Synthesis of New Anthracycline Derivatives Including Butyric or Retinoic Acid Moiety

Young S. Rho, ${ }^{*}$ Wan-Joong Kim, Siho Park, Dong Jin Yoo, ${ }^{\dagger}$ Heun Soo Kang, ${ }^{\ddagger}$ and Soon-Ryang Chung ${ }^{\S}$
Deparment of Chemistry, Chonbuk National Cnwersith: Chonju 561-756, Korea
- Department of Chemistry, Seonam Unversity, Namwon 590-711, Korea
$\ddagger_{\text {I fetabolic Engineering Laboratories Co., Ltd, } 28 \text { Fongon-Dong, Chongno-Gu, Seoul 110-799, Korea }}$
${ }^{8}$ Deparment of Chemistry, Woosuk Lniversity, Wanu 565-701, Korea
Received January 30, 2001

Abstract

The potential anticancer agents, new anthracycline analogues (2-9) have been synthesized from the glycosides daunomycin (1a) and doxorubicin (1b). Compounds 2 and 6 were prepared by nucleophilic displacement esterification of a 14-bromodaunomycin (1c) with sodium or potassium salts of butyric and all trans retinoic acid. respectively. Compounds 3 and 7 were obtained from daunomycin (1a) by direct amidation with a buty ric and all trans retinoic acid in the presence of EDCI and PP, respectively. Compounds $\mathbf{4}$ and $\mathbf{8}$ were obtained from doxorubicin (1b) by reaction with the corresponding acids in the same manner. Compounds 5 and 9 were prepared from doxorubicin (1b) by acylation with two equivalents of the corresponding acids under the same reaction conditions.

Keywords : Daunomycin Doxorubicin Anthracycline derivatives, Butyric and retinoic acid. Acylation.

Introduction

The anthracycline antibiotics daunomycin (1a) and adriamycin (1b) (Figure 1) are clinically effective anticancer chemotherapeutic agents against several types of human cancers as well as various experimental tumors. ${ }^{1-4}$ However. their uses for cancer chemotherapy are seriously hampered by their side effects. especially peroxyl radical effected cardiotoxicity. ${ }^{5}$ The cardiotoxicity that appeared as an acute or chronic disease has affected a depression of systole function, arrhythmia, hypotension. etc. There are many hypotheses on the source of cardiotoxicity, but the hypothesis that cardiotoxicity is related with the formation of oxygen radicals and the oxidation of lipids has been supported recently.
Many published results show the reduction of cardiotoxicity by diminishing peroxidative damages through blending retinoic acid and doxorubicin. ${ }^{6}$ A lot of patents concerning the sodium or potassium salts of butyric acid. which arrest

Figure 1. Structures of two clinically important daunomycin (1a) and doxorubicin (1b).
*To whom conespondence should be addressed. Tel: +82-63-2703413; Fax: +82-63-270-3408: e-mail: ysho àmoak.chonbuk.ac.ks
the proliferation of the human gastric cancer, breast cancer, and colon cancer have been approved. ${ }^{7-8}$ Recently, we reported the synthesis of a new antluacyclinone by the coupling of $14-\mathrm{OH}$ of the aglycon in $\mathbf{1 b}$ with a butyric acid. ${ }^{9}$ In comection with the recent studies, we attempted to prepare some new glycosides starting directly from commercially available drugs, not intennediates. Here, we report in the present study the synthesis of new anthracycline derivatives via coupling of $\mathrm{C}_{14}-\mathrm{OH}$ and $\mathrm{C}_{3}-\mathrm{NH}_{2}$ in DM (1a) and DX (1b) with two kinds of acid molecules. butyric and retinoic acid expecting diminished cardiotoxicity and undesirable side effects.

Results and Discussion

In the previous papers, we describe the total synthesis of antluracyclinone derivatives through Michael-type condensation ${ }^{10-13}$ or Friedel-Crafts acylation. ${ }^{9.14}$ We reported the successful preparation of a new aglycon containing an ester linkage at $\mathrm{C}-14$ position through a nucleophilic displacement esterification method ${ }^{9.15}$ In the present study we attempted to directly prepare some new antluracycline analogues from commercially available anticancer agents. such as daunomycin (1a) and doxorubicin (1b). Several new antluracycline derivatives were synthesized using two acylation methods (Scheme 1). The synthesis of 14 -bromo DM (1c) was accomplished by the known procedure. ${ }^{15.66}$ All compounds (2-9) were obtained through the acylation of a hydroxyl group at C-14 site in the aglycon and/or amino group at C-3' position in the glycon with sodium butyrate, butyric and all trons retinoic acid.

DM-bu (2) and DM-re (6), potential prodrugs, were prepared by the reaction of 14 -bromo $\mathrm{DM}(1 \mathrm{c})$ with a butyric or all trans retinoic acid in which could occur the cleavage of

Scheme 1. Synthesis of new anthracycline analogues (2-9).
the ester bond at $\mathrm{C}-14$ by an oxidation enzyme in the human body. For the purpose of comparing the activity of 2 and 6. carboanidation compounds. DM-Nbu (3), DX-Nbu (4). DM-Nre (7), and DX-Nre (8), were synthesized by amidation of amino group at C-3' of sugar moiety in $\mathbf{1 a}$ or $\mathbf{1 b}$ with the corresponding acids. In addition. N-acylation compounds. DXbu-Nbu (5) and DXre-Nre (9). were prepared through the esterification of $\mathrm{C}_{1+}-\mathrm{OH}$ in $\mathrm{DX}(\mathbf{1 b})$ with the corresponding acids followed by amidation of an amino group at the sugar moiety with the corresponding acids.
First. DM-bu (2) was synthesized as follow: To a 14bromo DM (1c) prepared by introducing Br atom at $\mathrm{C}-14$ position of $1 a^{16}$ was added a solution of sodium butyrate in acetone: the solution was stirred at refluxing temperature for $5 \mathrm{lu} .{ }^{17-20}$ After removing the solvent under reduced pressure. the residue was dissolved in THF, etheral HCl was added. the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 hr and stirred at room temperature for 3 hr to afford DM-bu (2). However. because all trans retinoic acid was very sensitive to nomal room lighting, it was easily transformed to cis form ${ }^{11.22}$ DM-re (6) was prepared without refluxing, unlike the procedure described for the preparation of 2, as follow: To a solution of $\mathrm{DM}-\mathrm{Br}$ (1c) and all trans retinoic acid dissolved in acetone with protection from light was added triethy lamine (1.2 eq): the mixture solution was stirred at room temperature for 4 hr. ${ }^{23}$ After removing the solvent under reduced pressure. the residue was dissolved in THF to this was added etheral HCl . followed by stirring at $-20^{\circ} \mathrm{C}$ for 2 hr . and further stirring at room temperature for 3 hr to give DM-re (6).

Many attempts to prepare DM-Nbu (3) and DX-Nbu (4) through direct coupling of the $\mathrm{NH}_{3} \mathrm{HCl}$ in daunomycin (1a) or doxorubicin (1b) with butyric acid using DCC/DMAP failed ${ }^{3+}$ Reactants and DCU (dicyclohexylurea) were observed as main products. Eventually. DM-Nbu (3) was synthesized by coupling of the $\mathrm{NH}_{2} \mathrm{HCl}$ in 1 a with butyric acid using 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDCI) in the presence of catalytic amounts of 4 -pyrrolidinopyridine (PP) ${ }^{25-28}$ DX-Nbu (4) was synthesized from DX (1b) as described for the preparation of DM-Nbu (3). However, for the reaction of $\mathbf{1 b}$ competition between the hydroxyl at $\mathrm{C}-14$ and the amine group was observed. Both products DX-Nbu (4) and DXbu-Nbu (5) were formed, the products ratio depended on the amounts of butyric acid and EDCI. DXbu-Nbu (5) was prepared using 2.2 equivalent of the corresponding acid and EDCI.

