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Complete Modeling of an Ultrasonic NDE Measurement System
- An Electroacoustic Measurement Model

Changjiu Dang* and Lester W. Schmerr Jr.*

Abstract It will be shown how models can simulate all the elements of an ultrasonic NDE measurement system,
including the pulser/receiver, cabling, transducer(s), and the acoustic/elastic waves fields. When combined, these
models form what is called the electroacoustic measurement model. 1t will be demonstrated how this
electroacoustic measurement model can be used to conduct parametric transducer and system studies and how the
model can form the basis for experimentally characterizing all the elements of the ultrasonic measurement system,

using purely electrical measurements.
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1. Introduction

A typical ultrasonic NDE immersion
inspection system is shown in Fig. 1. It consists of
a pulser/receiver, cabling, transducer(s), and a
particular acoustic propagation/scattering
configuration. For the case shown in Fig. 1 the
acoustic configuration includes a fluid, an
immersed component, and the flaw that is being
examined. The electrical and electromechanical
components of this system (pulser/receiver,
cabling, transducers) have traditionally been
modeled as 1-D equivalent circuits consisting of
"lumped" elements such as electrical sources,
impedances, etc. The Mason and KLM transducer
models, for example, are well-known models of
this type [1]. However, for transducer design
studies the transducer transfer matrix model of
Sittig [2] is often more convenient to use, as we
will show later in our discussion of the influence

of bonding layers on transducer response. At
ultrasonic frequencies, cabling plays an important
role in the measurement process and so must be
modeled explicitly. A transmission line model
characterized by a 2x2 transfer matrix will be
used here [3]. We should point out that in acoustic
systems, which often operate at much lower
frequencies, cabling effects are essentially non-
existent and are not included when performing
calibration measurements, etc. Cabling effects
cannot be ignored when adopting acoustic
calibration methods to ultrasonic NDE systems, as
will be discussed below. The acoustic wave
propagation and scattering fields present in an
ultrasonic inspection are inherently 3-D in nature
and it is not immediately obvious how to link
those fields to 1-D  electrical  and
electromechanical models of the Sittig or Mason
type. The reciprocity-based relation developed by
Auld [4] provides a general way to make that
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connection, and the measurement modeling
approach of Thompson and Gray [5], which is
based on Auld's general relation, provides the
means for modeling the 3-D acoustic fields as a
product of 1-D models which characterize
acoustic effects such as beam diffraction (on
transmission and reception), material attenuation,
and flaw scattering. Unfortunately, to date the 1-
D electrical and electromechanical models have
not been interfaced to their equivalent 1-D
acoustic counterparts in a completely consistent
and straightforward fashion. The electroacoustic
measurement model that we have developed [6]
does make that connection, and thus can lead to a
completely 1-D model of the entire measurement
process that can be used, as we will show, for a
number of important design studies.

Pulser A Receiver
flaw signal
V()
cabling ANNANANNNA cabling
Transducer Transducer
(transmitter) (receiving)

When modeling systems with commercial
electrical and electromechanical components,
such as the transducers, pulser/receiver etc., it is
not feasible to treat the components in terms of
detailed models since many of the design features
of those components are not known. Thus, it is
important to be able to experimentally
characterize all the system components in terms
of as few parameters as possible. By using the
electroacoustic measurement model, we will
demonstrate that it is practical to formulate the
system response in terms of a set of parameters
that can all be obtained through purely electrical
measurements in standard calibration setups. We
will also show that with such a completely
characterized system it is possible to combine the
measured parameters and predict the directly
measured system output.

Fig. 1 An ultrasonic immersion flaw inspection system
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Fig. 3 Model of a pulser voltage output
2. The Generation Process Model radiated, as shown in Fig. 1. In the

2.1. Pulser

In the process of generating the acoustic
fields used for inspection, the typical components
involved are the pulser, the cabling connecting the
pulser to an ultrasonic transducer, the transducer
itself, which usually contains a piezoelectric
crystal, and the fluid into which the sound is

electroacoustic measurement (EAM) model, the
circuitry of the pulser, which is often rather
complex, is replaced by a Thevenin equivalent
voltage source and internal impedance whose
frequency domain values (for exp(-iwt) time

dependency) are given by V(@) and Z;(w),

i
respectively, as shown in Fig. 2. Many modeling
studies in the literature omit the internal

impedance and model the voltage source alone as
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a given time domain input. Since many
commercial pulsers generate short, spike-like
negative pulses, an appropriate time domain
model of the pulser voltage output, V; (t) , 18

0 t<0
- 00[l—exp(~ozlt)] 0<t<t, 4]
Py exp(-ay(t—1y)) 214,

where

- "
Vo = [1~exp(—a1t0 ):( @

so that the output voltage is given in terms of four
parameters Vy,a,a,,t,. An analytical expression

for V(@) then follows by taking the Fourier
transform of ¥, (¢) . The explicit Vi (@) form will

not be given here. Figure 3 shows a typical pulse
generated with Eq. (1).

