1H. C3 H), $5.88(\mathrm{dd}, J=2.1 \& 4.7 \mathrm{~Hz}, \mathrm{lH}, \mathrm{C} 4 \mathrm{H}), 6.41(\mathrm{dd}$, $J=2.7 \& 92.4 \mathrm{~Hz}, \mathrm{lH}, \mathrm{NH}) .7 .25-7.36(\mathrm{~m}, 5 \mathrm{H} . \mathrm{Ar})$: CIMS $\left(\mathrm{CH}_{4}\right) m z 207[\mathrm{M}+1]^{+}$. 206. 179. 165. 164. 163. 108. 107 (base peak). 106, 91, 89.
Run 2. The imine 12b (300 mg . 1 mmol) on treatment with acetoxyacetyl chloride (150 mg . 1.1 mmol) in the presence of triethylamine ($200 \mathrm{mg}, 2 \mathrm{mmol}$) gave 173 mg (84\%) of 13b as a white solid: mp $139-140^{\circ} \mathrm{C}$ (EtOAc-Hexane): IR (KBr) $v 3200(\mathrm{NH}) .1750,1720(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 5.05(\mathrm{~d} . J=4.7 \mathrm{~Hz}$, 1H. C 3 H), $5.88(\mathrm{dd}, J=2.1 \& 4.7 \mathrm{~Hz}, \mathrm{lH}, \mathrm{C} 4 \mathrm{H}), 6.41(\mathrm{dd}$, $J=2.7 \& 92.4 \mathrm{~Hz}, \mathrm{lH}, \mathrm{NH}$). $7.25-7.36$ (m, 5H. Ar): CIMS $\left(\mathrm{CH}_{4}\right) m=207[\mathrm{M}+\mathrm{l}]^{+} .206 .179 .165$. 164. 163. 108. 107 (base peak). 106, 91, 89.
Acknowledgment. This work was supported by Stevens Institute of Teclunology, Hoboken, NJ, USA and the National Science Foundation. S. H. Park was supported by the Brain Korea 21 Project from the Korean Ministry of Education.

References

1. (a) Ojima, I. Acc. Chem. Res. 1995, 28, 383. (b) Brieva, R.: Crich, J. Z.: Sih. C. J. J. Org. Chem. 1993, 58 , 1068. (C) Ojima, I.; Habus, I.: Zhao, M.; Georg, G. I.: Jayasinghe, L. R. J. Org. Chem. 1991, 56, 1681.
2. Georg, G. I.: Harriman, G. C. B.; Hepperle, M.: Clowers, J. S.; Vander Velde, D. G.; Himes, R. H. J. Org. Chem. 1996, 61, 2664
3. Wells, T. N.; Lee, R. E. J. Org. Chem. 1969, 34, 1477.
4. Wells, T. N.: Tarwater, O. R. J. Ifed. Chem. 1971, If. 242
5. Banik, B. K.; Manhas, M. S.; Bose, A. K. J. Org. Chem. 1994, 59, 4714
6. (a) Kamal, A.; Ahmad, A.: Qureshi, A. A. Tetrahedron 1963, 19, 869. (b) Kupfer, R; Brinker, U. H. J. Org. (hem. 1996, 61, 4185.
7. (a) Bose, A. K.: Kugajvevsky, I. J. Am. Chem. Soc. 1966, 88, 2325. (b) Bose, A. K.; Manhas, M. S.; Malinowski, E. R. J. Am. Chem Soc. 1963, 85, 2795. (c) Malinoweki, E. R.; Mahas, M. S.; Muller, G. H.; Bose, A. K. Tetrahedron Lett. 1963, 18, 1161.

[^0]: Corresponding author. Tel: +82-42-869-3930, Fax: $+82-42-869-$ 8800; e-mail: parkshomail.kaistac.kr

