Preparation and Physical Properties of the Polyurethane Microgels Based on Poly(caprolactone) diol/Poly(ethylene glycol)

Poly(caprolactone) diol/Poly(ethylene glycol)을 기초로 한 폴리우레탄 마이크로겔의 합성 및 특성

  • Lim, Jeong-Soo (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Kong-Soo (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Moo-Jae (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Young-Geun (Department of Chemical Engineering, Chungbuk National University)
  • 임정수 (충북대학교 화학공학부) ;
  • 김공수 (충북대학교 화학공학부) ;
  • 이무재 (충북대학교 화학공학부) ;
  • 이영근 (충북대학교 화학공학부)
  • Published : 2001.01.01

Abstract

Polyurethane(PU) microgels were synthesized from poly(caprolactone) diol(PCD) and/or poly(ethylene glycol)(PEG), diisocyanate and 1,2,6-hexane triol by solution polymerization method. A critical gelation concentration of the PU microgels with, mole ratios of PCD/PEG were the important factors influencing the formation and property microgel or macrogels. The physical and thermal properties of the PU microgels prepared with depending upon the structure of diisocyanate, mole ratio of PCD/PEG, and molecular weight of PEG were investigated. It was found that PU microgels were distributed by polydisperse, spherical small particles below 300nm and showed the properties of low viscosity.

폴리카프로락톤디올(PCD) 및 폴리에틸렌글리콜(PEG), 디이소시아네이트 및 1,2,6-헥산트리올을 용액중합 방법으로 반응시켜 폴리우레탄(PU) 마이크로겔을 합성하였다. PCD/PEG의 몰비가 다른 마이크로겔의 임계 겔화농도의 성질과 생성에 영향을 주는 중요한 인자임을 알았다. 디이소시아네이트, PCD/PEG의 몰비 및 PEG의 분자량을 달리하여 제조한 PU 마이크로겔의 물리적 및 열적 성질을 실험하였다. PU 마이크로겔은 300nm 이하의 다분산성 구형의 작은 입자로 분포되어 있으며, 저점도 특성을 나타내었다.

Keywords

References

  1. Macromol. Rapid Commun. v.18 S. Abrol;P. A. Kambouris;M. L. Looney;D. H. Solomon
  2. J. Polym. Sci. Part B:Polym. Phys. v.34 H. Tobita;Y. Uemura
  3. J. Korean Ind. & Eng. Chemistry v.9 K. S. Kim;S. H. Kang;J. M. Kim
  4. Colloid & Polymer Sci. v.264 D. Kunz;W. Burchard
  5. J. Polym. Sci., Part A : Polym. Chem. v.30 Y. Naka;Y. Yamamoto
  6. J. Polym. Sci. v.33 V. E. Shashoua;R. G. Beaman
  7. Brithsh Polym. J. v.21 W. Funke
  8. Polymer J. v.17 W. Funke;K. Walthe
  9. Macromolecules v.19 M. Antonietti;H. Sillescu
  10. Macromolecules v.23 M. Antonietti;W. Bremser
  11. J. Polym. Sci., Polym. Chem. Ed. v.22 H. Chen;K. Ishizu;T. Fukutomi;T. Kakurai
  12. Polym. International v.27 K. S. Kim;C. H. Cho;M. W. Park
  13. J. Polym. Sci., Part A : Polymer Chem. v.29 Y. Nata;I. Ketsu;Y. Yamamoto;K. Hayashi
  14. Macromol. Symp. v.93 N. B. Graham;C. M. G. Hayes
  15. Colloid & Surface A : Physicochemical & Engineering Aspects v.118 no.3 N. B. Graham;J. Mao
  16. J. Ind. Eng. Chem. v.4 K. S. Kim;Neil. B. Graham