2.2. Cabling

The cabling is modeled in the EAM model as
a transmission line [3] whose properties can be
described by a 2x2 transfer matrix, [T], where the
components

kel ~i Z€ sin(k,l
7= cos(kelc) i Osm( cle) o

~isin(kele)/Zg  cos(kel)
relate the voltages (¥,,7,) and currents (1,,1,)
shown in Fig. 2 through the relation

1 Ty Inlly
where £,

is the wave number of signals

propagating in the cable, /. is the length of the

cable, and Z§ =./u/e, where u and ¢ are the
permeability and permittivity of the cable.

2.3. Transducer

A piezoelectric ultrasonic transducer is a
relatively complex component to model since it
involves electrical, electromechanical, and
acoustic elements. As mentioned previously, three
port models such as the Mason and KLM models
[7] are often used as transducer models. The three
ports in these models are the electrical port,
acoustic backing port at the back face of the
piezoelectric crystal, and the acoustic output port
at the front face of the crystal. When the type of
backing is specified, both the Mason and KLM
models reduce to two port models which relate

the voltage and current, (7,,1,) at the electrical

port to the force and normal velocity, (F,,v,)at
the output port through a 2x2 transfer matrix,

[TA],i.e.
Bl _| 5 TR
I il B (%)
2 Ty I |\ % '

Sittig [2] has given a model of this transfer matrix
for a compressional wave transducer as a product

of simple 2x2 matrices in the form
[TA:l = [TeA:I[TaA] where

]
and

a

[7)-me
Z§ -iZ§ tan(kd /2)
Zj +iZg cot(kd) (zg )2 +iZ{Z§ cot(kd)
1 Zy - 2iZ§ tan(kd /2)
@)



vl s AALerE A Al 21 A A 13 (20019 29) 5

The many parameters appearing in this model are
as follows. The parameter & is the wave number
for the piezoelectric plate, i.e. k =@ /v, where v,

is the wave speed of compressional waves in the

piezoelectric plate given by v, = ,/031)3 /pp in
terms of the elastic constant of the plate, ¢}, at
constant electric flux density, and pp, the density
of the plate. The constant n = h;C, appears in the

Mason model as a tumns ratio of an ideal
transformer. It is given in terms of /43, a

piezoelectric stiffness constant for the plate, and
C,, the clamped capacitance of the plate, which

is given by C, =S/ B3;d , where S is the area of

the piezoelectric plate, ﬂ3s3 is the dielectric
impermeability of the plate at constant strain, and
d is the plate thickness. The quantity Zj = ppv,S
is the plane wave acoustic impedance of the
zZ (a)) is the
corresponding acoustic impedance of the backing
(which can be a function of frequency if the
backing consists of one or more layers).

The Sittig model separates out the electrical
parts of the transducer ( Eq. (6)) from the acoustic
parts ( Eq. (7). It is a very convenient model to
use when acoustic facing layers exist on the
acoustic output port of the crystal, as they
normally do for commercial transducers. A facing
layer can be modeled as a 2x2 transfer matrix,

piezoelectric  plate, while

[Tl"] , that is identical in form to the transmission

line cabling model where the electrical impedance

of the cable, Z¢, is replaced by the plane wave
acoustic impedance, Z;', of the acoustic layer,
and k,and [ are taken as the wave number and

thickness, respectively, of the acoustic layer.
Adding a facing layer to the Sittig model is
accomplished by merely incorporating the layer
transfer matrix into the product of matrices

already present. For a single facing layer, for

example, the transducer matrix, |:T A}, is given

by
[r]=[r [ 7] ®
2.4. Radiation Impedance

The transducer 4 in an
immersion setup radiates an acoustic wave into
the surrounding fluid medium. Most 1-D
transducer models account for this radiation by

transmitting

relating the output force and normal velocity

(Ft,v,) through an acoustic radiation impedance,

ie. F, = Z*%y,, where the radiation impedance is

taken as the specific plane wave impedance for
the fluid multiplied by the area, S, of the
transducer, namely

ZM = prcsS 9)

where p;,c, are the density and wave speed,

respectively, of the fluid. However, a transducer
does not generate purely plane waves and in
general it is necessary to obtain the radiation
impedance by solving a boundary value problem
for the specific transducer being considered.
Greenspan [8], for example, has obtained the
acoustic radiation impedance for a circular piston
transducer of radius a in the form

27 () = pfcfS{l—-l—c;—C;[Jl (kya)-H, (kfa)]}
(10)

where k, is the wave number for compressional

waves in the fluid and J; and H, are first order

Bessel and Struve functions, respectively. For
most ultrasonic NDE applications, the transducers
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Fig. 4 (a): State (1) where transducer A is firing and the flaw is present,
(b): State (2) where transducer B is firing and the flaw is absent

used satisfy kra >>1, in which case Eq. (10) does
reduce to the frequency independent value of Eq.
(9). Note that this is not necessarily true, though,
for non-piston like transducer behavior, where
using the plane wave impedance value may lead
to errors.