Synthesis of DM-Nre (7) and DX-Nre (8) was carried out as follow: All trans retinoic acid and EDCI (1.2 equivalent) was dissolved in dry DMF with protection from light and stirred at $0^{\circ} \mathrm{C}$ for 30 min ; to the reaction mixture was added DM (1a) or DX (1b) and catalytic amounts of PP. and then the mixture was stirred at room temperature for 4 hr to give DM-Nre (7) and DX-Nre (8).

DXre-Nre (9) was synthesized from $\mathbf{1 b}$ as described for the preparation of 8 by increasing the amounts of all trons retinoic acid (2.2 eq). EDCI (2.5 eq), and the reaction time (ca. 25 lu).

The cytotoxic activities of antluacycline derivatives (2-9) against two kinds of human tumor cells (SNU-16 and MCF-

Table 1. Comparison of the in vitro cytotoxicity of anthracycline derivatives (2-9) and adriamycin on human tumor cell lines

Agents	$\mathrm{IC}_{50^{c}(}(\mu \mathrm{M})$			
	SNJ-16	SNJ-16/Adr	MCF7	MCF7/Adr
Adrianycin	0.16	$0.35\left(2.19^{d}\right)$	0.29	$0.43(1.48)$
2	8.86	$7.89(0.89)$	0.35	$0.63(1.80)$
3	14.42	$28.82(1.99)$	28.82	$29.55(1.03)$
4	9.65	$9.51(0.98)$	52.02	$53.83(1.03)$
5	9.72	$8.76(0.90)$	4.01	$21.15(5.27)$
6	5.34	$4.22(0.79)$	4.39	$5.59(1.27)$
7	8.75	$8.32(0.95)$	9.43	$18.05(1.91)$
8	8.31	$8.56(1.03)$	19.20	$9.45(0.49)$
9	9.23	$9.04(0.98)$	13.1	$11.37(0.87)$

${ }^{\text {"Human }}$ stomach adenocarcinoma. ${ }^{\text {H }} \mathrm{H}$ uman breast adenocarcinoma. ${ }^{\circ}$ Concentration inhibiting colony gronth by $50{ }^{\circ}$. "Relative resistance (C_{5} of resistant cell lines $I C_{s i}$ of parental cell lines).
7) and their adriamycin-resistant cell lines were shown in Table 1. Although compounds (3-9) show lower value of resistance index than adriamycin. the only 2 exhibited cytotoxic activity equivalent to adriamycin against MCF7. These results indicate that acylation of $\mathrm{C}-14 \mathrm{OH}$ (2) maintains the activity inherent in the parent antluracycline antibiotics. whereas amidation of $3^{\prime}-\mathrm{NH}_{2}$ (3-5 and 7-9) causes a decrease in the antibiotic activity.

We synthesized the new anthracycline analogues. which are expected to exhibit biological activity as potential anticancer agents. Further detail studies on the results of biological test will be reported in the future.

Experimental Section

All reactions were carried out under argon atmosphere with dried glassware. All solvents were carefully dried and distilled by literature procedure. ${ }^{\text {T }}$ Bulk grade hexane was distilled before use. Merck pre-coated silica gel plates (Art. 5554) with fluorescent indicator were used as analytical TLC. Gravity column chromatography and flash colunnn chromatography were carried out on silica gel (230-400 mesh from Merck). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM EX-400 spectrometer. Chemical shifts were internally referenced to TMS for ${ }^{l} \mathrm{H}$ or to solvent signals for ${ }^{13} \mathrm{C}$. Infrared spectra were recorded on a Nicolet 5 -DXB series FT-IR spectrophotometer. Mass spectra were obtained on a JEOL JMS HX-110/110A Tanden mass spectrometer (FAB ${ }^{-}$. ESD). UV-VIS absorption spectra were recorded on a Hitachi-556 spectrophotometer. Optical rotations were determined using the Rudolph AUTOPOL IV apparatus with a $0-100-1.5$ polarimeter sample tube. Melting points were obtained on a Büchi 510 melting point apparatus and are uncorrected.
Daunomycin-1+-butyrate hydrochloride (2). A solution of 14 -Bromodaunonıycin hydrochloride (1c. 0.22 g. 0.34 mmol) prepared from damomycin hydrochloride ($\mathbf{1 a})^{5.16}$ and sodium butyrate (0.45 g .4 .13 mmol) in acetone (300 mL) was refluxed for 5 lur . Upon completion of the reaction
the solvent was evaporated. The residue was dissolved in dry THF (150 mL), etheral HCl was added. and the misture was stirred at $-20^{\circ} \mathrm{C}$ for 2 lu and further stirred at room temperature for 3 hr . The organic solvent was concentrated by a rotary evaporator and the residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{HCO} \mathrm{O}_{2} \mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}\right.$ $=88: 15: 2: 1$) to give daunomycin-14-butyrate hydrochloride ($2.0 .17 \mathrm{~g}, 76 \%$) as a red powder: $\mathrm{mp} 170-172^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}^{2 \mathrm{ij}}$ -24.997° (c $0.004, \mathrm{CH}_{3} \mathrm{OH}$); IR (KBr) 3445, 2939, 1726 , 1689. 1615, 1578. 1443, 1289. 1258, 1184, 1153. 1018, 987 cm^{-1} : ${ }^{1} \mathrm{H}$ NMR (400 MHz . DMSO- $\left.\mathrm{c}_{\mathrm{s}}\right) \delta 14.00(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{PhOH}), 13.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhOH}), 8.15\left(\mathrm{~s} .2 \mathrm{H} . \mathrm{C}_{3} \mathrm{NH}_{2}\right), 8.02(\mathrm{~d}$. $1 \mathrm{H} . J=7.81 \mathrm{~Hz} . \mathrm{ArH}$), 7.81 (dd. $1 \mathrm{H} . J=8.30 .7 .81 \mathrm{~Hz}$. $\mathrm{ArH}), 7.42(\mathrm{~d}, 1 \mathrm{H} . J=8.30 \mathrm{~Hz}, \mathrm{ArH}), 5.51\left(\mathrm{~s} .1 \mathrm{H}, \mathrm{C}_{7 \mathrm{cj}} \mathrm{H}\right)$, $5.30\left(\mathrm{~d} .1 \mathrm{H} . J=18.07 \mathrm{~Hz} . \mathrm{C}_{14} \mathrm{H}\right), 5.22\left(\mathrm{~s} .1 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}\right), 5.16(\mathrm{~d}$. $\left.1 \mathrm{H} . J=18.07 \mathrm{~Hz} . \mathrm{C}_{1+} \mathrm{H}\right) .4 .96(\mathrm{~s}, \mathrm{lH}, \mathrm{C} 9 \mathrm{OH}) .4 .16(\mathrm{q}, 1 \mathrm{H} . J$ $\left.=6.35 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}\right), 4.08\left(\mathrm{~s} .3 \mathrm{H}, \mathrm{C}_{4} \mathrm{OCH}_{3}\right), 3.80\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{OH}\right)$, $3.65\left(\mathrm{~m}, 1 \mathrm{H} . \mathrm{C}_{3} \mathrm{H}\right), 3.26\left(\mathrm{~d}, 1 \mathrm{H}, J=19.04 \mathrm{~Hz} . \mathrm{C}_{1 \mathrm{jeq}} \mathrm{H}\right), 3.02$ (d. $1 \mathrm{H} . J=19.04 \mathrm{~Hz} . \mathrm{C}_{1 \mathrm{bax}} \mathrm{H}$). 2.44 (t. $2 \mathrm{H} . J=7.32 \mathrm{~Hz}$, $\mathrm{C}_{16} \mathrm{H}$). 2.17 (dd. $\left.2 \mathrm{H} . J=16.11,5.37 \mathrm{~Hz}, \mathrm{C}_{8 \text { eq }} \mathrm{H}\right), 2.04(\mathrm{t}, 1 \mathrm{H}$, $J=13.18 .3 .91 \mathrm{~Hz}, \mathrm{C}_{2 \mathrm{eg}} \mathrm{H}$). 1.86 (dd. $1 \mathrm{H}, J=16.11 .2 .93 \mathrm{~Hz}$, $\left.\mathrm{C}_{\text {sax }} \mathrm{H}\right) .1 .72\left(\mathrm{~m}, 1 \mathrm{H}, J=7.32 \mathrm{~Hz}, \mathrm{C}_{17} \mathrm{H}\right), 1.38(\mathrm{dd}, 1 \mathrm{H}, J=$ $13.18,4.88 \mathrm{~Hz}, \mathrm{C}_{\text {そax }} \mathrm{H}$), $1.32\left(\mathrm{~d}, 3 \mathrm{H} . J=6.35 \mathrm{~Hz} . \mathrm{C}_{3} \mathrm{CH}_{3}\right)$, 1.01 (t. $3 \mathrm{H} . J=7.32 \mathrm{~Hz} . \mathrm{C}_{18} \mathrm{H}$): ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) δ 207.54. 186.27 . 186.16 . 172.00. 163.38. $160.55,154.14 .136 .11 .134 .52,133.64 .119 .79,119,62$. 118.85. 110.62, 110.54. 99.13. 74.97. 69.56. 66.05, 65.34. $56.57,46.54,45.57,38.87,36.02 .35 .00 .31 .82 .17 .98$. $16.65,13.42: \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right): \lambda_{\text {max }}(\log \varepsilon)=252(1.04), 233$ (2.16), 203 (1.34); Mass (FAB^{-}. Na) $\mathrm{m} / \mathrm{z} 637$ (M-HCl + $\mathrm{Na})^{+}$.

