일반적인 연결선 구조의 해석을 위한 효율적인 행렬-벡터 곱 알고리즘

An Efficient Matrix-Vector Product Algorithm for the Analysis of General Interconnect Structures

  • 정승호 (三星電子 半導體硏究所) ;
  • 백종흠 (三星電子 컴퓨터시스템 事業部) ;
  • 김준희 (崇實大學校 大學院 컴퓨터學科) ;
  • 김석윤 (崇實大學校 大學院 컴퓨터學科)
  • Jung, Seung-Ho (CAE team, Semiconductor R & D Division, Semiconductor Business, Samsung Electronics Co., LTD) ;
  • Baek, Jong-Humn (Computer System Division, Samsung Electronics Co., LTD) ;
  • Kim, Joon-Hee (Soongsil Univ. Dept. of Computing) ;
  • Kim, Seok-Yoon (Soongsil Univ. Dept. of Computing)
  • 발행 : 2001.12.01

초록

본 논문은 이상적인 균일한 무손실 유전체를 갖는 일반적인 3차원 연결선 구조에서의 커패시턴스 추출 시, 널리 사용되는 일차 대조법(First-order collocation) 외에 고차 구적법을 결합하여 사용함으로써 정확성을 제고하고, 반복적 행렬-벡터의 곱을 효율적으로 수행하기 위한 알고리즘을 제안한다. 제안된 기법은 연결선에서 전기적 성질이 집중되어 있는 코너나 비아를 포함한 경우에 일차 대조법 대신에 구적법을 이용하여 고차로 근사함으로써 정확성을 보장한다. 또한, 이 기법은 경계 요소 기법에서 행렬의 대부분이 수치적으로 저차 계수(low rank)를 이룬다는 회로상의 전자기적 성질을 이용하여 모형차수를 축소함으로써 효율성을 증진한다. 이 기법은 SVD(Singular Value Decomposition)에 기반한 저차 계수 행렬 축소 기법과 신속한 행렬의 곱셈 연산을 위한 Krylov-subspace 차수 축소 기법인 Gram-Schmidt 알고리즘을 도입함으로써 효율적인 연산을 수행할 수 있다. 제안된 방법은 허용 오차 범위 내에서 효율적으로 행렬-벡터의 곱셈을 수행하며, 이를 기존의 연구에서 제시된 기법과의 성능 평가를 통하여 보인다.

This paper proposes an algorithm for the capacitance extraction of general 3-dimensional conductors in an ideal uniform dielectric that uses a high-order quadrature approximation method combined with the typical first-order collocation method to enhance the accuracy and adopts an efficient matrix-vector product algorithm for the model-order reduction to achieve efficiency. The proposed method enhances the accuracy using the quadrature method for interconnects containing corners and vias that concentrate the charge density. It also achieves the efficiency by reducing the model order using the fact that large parts of system matrices are of numerically low rank. This technique combines an SVD-based algorithm for the compression of rank-deficient matrices and Gram-Schmidt algorithm of a Krylov-subspace iterative technique for the rapid multiplication of matrices. It is shown through the performance evaluation procedure that the combination of these two techniques leads to a more efficient algorithm than Gaussian elimination or other standard iterative schemes within a given error tolerance.

키워드

참고문헌

  1. T. Sakurai and K. Tamaru, 'Simple formulas for two and three dimensional capacitance,' IEEE Trans. Electron Devices, 1993
  2. N. D. Llanda and M. Richardson, 'Modeling and Extraction of Interconnect Capacitance for Multilayer VLSI Circuits,' IEEE Trans. Computer -Aided Design of Integrated Circuits and Systems, vol. 15, pp.58-67, Jan. 1996 https://doi.org/10.1109/43.486272
  3. Y. Saad and M. H. Schultz, 'GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,' SIAM J. Sci. Stat. Comput., Vol. 7, No. 3, pp. 856-869, July 1986 https://doi.org/10.1137/0907058
  4. J. D. Jackson, Classical Electrodynamics, New York: Willy, 1975
  5. K. Nabors and J White, 'FastCap: A Multipole Accelerated 3-D Capacitance Extraction Program,' IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 10, no. 11, Nov. 1991 https://doi.org/10.1109/43.97624
  6. Keith Nabors and Jacob White, 'Multipoleaccelerated 3-D capacitance extraction algorithms for strutures with conformal dielectrics,' Proc 29th DAC, pp. 710-715, 1992
  7. S. Kapur and D. E. Long, 'IES3 : A fast integral equation solver for efficient 3-dimensional extraction,' Proc. 1997 ICCAD, 448-455 https://doi.org/10.1109/ICCAD.1997.643574
  8. X. Cai, K. Nabors, and Jacob White, 'Efficient Galerkin techniques for multipole-accelerated capacitance extraction of 3-D structures with multiple dielectrics,' In Proceedings of the 16th Conference on Advanced Research in VLSI, Chapel Hill, NC, March 1995 https://doi.org/10.1109/ARVLSI.1995.515621
  9. S. G. Michlin, Integral Equations and their Applications to Certain Problems in Mechanics, Mathematical Physics, and Technology. Pergamon Press, New York, 1957
  10. S. V. Marshall, R. E. Dubroff, and G. G. Skitek, Electromagnetic Concept and Applications, 4th-edition, Prentice Hall International, Inc. 1996
  11. S. Rao, T. Sarkar, and R. Harrington, 'The electrostatic field of conducting bodies in multiple dielectric media,' IEEE Trans. Microwave Theory Tech., Vol. MIT-32, pp. 1441-1448, Nov. 1984
  12. A. Ruehli and P. A. Brennen, 'Efficient capacitance calculations for three-dimensional multiconductor systems,' IEEE Trans. Microwave Theory Tech., Vol. MIT-21, pp. 76-82, Feb. 1973
  13. A.H. Stroud Gaussian Quadrature Formulas. Prentice-Hall, New York, 1966
  14. James W. Demmel, Numerical Linear Algebra, University of California Berkeley Press, 1996
  15. Ansoft, Inc, Santa Clara, CA. Maxwell 3D Reference Manual, 1999