2.5. Generation transfer function

If one combines the cabling transfer matrix,
[T], with the transducer matrix, [T A] to form

up a "global" transfer matrix,

(][ Jr*] an

then it can easily be shown from Fig. 2 that the
ratio of the output force, F,(w), to the Thevenin

equivalent driving voltage, V;(®), is given -

I
explicitly by the generation transfer function,
tc (@), where

ZA;a
r
(2755 +18 )+ (205 + 5 )z
(12)

. _k
Ty

This transfer function completely characterizes
the entire generation process in terms of the
components appearing in Fig. 2.

3. Acoustic Wave Propagation and
Scattering Models

The waves generated by the transmitting
transducer travel as a beam of ultrasound into the
part being inspected, scatter from any flaws
present, and are received by a rteceiving
transducer, as shown in Fig. 4(a). This process is

incident waves

\\ transducer face
blocked

scattered waves

Fig. 5 Incident and scattered waves on a
receiving transducer when the face of the
transducer is blocked
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a very complex 3-D acoustic propagation and
scattering problem and it appears that it is
difficult to combine these wave phenomena with
the 1-D generation process model. However,
Auld [4] has used reciprocity principles to make
the connection between the acoustic fields and
changes in traveling wave transmission
coefficients. Auld's transmission coefficients are
not directly the quantities appearing in our
generation process model but Dang [9] has used
Auld's basic approach to define the acoustic
fields surrounding the flaw in terms of an

acoustic transfer function, ¢, (a)), as a ratio of a
quantity called the blocked force, Fp (a)) , at the

receiver to the output force, F, (@), appearing in
Eq. (12). The result is ’

ty= —Fi = ——1—— | [Ty)vl{Z) - rlg-z)vgl)]nde

g Zf;”vg)vgz) Sy

(13)

) (1 ..
where z'l-(j),v,() are the stresses and velocities

generated in state (1) which is shown in Fig. 4(a).
There, the piston transducer A is firing with a
normal velocity, v&l), on its face, and the flaw is
present, where the flaw surface is S  and the
components of its outward unit normal (into the
surrounding solid) are n;. The terms Tgiz)’vgz)

appearing in Eq. (13) are the stresses and
velocity components, respectively, for state (2)
that is shown in Fig. 4(b). In state (2) the
receiving transducer B (also assumed to be
acting as a piston transducer) is firing with a

normal velocity, vgz’) , on its face and the flaw is
absent. Thus, the stresses and velocities
computed on the surface § ¢ are just the incident

waves from transducer B in state (2) while in
state (1) the stresses and velocity on § ¢ are due
to both the incident waves from transducer A and
the waves scattered from the flaw.

Equation (13) gives the acoustic transfer
function, ¢,(w), in very general terms. If we

assume that the flaw is sufficiently small so that
the waves incident on it are quasi-plane waves,
however, this transfer function reduces to a
product of explicit terms given by

1 2 4zp,c
o= 0 o) o) 2

(14

where V(l),V(z) are normalized velocities
incident on the flaw for states (1) and (2),
respectively  (including  effects of beam
diffraction, material attenuation, and
transmission through interfaces). The quantity
A(a)) is the plane wave far field scattering

amplitude for the flaw in state (1), p,is the

density of the solid surrounding the flaw, and
¢,,k, are the wave speed and wave number for

the waves incident on surface S, in state (2). An

expression similar to Eq. (14) was first obtained
by Thompson and Gray [5] in 1983 using an
asymptotic analysis. Schmerr [10] later gave a
less restrictive derivation of a similar result that
was then used by Dang [9] to obtain Eq. (14)
explicitly.

The value of Eq. (14) is that it explicitly
separates out the beam propagation effects,

contained in the V(l),V(Z) terms, from the flaw
response, A(w). This feature has allowed the

use of deconvolution procedures to extract the
flaw response from the total measured response
and rationally perform flaw classification and
sizing (see Schmerr [10] for some examples).
The blocked force, Fjy, requires some

further discussion. This force is the force present
on the receiving transducer when the surface of
the receiver is held fixed, as shown in Fig. 5. The
blocked force is the integral over the face of the

transducer of the pressure, p™°, due to the

scatt
, due to

the waves scattered from the blocked
(motionless) receiving transducer, as shown in
Fig. 5. Many authors assume that incident waves

incident waves, and the pressure, p
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are approximately plane waves incident on the
receiver and the scattered waves can be treated as
purely reflected plane waves (diffraction effects
neglected) at the receiver, as shown in Fig. 6. In
this case, the blocked force is just twice the force,

F™ in the incident waves, i.e.
Fy =2F™ =2p™S§, (15)

where S, is the area of the receiver.