Daunomycin-3'- N -butyriccarboamide (3). After the mixture of butyric acid (0.06 mL .0 .64 mmol) and EDCI $(0.20 \mathrm{~g}, 1.06 \mathrm{nmmol})$ in dry DMF $(200 \mathrm{~mL})$ was stirred in ice bath for 30 min and allowed to warm to room temperature, to the stirred solution was added daunomycin hydrochloride (1a. 0.30 g .0 .53 mmol) and catalytic amounts of 4 -pyrrolidmopyridine. and the mixture was then stirred for 12 hr . The resulting mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. washed with water $(2 \times 200 \mathrm{~mL})$ and brine $(2 \times 200 \mathrm{~mL})$. dried over MgSO_{4}, and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $/ \mathrm{CH}_{3} \mathrm{OH}=$ $12: 6: 1)$ to give daunomycin- $3^{\prime}-N$-butyriccarboamide (3 . $273.38 \mathrm{mg} .86 \%)$ as a red powder: mp $158-160^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}^{2(1)}$ $+50.00^{\circ}$ (c $0.004, \mathrm{CH}_{3} \mathrm{OH}$): IR (KBr) 3420. 2939. 1720 , 1633. 1584. 1535. 1418, 1289. 1209. 1123, $987 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 13.93$ (s. $1 \mathrm{H} . \mathrm{PhOH}$). 13.18 (s. $1 \mathrm{H} . \mathrm{PhOH}$). 7.87 (d. $1 \mathrm{H} . J=7.81 \mathrm{~Hz}, \mathrm{ArH}$). 7.74 (dd. $1 \mathrm{H}, J$ $=8.30 .7 .81 \mathrm{~Hz} . \mathrm{ArH}$). 7.34 (d. $1 \mathrm{H} . J=8.30 \mathrm{~Hz} . \mathrm{ArH}$), 6.03 (d. $1 \mathrm{H} . J=8.79 \mathrm{~Hz} . \mathrm{C}_{4} \mathrm{H}$) $.5 .46\left(\mathrm{~d} .1 \mathrm{H}, J=2.93 \mathrm{~Hz} . \mathrm{C}_{7 \mathrm{cj}} \mathrm{H}\right.$). $5.17\left(\mathrm{~d} .1 \mathrm{H} . J=1.46 \mathrm{~Hz}, \mathrm{C}_{1} \mathrm{H}\right) .4 .48(\mathrm{~s} .1 \mathrm{H}, \mathrm{C} 9 \mathrm{OH}) .4 .20(\mathrm{q}$. $1 \mathrm{H} . J=6.84 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}$). 4.03 (s. $3 \mathrm{H} . \mathrm{C}_{4} \mathrm{OCH}_{3}$). 3.63 (s. 1 H , $\mathrm{C}_{4} \mathrm{OH}$) .3 .15 (d. $\left.1 \mathrm{H} . J=18.55 \mathrm{~Hz} . \mathrm{C}_{1 \mathrm{ixej}} \mathrm{H}\right) .2 .88(\mathrm{~m} .1 \mathrm{H}$, $\mathrm{C}_{3} \mathrm{H}$), 2.79 (d. $\left.1 \mathrm{H} . J=18.55 \mathrm{~Hz} . \mathrm{C}_{\text {tiax }} \mathrm{H}\right) .2 .40(\mathrm{~s} .3 \mathrm{H}$. $\mathrm{C}_{14} \mathrm{CH}_{3}$). 2.28 (d. $1 \mathrm{H} . J=14.65 \mathrm{~Hz} . \mathrm{C}_{8 \mathrm{sc}} \mathrm{H}$). 2.09 (td. $2 \mathrm{H} . J=$ 7.33. $3.42 \mathrm{~Hz} . \mathrm{BuCH}_{3}$). 2.05 (dd. $1 \mathrm{H} . J=14.65 .3 .91 \mathrm{~Hz}$.
$\left.\mathrm{C}_{\text {Sax }} \mathrm{H}\right), 1.89-1.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}\right) .1 .57(\mathrm{~m}, 2 \mathrm{H}, J=7.33 \mathrm{~Hz}$. BuCH_{2}), I .28 (d. $3 \mathrm{H}, J=6.35 \mathrm{~Hz} . \mathrm{C}_{5} \mathrm{CH}_{3}$) .0 .88 (t. $3 \mathrm{H}, J=$ $7.33 \mathrm{~Hz} . \mathrm{BuCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.94$. 186.57. 186.18, 172.14, 162.33. 160.68. 156.57, 155.51, $135.46 .135 .22,134.25,133.89,120.59,119.59$. 118.22, 111.19. 111.00, 100.64. 76.57. 69.90. 69.52, 67.15, 56.55, $45.18,38.61,35.07 .33 .34 .29 .97$. 19.16. 16.81. 13.72; $\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right): \lambda_{\text {max }}(\log \varepsilon)=252(0.71), 230(1.00) .203$ (0.73); Mass ($\left.\mathrm{FAB}^{-}, \mathrm{Na}\right) \mathrm{m} / \mathrm{z} 621(\mathrm{M}+\mathrm{Na})^{+}$.