; 'F _=F
e reflt  “inc

AN

incident reflected fransducer face
waves waves  blocked (motionless)

Fig. 6 Modeling the incident and scattered waves
as plane waves, where

FB =F +Freﬂt = 2’F;'nc

inc

In many simple setups the acoustic transfer
function, ¢, (@), can be obtained explicitly. One

important setup that is often used for calibration
purposes is shown in Fig. 7 where two
transducers of the same radius, a, are aligned
along their axes and separated by a distance, D,
in a fluid. In this case, assuming the transducers
act as pistons and that the received blocked force
is just twice the force of the waves incident on
the receiver, the transfer function can be
expressed in the form [11]

) =2exp[_a(w)D]{ exp(ik, D)

472 . ) - 2 42,2
—— [ sin uexp|:lkf D” +4a” cos“u du}

T o
(16)

&

+JL)\MMA
v
>

[e—p—>f 4
2 2a

Fig. 7 A reference calibration setup

where k,is the wave number and a(w) the

attenuation for the fluid.

4. The Receiving Process

Figure 8 shows a model of the receiving
process which is similar in form to the one we
considered in Fig. 2 for the generation process.
Again, the receiving transducer B and the cabling
can be represented by their 2x2 transfer matrices,

I:T B } , and [R] , respectively, and these transfer

matrices can be combined into a single “global”

2x2 receiving matrix, [RG:I , where

[#][+7][x ] @

It can be shown that the driving "source” for the
receiving transducer in Fig. 8 is just the blocked
force, Fj, at the receiver, and the impedance
between this source and the transducer is equal to
the acoustic radiation impedance of transducer B ,
ZP* (w), when it is acting as a transmitter. Thus,

if transducer B is modeled as a piston transducer
and the high frequency limit is assumed, we have



v AAEI R A 21 @ A 15 (20014 29)

Z%*  Transducer Cabling |

[T

9
Receiver

mmmmmmmmmmmm :

i ‘

,,:f Y FKY

(R] ':‘{} Zg ;
P 1

' i

| |

Fig. 8 The ultrasound reception process components

ZJ (@)= pse,S, (18)
with S, the area of the receiver. In an ultrasonic

NDE test, the output of the receiving transducer
is normally connected to the receiving section of
a pulser/receiver. In Fig. 7, this receiver is
modeled by an equivalent electrical impedance,

Z§(w), and a gain factor, K(w). With all the
elements as shown in Fig. 8, a receiving transfer
function, 7, (@), can be defined as the ratio of

the frequency components of the received
voltage, Vi (w), to the blocked force "input"”,

Fg (), and expressed explicitly as

Ve _ ZK

Fy (Zf”Rﬁ-+RE)+(Z?”R§«+R§)Z§
19)

tRz

5. The Electroacoustic Measurement
Model

We can now combine all of our results and
obtain a model of the entire ultrasonic
measurement process in terms of the previously
defined transfer functions as

Equation (20) represents our electroacoustic
measurement model since it contains terms for
all the electrical, electromechanical, and
acoustical system elements. We should note that
this EAM model is the realization of a "total
system model" (see Silk et. al. [12]) more general
than the one implemented in the 80's at Harwell
[13] primarily for transducer design purposes.
The EAM model can also be used for transducer
design, as shown in the next section, but it also
has much broader applicability in terms of
system characterization and calibration.

5.1. Transducer Design with the EAM
Model

Papadakis [14] has used a model similar to
the EAM model to conduct transducer parametric
studies where the impedance of the backing
material, the electromechanical coupling factor,
and the input pulse length were varied. Another
important parameter that can be examined is the
thickness of the bond layer between the crystal
and the front surface facing plate. To study the
bond thickness we will model a transducer as a
combination of the piezoelectric plate, backing,
bond layer, and facing plate. Although the crystal
is normally plated with a thin layer of conducting
material on both its faces, in this study the effects
of the plating will be ignored. The backing is
often made of a mixture of epoxy and tungsten
powder and is cast directly onto the plated crystal
so that we do not model a bonding layer at the
backing. We also model the backing itself as a
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semi-infinite layer so that no reflected waves are
present in the backing. However, a thin bonding
layer of epoxy is often present at the front face of
the crystal to fix the facing to the crystal. It is the
thickness of this bonding layer that will be varied
in this parametric study.

In the EAM model we consider two
identical transducers aligned along their axes in a
fluid in a pitch-catch setup. The distance between
the transducers is taken to be very small so that
diffraction effects are negligible (see Eq. (16)).
The material parameters were taken to be those
given by Papadakis [14] as case number 69A2.
The nominal frequency of these transducers was
5 MHz and the input electrical pulse was
modeled as a rectangular pulse with unit
amplitude by adjusting the parameters of Eq. (1)
appropriately, with the width of the pulse taken
as one half the period of the fundamental free
crystal response. The internal impedance of the
pulser and the receiver impedance were made
identical and equal to the impedance of the

clamped capacitance, Z_, where

p/—
27 £,Cy

@n

with C, the clamped capacitance and f; the free

crystal resonant frequency. The thickness of the
epoxy bond line between the crystal and the
facing plate was varied from 0.0 to 0.2 mm. In
general, as the thickness increased the output
voltage, which started as a single cycle
waveform at zero thickness developed a higher
frequency ‘"ringing" at later times, which
eventually dominated the entire response. In the
frequency domain, the magnitude of the received
spectrum started at zero bond thickness as a
single peak at a frequency, F,, , near the nominal

transducer center frequency. At a bond thickness
of about 0.05 mm a second peak in the spectrum
appeared at a higher frequency, F,, growing in

size relative to the first peak until it eventually
dominated the entire response at the largest bond
thickness considered. These results are tabulated
in Table 1 where column one lists the maximum
and minimum values in the time domain

waveform, column 2 lists the location of the
nominal center frequency peak, F,, , and column
3 lists the location of a second, higher frequency
peak, F,, (if any). In summary, from Table 1
and other data we observe the following
behavior:

a. For a very thin bonding layer the peak
frequency located near the nominal center
frequency dominates. A high frequency peak is
not measurable,

b. As the bond thickness increases, the amplitude
of the received waveforms drops rapidly. For
example, as the thickness changes from 0 to 0.1
mm the peak amplitude changes from 0.05 V to
0.007 V.

c. As the bond thickness increases, the peak
frequency also decreases but the bandwidth does

not change much.

d. When the bond thickness is larger than 0.05

" mm a higher frequency peak begins to appear. At

larger thickness, a "bi-modal" frequency
spectrum with two peaks exists for a range of
thickness, but the higher frequency peak
eventually dominates the measured response as
the thickness continues to increase. As the higher
frequency peak grows, the corresponding time-
domain waveform develops a large amount of
"ringing”.

In conclusion, the transducer behavior is
indeed very sensitive to the thickness of the bond
layer between the piezoelectric crystal and the
facing plate. The existence of the bonding
reduces not only the waveform amplitude but
also the frequency of the crystal, similar to the
way the backing material "shifts down" the
resonant frequency of the crystal. In the example
considered a bond thickness of greater than 0.05
mm begins to have detrimental effects on the
received waveform in terms of both amplitude
and ringing. Thus, the bonding of the facing
plate to the crystal needs to be kept very small to
prevent it from affecting the output response.
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Table 1 Effects of bond thickness on transducer response

Thickness Amplitude (V) F, (MHz) F. (MHz)
(mm) (positive/negative)
0 0.05/-0.07 5.46 -
0.000001 0.05/-0.07 5.46 -
0.000005 0.05/-0.07 546 -
0.00001 0.05/-0.07 5.46 -
0.00005 0.05/-0.07 5.46 -
0.001 0.05/-0.07 5.85 -
0.005 0.05/-0.08 6.25 -
0.01 0.04/-0.06 5.46 -

1 0.02 0.03/-0.04 4.29 -
0.03 0.02/-0.02 3.90 -
0.04 0.01/-0.02 3.51 -
0.05 0.01/-0.01 3.12 -
0.06 0.009/-0.009 2.73 -
0.07 0.007/-0.007 2.73 -
0.08 0.007/-0.006 2.73 16.01
0.09 0.007/-0.006 2.34 14.25
0.10 0.007/-0.007 2.34 13.08
0.11 0.007/-0.007 2.34 11.91
0.12 0.007/-0.008 2.35 11.13
0.13 0.007/-0.008 2.34 10.15
0.14 0.007/-0.008 2.34 9.57
0.15 0.008/-0.009 2.34 8.78
0.16 0.009/-0.009 2.34 8.39
0.17 0.009/-0.009 2.34 7.81
0.19 0.010/-0.009 - 7.03
0.20 0.010/-0.010 - 6.64

6. Complete Characterization of
an Ultrasonic System

In design studies of the kind just discussed,
one can use explicit models of each of the EAM
model components to simulate the total system
response. To characterize a commercial ultrasonic
system, however, many of the components need to
be experimentally determined since the
underlying parameters are not known. For the
transducers, for example, crystal material
properties, backing, etc. are often not available. In