Doxorubicin- $\mathbf{3}^{+}$- N -butyriccarboamide (4). After the mixture of butyric acid (0.04 mL .0 .41 mmol) and EDCI (0.13 g .0 .69 mmol) in dry DMF (200 mL) was stirred in an ice bath for 30 min and allowed to warm to room temperature. to stirred solution was added doxorubicin hydrochloride ($\mathbf{1 b} .0 .20 \mathrm{~g} .0 .35 \mathrm{mmol}$) and catalytic amounts of 4 pyrrolidinopyridine, and the mixture was stirred for 3 lirs. The resulting mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. washed with water $(2 \times 200 \mathrm{~mL})$ and brine $(2 \times 200 \mathrm{~mL})$. dried over MgSO_{4}. and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{1} / \mathrm{CH}_{3} \mathrm{OH}=12\right.$; 1) to give doxorubicin- $3^{\prime}-N$-butyric carboamide $(4,0.18 \mathrm{~g} .80 \%)$ as a red powder: mp $162.5-165^{\circ} \mathrm{C}$: $[\alpha]_{D}^{\text {डi }}+124.98^{\circ}$ (c 0.004 . $\mathrm{CH}_{3} \mathrm{OH}$); IR (KBr) 3432, 2927. 2853. 1726, 1633, 1584. 1418, 1289. 1209. 1116. 1018. $987 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 13.96(\mathrm{~s} .1 \mathrm{H}, \mathrm{PhOH}), 13.20(\mathrm{~s}, \mathrm{IH} . \mathrm{PhOH})$. 8.02 (d. $1 \mathrm{H}, J=7.81 \mathrm{~Hz} . \mathrm{ArH}), 7.78$ (dd. $\mathrm{IH} . ~ J=8.30,7.81$ $\mathrm{Hz}, \mathrm{ArH}) .7 .38(\mathrm{~d} .1 \mathrm{H}, J=8.30 \mathrm{~Hz} . \mathrm{ArH}) .5 .85(\mathrm{~d}, \mathrm{IH} J=$ $\left.8.79 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}\right) .5 .45\left(\mathrm{~d}, 1 \mathrm{H}, J=3.91 \mathrm{~Hz} . \mathrm{C}_{7 \mathrm{el}} \mathrm{H}\right) .5 .25(\mathrm{~d} .1 \mathrm{H}$. $\left.J=1.46 \mathrm{~Hz}, \mathrm{C}_{1} \mathrm{H}\right), 4.76$ (s. $\left.2 \mathrm{H} . \mathrm{C}_{14} \mathrm{H}\right), 4.53(\mathrm{~s}, 1 \mathrm{H} . \mathrm{C} O \mathrm{OH})$. $4.16\left(\mathrm{q}, \mathrm{lH}, J=6.84 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}\right), 4.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{4} \mathrm{OCH}_{3}\right) .3 .63$ (s. $1 \mathrm{H} . \mathrm{C}_{4} \mathrm{OH}$), 3.25 (d, $\mathrm{lH}, J=18.55 \mathrm{~Hz}, \mathrm{C}_{\text {tieq }} \mathrm{H}$). 3.04 (m . $\left.1 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}\right) .2 .96\left(\mathrm{~d}, 1 \mathrm{H}, J=18.55 \mathrm{~Hz} . \mathrm{C}_{10 \mathrm{ax}} \mathrm{H}\right), 2.32(\mathrm{~d}, 1 \mathrm{H}, J$ $=12.14 \mathrm{~Hz} . \mathrm{C}_{8<\mathrm{eq}} \mathrm{H}$). 2.16 (dd. $1 \mathrm{H} . J=12.14,3.91 \mathrm{~Hz}$. $\left.\mathrm{C}_{\mathrm{Say}} \mathrm{H}\right), 2.10\left(\mathrm{td} .2 \mathrm{H} . J=7.33,2.93 \mathrm{~Hz}, \mathrm{BuCH}_{2}\right) .1 .83(\mathrm{dt}$. $1 \mathrm{H}, J=13.65,4.88 \mathrm{~Hz}, \mathrm{C}_{3 \mathrm{ieq}} \mathrm{H}$), 1.73 (dd. $1 \mathrm{H} . J=13.65 .3 .60$ $\left.\mathrm{Hz}, \mathrm{C}_{2 \mathrm{ax}} \mathrm{H}\right) . \mathrm{I} .60\left(\mathrm{~m}, 2 \mathrm{H}, J=7.33 \mathrm{~Hz}, \mathrm{BuCH}_{2}\right), 1.29(\mathrm{~d} .3 \mathrm{H}$. $\left.J=6.8+\mathrm{Hz} . \mathrm{C}_{5} \mathrm{CH}_{3}\right) \cdot 0.90\left(\mathrm{t} .3 \mathrm{H} . J=7.33 \mathrm{~Hz}, \mathrm{BuCH}_{3}\right) ;{ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.71$. 186.89. 186.45. 172.19. 160.88. 156.07. $155.50,135.66 .135 .38$. 133.50, 133.47. 120.72. 119.78. 118.35. 111.49, 111.31. 100.709. 78.27, $69.72,69.73 .67 .22 .65 .55 .56 .65 .45 .02,38.65,35.73$, $33.98,30.05,19.14 .16 .88,13.72: \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right): \lambda_{\text {max }}(\log \varepsilon)$ $=251(0.84) .233(1.26), 203(0.79)$: Mass $\left(\mathrm{FAB}^{+}, \mathrm{Na}\right) \mathrm{m} / \mathrm{z}$ $637(\mathrm{M}+\mathrm{Na})^{-}$
Doxorubicin-14, $\mathbf{3}^{\prime}$ - N -dibutyrate (5). After the mixture of butyric acid ($0.07 \mathrm{mLL}, 0.76 \mathrm{mmol}$) and EDCI $(0.17 \mathrm{~g}$. $0.86 \mathrm{mmol})$ in dry DMF (200 mL) was stirred in an ice bath for 30 min and allowed to warm to room temperature, to the stirred solution was added doxonubicin hydrochloride (1b. $0.20 \mathrm{~g}, 0.35 \mathrm{mmol}$) and catalytic amounts of 4 -pyrrolidinopyridine. and the mixture was stirred for 28 hr . The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$. washed with water $(2 \times 200 \mathrm{~mL})$ and brine $(2 \times 200 \mathrm{~mL})$. dried over MgSO_{4}. and the solvent was removed under reduced pressure. The residue was purified by colunnn chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{3} /\right.$ hexane $\left./ \mathrm{CH}_{3} \mathrm{OH}=12: 2: 1\right)$ to give
doxorubicin-14, $3^{\prime}-\mathrm{N}$-dibutyrate (5, $0.19 \mathrm{~g}, 81 \%$) as a red powder: $\mathrm{mp} 120-122^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}^{3 \mathrm{zi}}+74.99^{\circ}$ (c $0.004 . \mathrm{CH}_{3} \mathrm{OH}$): IR (KBr) 3444, 2927, 2953. 1738. 1633. 1584. 1418. 1289. 1209. 1116. $1018,987 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}$) δ 13.92 (s. $1 \mathrm{H}, \mathrm{PhOH}$). 13.15 (s, $1 \mathrm{H}, \mathrm{PhOH}$), 7.99 (d, $1 \mathrm{H} . J=$ $7.81 \mathrm{~Hz}, \mathrm{ArH}$). 7.75 (dd, $1 \mathrm{H}, \mathrm{J}=8.30,7.81 \mathrm{~Hz}, \mathrm{ArH}$). 7.36 (d. $\mathrm{lH}, J=8.30, \mathrm{~Hz} . \mathrm{ArH}$), $5.90\left(\mathrm{~d} . \mathrm{HH}, J=8.30 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{H}\right.$), $5.47\left(\mathrm{~s} .1 \mathrm{H}, \mathrm{C}_{72 \mathrm{ev}} \mathrm{H}\right) .5 .33\left(\mathrm{~d}, 1 \mathrm{H}, J=18.06 \mathrm{~Hz}, \mathrm{C}_{14} \mathrm{H}\right), 5.21$ $\left(\mathrm{s}, 1 \mathrm{H} . \mathrm{C}_{1} \mathrm{H}\right), 5.09\left(\mathrm{~d}, \mathrm{lH}, J=18.06 \mathrm{~Hz}, \mathrm{C}_{14} \mathrm{H}\right), 4.58(\mathrm{~s} .1 \mathrm{H}$, $\mathrm{C}_{9} \mathrm{OH}$), 4.21 (q. $\left.1 \mathrm{H} . J=6.34 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}\right) .4 .04(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{C}_{4} \mathrm{OCH}_{3}$). $3.64\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4} \mathrm{OH}\right), 3.23(\mathrm{~d}, \mathrm{lH}, J=19.04 \mathrm{~Hz}$, $\mathrm{C}_{\text {lieq }} \mathrm{H}$). 2.95 (d. $1 \mathrm{H}, J=19.04 \mathrm{~Hz} . \mathrm{C}_{\text {liax }} \mathrm{H}$). 2.88 (m. 1 H , $\mathrm{C}_{3} \mathrm{H}$), $2.45\left(\mathrm{t}, 2 \mathrm{H} . J=7.32 \mathrm{~Hz}, \mathrm{C}_{16} \mathrm{H}\right) .2 .29(\mathrm{~d}, 1 \mathrm{H} . J=12.14$ $\left.\mathrm{Hz} . \mathrm{C}_{8 \text { ej }} \mathrm{H}\right), 2.13\left(\mathrm{dd}, 1 \mathrm{H} . J=12.14 .3 .91 \mathrm{~Hz}, \mathrm{C}_{8 a \mathrm{~s}} \mathrm{H}\right) .2 .09$ (td, $2 \mathrm{H}, J=7.33,3.42 \mathrm{~Hz} . \mathrm{BuCH}_{2}$), 1.83 (m. $2 \mathrm{H} . \mathrm{C}, \mathrm{H}$). 1.75 (m. $2 \mathrm{H}, J=7.33 \mathrm{~Hz} . \mathrm{C}_{17} \mathrm{H}$), 1.59 (m. $2 \mathrm{H}, J=7.35 \mathrm{~Hz}$, BuCH_{2}), 1.32 (d. $3 \mathrm{H}, J=6.84 \mathrm{~Hz}, \mathrm{C}_{8} \mathrm{CH}_{3}$). 1.01 (t. $3 \mathrm{H}, J=$ $\left.7.33 \mathrm{~Hz}, \mathrm{C}_{18} \mathrm{H}\right) .0 .89\left(\mathrm{t}, 3 \mathrm{H}, J=7.33 \mathrm{~Hz} . \mathrm{BuCH}_{3}\right):{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 206.49,186.67$. 186.23, 172.83. $172.13,172.13$. $160.74,156.04,155.50,135.55$. 135.27. $133.79,133.53,120.62,119.68,118.27,11132.111 .14$, $100.61,77.13,69.82$. 69.67, 67.27, 65.87. 50.61, 45.12. $38.66,35.81,35.50,33.60,30.04$. 19.18. 18.51. 16.80. 13.75, 13.73: $\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right): \lambda_{\text {max }}(\log \varepsilon)=251(1.04), 233$ (1.49), 203 (1.01); Mass ($\left.\mathrm{FAB}^{-}, \mathrm{Na}\right) \mathrm{m} / \mathrm{z} 707(\mathrm{M}+\mathrm{Na})^{+}$.

Daunomycin-14-retinoate hydrochloride (6). After 14bromodaunomycin hydrochloride ($1 \mathrm{c}, 0.22 \mathrm{~g} .0 .34 \mathrm{mmol}$) and all trans retinoic acid ($0.12 \mathrm{~g}, 0.41 \mathrm{mmol}$) was dissolved in acetone (300 mL). to the mixture was added triethyl amine ($0.06 \mathrm{~mL}, 0.41 \mathrm{mmol}$), and the mixture was then stirred at room temperature for 4 lu . After removing the solvent by a rotary evaporator. an etheral HCl in dry THF (200 mL) was added to the reaction mixture. The resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 hr . further stirred at room temperature for 3 hr . and then the solvent was removed under reduced pressure. Purification of the residue by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{HCO}_{2} \mathrm{H} / \mathrm{H}_{2} \mathrm{O}=88\right.$: $15: 2:$ 1) gave pure daunomycin-14-retinoate hydrochloride $(6,0.25 \mathrm{~g} .85 \%)$ as a red powder: $\mathrm{mp} 181-182^{\circ} \mathrm{C} ;[\alpha]_{D}^{2(1)}$ $+124.98^{\circ}$ (c $0.004, \mathrm{CH}_{3} \mathrm{OH}$) ; IR (KBr) 3334, 2952. 1723, 1670. $1560,1381,1024.984 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 13.40(\mathrm{~s}, \mathrm{IH} . \mathrm{PhOH}), 12.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhOH})$. $7.45(\mathrm{~m} . \mathrm{IH}, \mathrm{ArH}) .7 .35(\mathrm{~m} . \mathrm{IH} . \mathrm{ArH}) .7 .00(\mathrm{t}, \mathrm{IH} . J=12.21$ $\left.\mathrm{Hz} . \mathrm{C}_{19} \mathrm{H}\right), 6.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}) .6 .28$ (d. $2 \mathrm{H} . J=15.62 \mathrm{~Hz}$, $\left.\mathrm{C}_{18,23} \mathrm{H}\right) .6 .14\left(\mathrm{~d}, 2 \mathrm{H} . J=16.11 \mathrm{~Hz}, \mathrm{C}_{20,22} \mathrm{H}\right) .5 .87(\mathrm{~s} .1 \mathrm{H}$, $\left.\mathrm{C}_{16} \mathrm{H}\right) .5 .30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{14} \mathrm{CH}_{2}\right), 5.13\left(\mathrm{~s} .1 \mathrm{H} . \mathrm{C}_{1} \mathrm{H}\right) .4 .61(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{C}_{7 \mathrm{cq}} \mathrm{H}\right) .4 .13\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}\right), 3.82\left(\mathrm{~m} .2 \mathrm{H} . \mathrm{C}_{3} \mathrm{H}\right) .3 .71(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{C}_{4} \mathrm{OCH}_{3}$). 3.04 (s. $1 \mathrm{H} . \mathrm{C}_{10 \mathrm{jeq}} \mathrm{H}$). 2.74 (s. $1 \mathrm{H} . \mathrm{C}_{1 \mathrm{i} \mathrm{as}} \mathrm{H}$), 2.32 (s, $3 \mathrm{H} . \mathrm{C}_{17} \mathrm{CH}_{3}$), 2.03 (m. $3 \mathrm{H}, \mathrm{C}_{2 \mathrm{eq}} \mathrm{H}_{\&} \mathrm{C}_{28} \mathrm{CH}_{2}$), 1.99 (s. 3 H, $\mathrm{C}_{21} \mathrm{CH}_{3}$). $1.89\left(\mathrm{~m} .1 \mathrm{H}, \mathrm{C}_{2 a \mathrm{ax}} \mathrm{H}\right) .1 .79\left(\mathrm{~s}, 3 \mathrm{H} . \mathrm{C}_{35} \mathrm{CH}_{3}\right) .1 .62$ (m. $2 \mathrm{H}, \mathrm{C}_{27} \mathrm{CH}_{2}$). $1.48\left(\mathrm{~m}, 2 \mathrm{H} . \mathrm{C}_{28} \mathrm{CH}_{2}\right), 1.25(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{CH}_{3}$), 1.04 (s. $6 \mathrm{H}, \mathrm{C}_{29} 2 \mathrm{CH}_{3}$) ; ${ }^{13} \mathrm{C}$ NMR (100 MHz . DMSO- d_{6}) δ 206.84. 206.75. 185.37. 185.06. 167.77. $165.92,160.12$. $155.78,154.81,153.96,139.69$. 137.56 . $137.16,134.89 .134 .37,133.89,133.66,131.33$. 129.89. 129.46, 128.60, 119.68, 118.93, 118.93, 118.07, 117.34. 110.62. 110.37. 99.85. 77.20, 76.54. 69.47, 67.07. 66.46.
$65.38,56.41 .47 .48,39.68 .35 .52,34.33 .33 .20,30.99,29.76$. $29.06,21.88,19.33 .16 .64,14.13 .13 .04: \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right): \lambda_{\text {max }}$ $(\log \varepsilon)=210(1.65), 327(1.24) .478(1.28):$ Mass $\left(\mathrm{FAB}^{+}, \mathrm{Na}\right)$ $\mathrm{m} / \mathrm{z} 849(\mathrm{M}-\mathrm{HCl}+\mathrm{Na})^{-}$
Daunomycin- $\mathbf{3}^{\prime}$ - N -retincarboamide (7). After the mixture of all trons retinoic acid (0.19 g .0 .64 mmol) and EDCI $(0.20 \mathrm{~g} .1 .06 \mathrm{mmol})$ in dry DMF (200 mL) was stirred in an ice bath for 30 min and allowed to reach room temperature. to the stirred solution was added daunomycin hydrochloride (1a. $0.30 \mathrm{~g}, 0.53 \mathrm{mmol}$) and catalytic amounts of 4-pyrrolidinopyridine. and the mixture was then 4 hr of stirring. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL). washed with water ($2 \times 200 \mathrm{~mL}$) and brine ($2 \times 200 \mathrm{~mL}$). dried over MgSO_{4}. and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left./ \mathrm{CH}_{3} \mathrm{OH}=12: 6: 1\right)$ to give daunomycin- $3^{\prime}-\mathrm{N}$-retincarboamide ($7.0 .40 \mathrm{g} 92 \$.$%) as a red$ powder: mp $150-152^{\circ} \mathrm{C}:[\alpha]_{\mathrm{D}}^{3 i}+98.99^{\circ}$ (c 0.004 . acetone): IR (KBr) 3432. 2939. 1720. 1627, 1578, 1529. 1418. 1289. 1209, $1123,990 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.89$ (s. IH. PhOH). 13.12 (s. IH. PhOH). 7.93 (d, IH. $J=7.81$ $\mathrm{Hz}, \mathrm{ArH}), 7.71(\mathrm{dd}, 1 \mathrm{H}, J=8.30,7.81 \mathrm{~Hz}, \mathrm{ArH}) .7 .31(\mathrm{~d}$. $1 \mathrm{H}, J=7.81 \mathrm{~Hz} . \mathrm{ArH}$), 6.83 (dd. $1 \mathrm{H} . J=15.14,11.23 \mathrm{~Hz}$. $\left.\mathrm{RA}_{11} \mathrm{H}\right), 6.22\left(\mathrm{~d}, \mathrm{IH} . J=16.11 \mathrm{~Hz} . \mathrm{RA}_{12} \mathrm{H}\right) .6 .12(\mathrm{~d} .1 \mathrm{H}, J=$ $\left.15.14 \mathrm{~Hz} . \mathrm{RA}_{7} \mathrm{H}\right), 6.09$ (d. $1 \mathrm{H}, J=15.14 \mathrm{~Hz} . \mathrm{RA}_{s} \mathrm{H}$). 6.04 $\left(\mathrm{d}, 1 \mathrm{H}, J=12.70 \mathrm{~Hz} . \mathrm{RA}_{10} \mathrm{H}\right), 5.61\left(\mathrm{~s}, 1 \mathrm{H} . \mathrm{RA}_{1+} \mathrm{H}\right), 5.46(\mathrm{~s}$. $\left.1 \mathrm{H}, \mathrm{C}_{7 \mathrm{l}} \mathrm{H}\right), 5.12\left(\mathrm{~s} .1 \mathrm{H} . \mathrm{C}_{1} \mathrm{H}\right), 5.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}, \mathrm{OH}) .4 .22(\mathrm{~m}$. $\left.2 \mathrm{H}, J=6.34 \mathrm{~Hz}, \mathrm{C}_{3} \& \mathrm{C}_{5} \mathrm{H}\right) .3 .99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{4} \mathrm{OCH}_{3}\right), 3.69(\mathrm{~d}$. $\left.1 \mathrm{H}, J=6.84 \mathrm{~Hz}, \mathrm{C}_{4} \mathrm{OH}\right) .3 .12\left(\mathrm{~d} .1 \mathrm{H}, J=18.55 \mathrm{~Hz} . \mathrm{C}_{1 \text { tieq }} \mathrm{H}\right)$. 2.81 (d. $1 \mathrm{H} . J=7.81 \mathrm{~Hz}, \mathrm{C}_{9} \mathrm{H}$). 2.72 (d. $\mathrm{IH} . J=18.55 \mathrm{~Hz}$. $\left.\mathrm{C}_{\text {liax }} \mathrm{H}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}_{14} \mathrm{CH}_{3}\right.$). $2.24\left(\mathrm{~s}, 3 \mathrm{H} . \mathrm{RA}_{13} \mathrm{CH}_{3}\right) .2 .06-$ $1.99\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{8} \mathrm{H}\right), 1.93$ (s. $3 \mathrm{H} . \mathrm{RA}_{9}-\mathrm{CH}_{3}$). $1.89-1.78$ (m. $2 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}$). 1.69 (s. $3 \mathrm{H}, \mathrm{RA}_{3} \mathrm{CH}_{3}$). $1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{RA}_{3} \mathrm{CH}_{2}\right)$. 1.45 (m. $2 \mathrm{H}, \mathrm{RA}_{2} \mathrm{CH}_{2}$). 1.28 (d, $3 \mathrm{H} . J=6.84 \mathrm{~Hz}, \mathrm{C}_{3} . \mathrm{CH}_{3}$). 1.01 (s. $6 \mathrm{H} . \mathrm{RA}_{1} 2 \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} . \mathrm{CDCl}_{3}$) δ 212.02. 186.38, 185.99, 166.19. 160.61. 156.16, 155.42, 148.64. 138.52, 137.50. 137.11, 135.40. 135.23. 135.12. 134.23. 133.92, 129.61, 129.59. 129.39. 127.99, 121.03, 120.47. 119.53. 118.20 , 111.11. 110.92. 100.72, 76.55 , $69.92,69.50 .67 .20 .56 .46 .45 .23 .39 .60,35.02,34.24$, $33.30,33.10 .29 .92 .28 .96 .24 .95 .21 .76,19.26,16.82$, $14.17,13.56,12.87$; UV(acetone): $\lambda_{\text {max }}(\log \varepsilon)=209(0.51)$. 328 (0.32), $336(0.32)$; Mass ($\left.\mathrm{FAB}^{-}, \mathrm{Na}\right) \mathrm{m} / \mathrm{z} 833(\mathrm{M}+\mathrm{Na})^{+}$.