"Cabling:

the EAM model as currently described, the
components that must be measured are:

Pulser: Thevenin equivalent voltage source,
V,.(a)), and internal electrical impedance,

Zf (@)

Transfer matrix

(nnle’TzloTzz)
(for both sending and receiving cables)

components
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Transducers: Transfer matrix
T T T T
(rh.15. 5. 75 )

(for both transmitter and receiver)

components

Receiver: Electrical impedance, Z; (w), and

gain, K (a))

We will assume that the radiation impedances of
the transmitting and receiving transducers are
known values as given by their high frequency
values for piston behavior (see Egs. (9) and
(18) ) and that the acoustic transfer function can
be explicitly modeled, using the Thompson-Gray
approach (Eq. (14) ) for a flaw measurement
setup, or through an explicitty modeled
calibration setup as given in Eq. (16).

The properties of the electrical components
listed above can all be obtained by purely
electrical calibration measurements.
Characterizing the transfer matrix of a transducer,
however, is another matter since it is an
electromechanical device. Obtaining
experimentally all four elements of the
transducer transfer matrix has been called
"complete transducer characterization" by Sachse
[15]. To date, to our knowledge no one has
developed a procedure for such a complete
transducer characterization. Fortunately, all four
elements of the transducer transfer matrix are not
needed to model the transducer effects appearing
in the generation and reception processes. In his
thesis, Dang [9] has shown that it is sufficient to
obtain only 1) the transducer radiation
impedance (already assumed known, as
mentioned above), 2) the transducer electrical
input impedance, and 3) a quantity called the
transducer open-circuit, blocked force receiving
sensitivity. Furthermore, Dang showed that these
transducer impedance and sensitivity parameters
could be obtained through purely electrical
measurements. The transducer electrical input

impedance, Z,°(®), and the open-circuit,

blocked force receiving sensitivity, M gFf: (@),
were shown by Dang to be given in terms of the
transducer transfer matrix, [T T :I , by

TapT T
Zr Til+112

zTe
in T,apT T
Zr aT21 +T22 (22)
T _ 1
VFy

= T:apT T
Z, T + T,

and in terms of these parameters the transfer
functions can be written as

Asa j g A0
Zr MVFB

(Zzﬁ’eTll +T, ) + (Zzﬁ;eT2l +1 )Zze

lg =

- ZgKMﬁgj
R - € e
(Zilri’eRll + Ry, ) + (Zig, Ry + Ry, )Zo

(23)

where now the only transfer matrix components
appearing are those for the transmitting cabling,

[T], and the receiving cabling, [R]. To make Eq.

(23) useful for obtaining these transfer functions,
one needs to be able to measure the input
impedances and sensitivities of the sending
transducer (A) and receiving transducer (B).
Dang found the input impedance simply by
measuring the voltage and current inputs to the
transducer when it was being used as a
transmitter. For the measurement of sensitivity,
Dang used a modification of a three-transducer
reciprocity-based calibration procedure borrowed
from acoustics [16]. The three-transducer setup
that must be used in ultrasonics is shown in Fig. 9
where the sensitivity of transducer A is to be
determined with the help of two other
uncalibrated transducers B and C. Since in an
immersion setup it is often impractical to measure
voltages directly at the receiving transducer
(which is in the fluid), voltages must instead be
measured at the end of a receiving cable
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Fig. 9 Three transducer calibration setups for characterizing the receiving sensitivity of transducer A,
using two uncalibrated transducers B and C and reciprocity principles. The measured quantities

are indicated with "m" superscripts

terminated under some known resistance loading,
R;. As shown in Fig. 9, three output voltage

measurements (V&,V&,Vﬁ) and one input

current measurement (I },") are made in setups I,

I, and II, where the same pulser settings,
cabling, and acoustic configuration are used for
all three setups. In acoustics, where the
frequencies are much lower, the effects of the

cables are negligible and if one takes R; =o

(open-circuit conditions),
directly the open-circuit

one can measure
output voltages

(V&,V&,ng) and the current,/;, at the
transducers in these three setups. It can then be
shown that the open-circuit, blocked force

receiving sensitivity of transducer A, which is
defined as the ratio of the open-circuit output

voltage of A, V*® | divided by the blocked force,
ie.