Doxorubicin- $\mathbf{3}^{\prime}$ - N -retincarboamide (8). After the mixture of all trans retinoic acid (0.12 g .0 .41 mmol) and EDCI $(0.13 \mathrm{~g} .0 .69 \mathrm{mmol})$ in dry DMF (200 mL) was stirred in an ice bath for 30 min and allowed to reach room temperature. to the stirred solution was added doxorubicin hydrochloride ($1 \mathrm{~b} .0 .20 \mathrm{~g}, 0.0 .35 \mathrm{mmol}$) and catalytic amounts of 4 -pyrrolidinopyridine, and the mixture was stirred for 2 hr . The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL}$). washed with water $(2 \times 200 \mathrm{~mL})$ and brine $(2 \times 200 \mathrm{~mL})$. dried over MgSO_{4}. and the solvent was removed under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $/ \mathrm{CH}_{3} \mathrm{OH}=12: 6$: 1) to give doxorubicin- 3^{\prime}-retincarboamide ($8,0.26 \mathrm{~g} .91 \%$) as a pale red powder: mp $157-159{ }^{\circ} \mathrm{C}:[\alpha]^{20}+74.99^{\circ}$ (c 0.004 . ace-
tone): IR (KBr) $3442,2945,1729,1621,1584,1528,1420$. 1289. 1209. $1116,1078.984 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 13.96(\mathrm{~s} .1 \mathrm{H}, \mathrm{PhOH}), 13.13(\mathrm{~s}, 1 \mathrm{H} . \mathrm{PhOH}) .7 .94$ (d. $1 \mathrm{H}, J=7.81 \mathrm{~Hz}, \mathrm{ArH}$). 7.73 (dd. $\mathrm{IH} . J=8.30 .7 .81 \mathrm{~Hz}$, $\mathrm{ArH}), 7.34(\mathrm{~d}, 1 \mathrm{H}, J=8.30 \mathrm{~Hz}, \mathrm{ArH}), 6.84$ (dd. $1 \mathrm{H} . J=$ $\left.15.14,11.23 \mathrm{~Hz}, \mathrm{RA}_{11} \mathrm{H}\right) .6 .22(\mathrm{~d}, 1 \mathrm{H} . J=16.11 \mathrm{~Hz}$, $\mathrm{RA}_{12} \mathrm{H}$). 6.16 (d. IH. $J=15.14 \mathrm{~Hz}$, RA $_{7} \mathrm{H}$). 6.08 (d. $\mathrm{IH} . J=$ $\left.15.14 \mathrm{~Hz} . \mathrm{RA}_{8} \mathrm{H}\right), 6.05$ (d. $\left.\mathrm{IH} . J=11.23 \mathrm{~Hz}, \mathrm{RA}_{10} \mathrm{H}\right), 5.61$ $\left(\mathrm{s}, \mathrm{lH}, \mathrm{RA}_{14} \mathrm{H}\right) .5 .47\left(\mathrm{~s} . \mathrm{lH}, \mathrm{C}_{7 \mathrm{ej}} \mathrm{H}\right), 5.17\left(\mathrm{~s} .1 \mathrm{H} . \mathrm{C}_{1} \mathrm{H}\right), 4.76$ $\left(\mathrm{s}, 2 \mathrm{H} . \mathrm{C}_{14} \mathrm{H}\right) .4 .59(\mathrm{~s}, 1 \mathrm{H} . \mathrm{C} 9 \mathrm{OH}), 4.17$ (bd. $2 \mathrm{H} . J=5.86 \mathrm{~Hz}$. $\left.\mathrm{C}_{3} \& \mathrm{C}_{5} \mathrm{H}\right), 4.02\left(\mathrm{~s} .3 \mathrm{H}, \mathrm{C}_{4} \mathrm{OCH}_{3}\right), 3.67\left(\mathrm{~s}, 1 \mathrm{H} . \mathrm{C}_{4} \mathrm{OH}\right) .3 .16$ (d. $1 \mathrm{H} . J=18.55 \mathrm{~Hz}, \mathrm{C}_{\text {1egy }} \mathrm{H}$). 2.83 (d. $1 \mathrm{H} . J=18.55 \mathrm{~Hz}$. $\left.\mathrm{C}_{\text {ligax }} \mathrm{H}\right) .2 .30\left(\mathrm{~d} .1 \mathrm{H}, J=14.16 \mathrm{~Hz}, \mathrm{C}_{\text {sei }} \mathrm{H}\right) .2 .24(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{RA}_{13} \mathrm{CH}_{3}$), $2.15\left(\mathrm{~d} .1 \mathrm{H} . J=14.16 \mathrm{~Hz}, \mathrm{C}_{89 \times} \mathrm{H}\right), 2.01(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C}_{\text {reg }} \mathrm{H}\right), 1.94\left(\mathrm{~s} .3 \mathrm{H}, \mathrm{RA}_{13} \mathrm{CH}_{3}\right), 1.84\left(\mathrm{~m}, 1 \mathrm{H} . \mathrm{C}_{2 \mathrm{ax}} \mathrm{H}\right), 1.69(\mathrm{~s}$, $3 \mathrm{H} . \mathrm{RA}_{5} \mathrm{CH}_{3}$). $1.60\left(\mathrm{~m} .2 \mathrm{H} . \mathrm{RA}_{3} \mathrm{CH}_{3}\right), 1.45(\mathrm{~m}, 2 \mathrm{H}$. $\mathrm{RA}_{2} \mathrm{CH}_{3}$). 1.28 (d. $3 \mathrm{H}, J=6.35 \mathrm{~Hz} . \mathrm{C}_{5} \cdot \mathrm{CH}_{3}$); ${ }^{13} \mathrm{H} \mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 213.63,186.48,186.07$. 166.22. 160.68, 155.98. 155.24, 148.86. 138.63. 137.51, 137.10. 135.52. 135.20. 135.11, 133.54. 133.42, 129.73. 129.64. 129.37. 128.07, 120.92. 120.47. 119.61, 118.29, 111.26. 111.06, $100.76,76.43,69.60,69.48 .67 .32$. 65.51. 56.54, 45.12, $39.60,35.67,34.26 .33 .83,33.11 .29 .92,29.72$. 28.92 , 21.78, 19.27. 16.92. 13.58, 12.89; UV(acetone): $\lambda_{\text {max }}(\log \varepsilon)$ $=210(1.06), 327(0.24) .478(0.19)$; Mass $\left(\mathrm{FAB}^{-}, \mathrm{Na}\right) \mathrm{m} / \mathrm{z}$ $849(\mathrm{M}+\mathrm{Na})^{+}$.

Doxorubicin-diretinoate (9). After the mixture of all trons retinoic acid (0.23 g .0 .76 mmol) and EDCI $(0.17 \mathrm{~g}$. 0.86 nmol) in dry DMF (200 mL) was stirred in an ice bath for 30 min and allowed to reach room temperature, to the stirred solution was added doxorubicin lyydrochloride ($\mathbf{1 b}$, $0.20 \mathrm{~g}, 0.35 \mathrm{mmol}$) and catalytic amounts of 4 -pyrrolidinopyridine, and the mixture was stirred for 10 hr . The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, washed with water $(2 \times 200 \mathrm{~mL})$ and brine $(2 \times 200 \mathrm{~mL})$. dried over MgSO. and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $/ \mathrm{CH}_{3} \mathrm{OH}=12: 6$: $)$ to give compound $9(0.34 \mathrm{~g} .89 \%)$ as a pale red solid: mp 138-140 ${ }^{\circ} \mathrm{C}:[\alpha]_{\mathrm{L}}^{2(1)}+25.00^{\circ}$ (c 0.004 , acetone): IR (KBr) 3449. 2938. 1723. 1621, 1584. 1528, 1418. 1289, 1209, 1123, $984 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 13.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PhOH}) .13 .15$ $(\mathrm{s}, \mathrm{lH}, \mathrm{PhOH}), 7.98(\mathrm{~d} .1 \mathrm{H}, J=7.81 \mathrm{~Hz}, \mathrm{ArH}) 7.75(\mathrm{dd}, \mathrm{lH}$, $J=8.30 .7 .81 \mathrm{~Hz}, \mathrm{ArH}) .7 .36$ (d. $1 \mathrm{H}, J=8.30 \mathrm{~Hz} . \mathrm{ArH})$, $7.07-6.99\left(\mathrm{~m} .1 \mathrm{H} . \mathrm{C}_{19} \mathrm{H}\right) .6 .85(\mathrm{dd}, 1 \mathrm{H}, J=15.14 .11 .23 \mathrm{~Hz}$, $\left.\mathrm{RA}_{11} \mathrm{H}\right), 6.35-5.94\left(\mathrm{~m}, 8 \mathrm{H}\right.$. RA $\left._{7.8 .10 .12} \& \mathrm{C}_{18.20,20,23} \mathrm{H}\right) .5 .81(\mathrm{~s}$, 1H. $\left.\mathrm{C}_{16} \mathrm{H}\right) .5 .62\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{RA}_{14} \mathrm{H}\right) .5 .50\left(\mathrm{~s} .1 \mathrm{H}, \mathrm{C}_{72 \mathrm{c}} \mathrm{H}\right) .5 .38(\mathrm{~d}$, $\left.1 \mathrm{H} . J=18.07 \mathrm{~Hz} . \mathrm{C}_{14} \mathrm{H}\right), 5.22\left(\mathrm{~s}, 1 \mathrm{H} . \mathrm{C}_{1} \mathrm{H}\right), 5.13(\mathrm{~d}, 1 \mathrm{H} . J=$ $\left.18.07 \mathrm{~Hz} . \mathrm{C}_{14} \mathrm{H}\right), 4.63\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{9} \mathrm{OH}\right), 4.26(\mathrm{q}, 1 \mathrm{H}, J=6.34$ $\left.\mathrm{Hz} . \mathrm{C}_{5} \mathrm{H}\right), 4.11\left(\mathrm{~m} .1 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}\right), 4.03\left(\mathrm{~s}, 3 \mathrm{H} . \mathrm{C}_{4} \mathrm{OCH}_{3}\right), 3.69(\mathrm{~s}$, $\left.1 \mathrm{H} . \mathrm{C}_{4} \mathrm{OH}\right), 3.23\left(\mathrm{~d}, 1 \mathrm{H}, J=18.06 \mathrm{~Hz}, \mathrm{C}_{1 i \mathrm{e}} \mathrm{H}\right), 2.89(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=18.06 \mathrm{~Hz}, \mathrm{C}_{16 \mathrm{ax}} \mathrm{H}\right) .2 .51$ (d. $\left.1 \mathrm{H} . J=14.16 \mathrm{~Hz}, \mathrm{C}_{8 \mathrm{cj}} \mathrm{H}\right)$, 2.38 ($\mathrm{s}, 3 \mathrm{H} . \mathrm{C}_{17} \mathrm{CH}_{3}$). 2.26 ($\mathrm{s} .3 \mathrm{H}, \mathrm{RA}_{13} \mathrm{CH}_{3}$), 2.12 (d. $1 \mathrm{H}, J$ $=14.16 \mathrm{~Hz}, \mathrm{C}_{\mathrm{8} \times \mathrm{s}} \mathrm{H}$). 2.01 (s. $3 \mathrm{H}, \mathrm{C}_{21} \mathrm{CH}_{3}$). $1.95(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{RA}_{9} \mathrm{CH}_{3}$). $1.76-1.88\left(\mathrm{~m}, 2 \mathrm{H} . \mathrm{C}_{2} \mathrm{H}\right) .1 .72$ (s. $3 \mathrm{H} . \mathrm{C}_{28} \mathrm{H} \&$ $\mathrm{RA}_{4} \mathrm{CH}_{2}$). 1.34 (s. $3 \mathrm{H}, J=5.86 \mathrm{~Hz} . \mathrm{C}_{5} \mathrm{CH}_{3}$). 1.04 (s. 6 H , $\mathrm{C}_{29} 2 \mathrm{CH}_{3}$). 1.01 (s. $6 \mathrm{H}, \mathrm{RA}_{1} 2 \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 206.85 .186 .62 .186 .17,166.15,165.89 .160 .72$. 156.10, 155.53, 148.88. 139.71, 138.59. 137.54, 137.15, $135.53,135.25,134.85 .133 .95,133.64 .131 .30,130.19$, $129.92,129.70,129.43 .128 .64,128.05 .120 .96,120.59$. $119.66,118.31$. 117.28. 115.27, 111.26, 111.09, 100.72 . $76.67,69.90 .69 .70,67.33,65.46 .56 .59,45.17,39.64$. $35.57,34.31 .34 .28,33.55,33.17 .33 .13,31.63,30.06$. $29.74,29.02$. $28.99,22.71,21.82 .21 .80,21.12,19.30$. 16.86, 14.20, 14.13. 13.60, 13.27. 13.02, 12.92; UV(acetone): $\lambda_{\text {max }}(\log \varepsilon)=210(0.73), 327(0.36), 478(0.24)$; Mass ($\mathrm{FAB}{ }^{-}$. Na) $\mathrm{m} / \mathrm{z} 1131(\mathrm{M}+\mathrm{Na})^{-}$