Ay
Ao 4
M VFy T F
B

24

can be found from the relationship [9]

) VeoVa, 1
Ao _ CA" B4
MVFB - © Bia (25)
Vegly 2%t

However, at ultrasonic frequencies, cabling
effects cannot be ignored and even if one takes
open-circuit conditions at the end of the receiving
cables, the voltages measured there are not the
open-circuit voltages at the transducer terminals.
Thus, Dang [9] defined a generalized transducer
receiving sensitivity (under a general impedance

loading Z{ at the transducer electrical port),

M {,"FB , which is given by the expression



14 Changjiu Dang, Lester W. Schmerr Jr.

M. = [ VeV 1
’ \l Verls (1 +Zy /Zg) zt,

(26)

Furthermore, he showed that the terms appearing
in Eq. (26) could be related to the actual
measured voltages and currents in Fig. 9 through
the relations

Ry 27

Ip = (Zig;eTﬂ +Tzz)IB

where ¥V and V™ can be any of the voltages
appearing in Fig. 9 and the components of the
cabling transfer matrices ([T], [R]) are assumed
to have been measured independently along with

Once the
generalized sensitivity of the transducer is found
from Eq. (26), Dang showed that the open-circuit

sensitivity, which is in the transfer function
expressions, can be obtained from

the electrical impedance, Z2*.

(ViHz)

0 5 10 15 20

0 5 10 15 20
Frequency(MHz)

a0 _ ypi {14 %
My =My, | 1+ ;e (28)
0
where the receiving load, Zg, is given in terms

of the receiving cabling and termination
resistance as

7€ = RiR, + Ry

L (29)
RI Ry + Ry

7. Experimental Results
From the results of the previous section,

it follows that the output voltage frequency
components, V (@), given by Eq. (20) as

Ve (@) =tp(0) 14 (@)t (@) V: (o) (30

Source strength

Internat impedance
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Fig. 10 The Thevenin equivalent voitage source and internal impedance measured for the 5052PR
pulser/receiver under external loads of 50, 82, and 220 ohms
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Fig. 11 The transfer matrix components measured for the receiving cable

can be explicitly found by measuring/modeling
the following terms:

Pulser:  Thevenin equivalent voltage source,

V/(w), and internal electrical impedance,
AQ)

Cabling: Transfer
(TH’IIZ’TZI’TD)
(for both sending and receiving cables)

matrix components

Transducers: Transducer input impedance,

Z,¢(w), open-circuit, blocked force receiving

sensitivity, M, (w), and acoustic radiation
B

impedance, Z.*“(w) (for both transmitter and
receiver)

Receiver:

gain, K(a))

Electrical impedance, Z;(w), and

Acoustic transfer function: ¢, (@)

Many of the details of the measurement
procedures required to obtain these terms will not
be given here, but we will illustrate some typical
results of those measurements for an acoustic
configuration where two nominally identical
commercial transducers are aligned along their
axes in a water tank, separated by a distance D =
0.444m. A pulser/receiver
(Panametrics 5052 PR) was used and 50 ohm
cabling and immersion tank test fixturing existed

commercial

on the transmission and receiving ends.
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7.1. Pulser

The Thevenin equivalent voltage source and
impedance obtained by measuring the pulser
output voltage and current at a particular energy
and damping setting of the pulser/receiver are
shown in Fig. 10 (both magnitude and phase
shown). Theoretically, these parameters should
be independent of the impedance loading at the
pulser output terminals, but we did find some
dependency of the internal impedance values
obtained on the load.

7.2. Cabling
By making voltage and current
measurements of the cabling at different

termination conditions, it is possible to determine
all the transfer matrix components of the cable.
Figure 11 shows those components (both
magnitude and phase) for the receiving cable.
Similar measurements were also carried out for
the cabling on the generation side of the system.
As can be seen from Fig. 11, these components
do exhibit sine and cosine behavior similar to the
theoretical model! predictions (Eq. (3)).

7.3. Transducer sensitivity

The three-transducer reciprocity technique
described previously was used to obtain the
sensitivities of both the sending and receiving
transducers. Figure 12 shows three sensitivity
curves (for both magnitude and phase) obtained
for one of the commercial transducers used in the
two-transducer  acoustic  pitch-catch  setup
described previously. The line in Fig. 12 having
the smallest amplitude shows the generalized
sensitivity that would be obtained if the measured
voltages and currents were used directly in the
sensitivity expression (Eq. (26)) without
compensating for the cabling. The next highest
line gives the generalized sensitivity found when
cabling effects were included. Finally, the top
line gives the open-circuit sensitivity calculated
from the generalized sensitivity according to Eq.
(28). It is this open-circuit sensitivity that goes
into the generation and reception transfer

functions. Fig. 12 shows that ignoring cabling
effects at these ultrasonic frequencies can lead to
large errors in obtaining the open-circuit
sensitivity

7.4. Transducer input impedance

We also measured the transducer input
impedance, as shown in Fig. 13, using three
different methods. In the first method, we simply
measured both the input voltage and current with
the transducer immersed in water. In the second
method, we made a series of voltage
measurements suggested to us by the transducer
manufacturer. Finally, in the third method we
used an impedance analyzer. When measuring
2.5 MHz and 5 MHz transducers all three
methods gave reasonably close agreement in both
the magnitude and phase of the impedance versus
frequency. But for 10 MHz probes the impedance
analyzer showed a phase shift at higher
frequencies that was not present in the results of
the other two methods, as shown in Fig. 13. We
believe that this phase shift was an artifact of the
fixture used to connect the impedance analyzer to
the transducer, and was not characteristic of the
transducer itself. From Fig. 13 we can see that
this transducer has an impedance curve very
similar to that of a capacitor. This is not
surprising since to first order a plated
piezoelectric crystal does act like a capacitor.
However, if electrical "tuning" circuits are also
present in a transducer (which they apparently
were not in this case), we cannot expect to see
this capacitor-like behavior.