Acknowledgment. This work was supported by the grant of the Korea Health 21 R\&D project (HMP-98-D-4-0026). Ministry of Health \& Welfare and Post-Doc. Progran. Chonbuk National University (2000).

References

1. Acamone, F. Med. Res. Rev. 1984, 4, 153
2. Crooke, S. T.: Reich, S. D. Anthracychmes: Cument status and new developments; Academic Press: New York, 1980.
3. Blum, R. H.; Carter, S. K. Am. Intem. Med. 1974, 80 , 249.
4. Brown, I. R. Prog. Med. Chem. 1978, 15, 125.
5. Speyer, J. L.: Muggia, F. M.; Green, M. D. US Patent $574+455,1998$
6. Tesoriere, L.: Ciaccio, M: Valenza, M.; Bongiomo, A.: Maresi, E.: Albiero, R.; Livrea, M. A. Jounal of Phamacolog and Experimental Therapeutics 1994, 269, 430.
7. Fagot, D.; Buquet-Fagot, C.; Lallemand, F.; Mester, J. Anticancer Drugs 1994, 5(5), 548.
8. Lallemand, F.; Courilleau, D.; Buquet-Fagot, C.; Atfi, A.; Montagne, M.-N.; Mester, J. Experimental Cell Research $1999,247(2), 432$.
9. Rho, Y. S.; Ko, H. K.; Kim, W.-J.; Yoo, D. J.; Kang, H. S. Bull. Korean Chem. Soc. 2000, 21, 774
10. Rho, Y. S.; Choi, Y.: Kim, G.: Sin, H.: Yoo, D. T.: Kim, S.
H.; Cheong, C. Bull. Korean Chem. Soc. 1999, 20, 551.
11. Rho, Y. S.; Kim, S. Y.; Cho, I.; Kang, H. S:; Yoo, D. J.; Cheong, C. Bull. Korean Chem. Soc. 1998, 19, 1059.
12. Rho, Y. S.; Park, S.; Kim, S. Y.; Cho, I.; Lee, C.; Kang, H. S.; Cheong, C. Bull. Korean Chem. Soc. 1998, 19, 74.
13. Hauser, F. M.: Hewawasam, P., Rho, Y. S. J. Org. Chem. 1989, 57, 5110 .
14. Rho, Y. S.; Ko, H. K.: Sin, H.; Yoo, D. J. Bull. Korean Chem. Soc. 1999, 20, 1517.
15. Rho, Y. S.; Park, S. C., Kang, H. S. Vovel Anthracyche Derivatives and Their Preparation, US (09/674,673), EU (99 919679.3), IPN (2000-547095), KOR (2000-7012427), 2000.
16. Umezawa, H.; Takeuchi, T.; Naganawa, H.; Tatsuta, K. US Patent $4360664,1982$.
17. Ducep, J.-B; Farge, D.; Ponsinet, G.; Reisorf; D. US Patent $4225589,1980$.
18. Israel, M.; Modest, E. I. US Patent $4035566,1977$.
19. Arcamone, F.; Franceschi, G.; Penco, S. LS Patent 3803127, 1974.
20. Arcamone, F.; Franceschi, G.; Minghetti, A.: Penco, S.; Redaelli, S. J. Med. Chem. 1974, 17, 335.
21. Maryanoff, C. A. US Paten 5399757, 1995
22. Maryanofi, C. A. US Potem $47+3700,1988$.
23. Alaiz, M.; Giron, T.; Hidelgo, F. J.; de la Maza, M. P.; Millan, F.; Zamora, R.; Vioqe, E. Synthesis 1989, 544.
24. Kanazawa, A. M.; Denis, J.-N.; Greene, A. E. J. Org. Chem. 1994, 59, 1238.
25. Dhaon, M. K.; Olsen, R. K.; Ramasamy, K. J. Org. Chem. 1982, 47, 1962.
26. Desai, M. C.: Stephens Stramiello, L. M. Tetrahedron Lett. 1993, 3f(48), 7685.
27. Akaji, K.; Kuriyama, N.: Kiso, Y. Tetrahedron Lett. 1994, 35,3315.
28. Nomnan, B. H.; Hemscheidt, T.; Schultz, R. M.; Andis, S. L. J. Org. Chem. 1998, 63, 5288.
29. Perrin, D. D.; Armarego, W. L. F. Putification of Laboratory Chemicals; Pergammon Press: New York, 1988.