7.5. Receiver gain and impedance

The receiver was set to a gain setting of
20dB, and voltage measurements made at both
the receiver input and output for the measurement
configuration described previously. Theoretically,
such a gain setting should produce an
amplification factor of 10 for all frequencies if
the amplifier in the receiver was perfect. Figure
14 shows the actual gain varied from about 9 to
10 over the bandwidth of the transducers (which
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Receiving Sensitivaty for 2. 25MHz Transducer
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Fig. 12 Transducer sensitivity measurements. Top curves — amplitude, bottom curves — phase (deg)
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Fig. 13 Transducer electrical input impedance measurements using three different experimental
methods
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Amplification Factor by 2. 25MHz Transducer
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Fig. 14 Measured receiver gain factor, K(®). Top curve — amplitude, bottom curve — phase (deg)
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Fig. 15 Measured receiver impedance, Z; (w). Top curve — amplitude, bottom curve — phase (deg) \
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in this case were 2.25 MHz transducers). Similarly,
by making both voltage and current measurements
at the receiver we obtained the receiver electrical
impedance, as shown in Fig. 15. As can be seen
from that figure, the impedance varied from about
400 to 600 ohms over the bandwidth of the
transducers, with very little structure in the phase.

7.6. Acoustic transfer function

Unlike the other transfer functions, we used
an explicit model (Eq. (16)) to directly obtain the
acoustic transfer function, 1,(w). We took the
fluid as water (wave speed =1480 m/sec) with a
frequency dependent attenuation coefficient,
a(w), which is given in Schmerr [10]. The radius
of the transducer is taken as @ = 3.175 mm, and

the distance D = 444 mm, as mentioned previously.

For these parameters, the magnitude and phase of
t4(®) are plotted versus frequency in Fig. 16.

From that figure, we see that 7,(w) acts like a

filter with a peak response occurring in this case at
a frequency of about 6.8 MHz. This behavior is
expected since beam diffraction effects at low
frequencies force this function to zero while the
material attenuation drives the response to zero at
high frequencies.

7.7. System output simulation

Having measured or modeled all the elements
that define the transfer functions appearing in the
electroacoustic ~ measurement model, these
functions together with the Thevenin equivalent
pulser voltage source can be used to obtain the
frequency components of the output voltage of the
entire measurement system, V(@) , as shown in

Eq. (20). Taking the inverse FFT of Vj () then

gives the output voltage time domain waveform
which can be compared with the actual measured
output waveform. In Fig. 17 we show such a
comparison where the voltage was not fed through
the receiver but instead was measured directly

(under open-circuit conditions) at the end of the
receiving cable for the calibration setup of Fig. 7.
From Fig. 17 we see that there is very good
agreement with the EAM model predictions and
the measured results. To our knowledge, this is the
first demonstration of completely characterizing
all the components of an ultrasonic system and
then assembling those components in an explicit

fashion (through the EAM model) to predict the
total system response.

8. Conclusions and Discussion

We have described the electroacoustic
measurement model and have illustrated its use in
transducer design and system characterization
applications. The title of the paper indicates that
the EAM model gives us a complete model of an
ultrasonic NDE measurement system. To a large
extent that is true, as seen from the examples we
have discussed. There are, however, a number of
phenomena that the EAM model does not
currently address. For example, the EAM model is
a noise-free model since it does not explicitly
consider sources of either electronic noise or
material noise. Oakley [17] has discussed a
method for adding thermal and amplifier noise to
the system, and Margetan et al. [18] describe a
methodology  for predicting grain  noise
distributions that could be combined with the
EAM model. Also, the EAM model as currently
implemented treats all the electrical and
electromechanical components as ideal (lossless)
elements. However, it is not difficult to add small
loss terms to the various 1-D component models.

The EAM model provides a powerful tool for
analyzing virtually any element in the
measurement process. The examples discussed
here only provide a very limited demonstration of
the capabilities of the EAM model. Future
applications planned include a variety of system
characterization and calibration studies that will
help to make ultrasonic NDE measurements more
quantitative and reproducible.
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