에너지가격변화의
경제적 효과에 관한 연구*

김수덕** · 손영훈***

--- (차례) ---

I. 머리말
II. 모형
III. 에너지가격변화의 효과
IV. 결론

I. 머리말

우리나라는 필요한 에너지의 대부분을 외국에서 수입하고 있다. 경제개발기 간 동안의 두 차례에 걸친 오일쇼크는 거시경제에 막대한 타격을 주었으며, 에 너지 수급안정을 통한 산업의 동력원 확보를 최우선적인 정책과제로 다루게 되었다. 시장의 수요와 공급의 원리에 의해 가격이 결정되는 것이 아니라 정부가

* 이 연구는 Stanford Research Institute Consulting (SRIC)과 에너지경제연구원 (KEEI)의 공동연구 프로젝트의 일환으로 진행된 것임.
** 호서대학교 경제학과.
*** 인천대학교 경제학과.
김수덕 · 손양훈

정책적인 목표를 설정하고 이를 추진하기 위하여 인위적인 가격구조를 가지는 정책을 유지해 왔다. 에너지시장은 정부가 진입을 규제하고 강력한 가격구조의 둘이 속에서 운영해 왔다고 할 수 있다.

산업활동에 필요한 에너지를 저렴한 가격에 원활하게 공급해야 한다는 정책적인 목표의 측면에서는 정부주도의 에너지가격정책이 비교적 성공적이었다고 평가할 수 있다. 하지만 경제규모가 커지면서 시장의 수요와 공급의 신호가 반영되지 않는 가격제도는 시장매수곡과 같은 몇 가지 심각한 문제점을 노출시키게 되었다. 첫째는 전반적인 에너지가격수준을 둘 수 있다. 정부는 물가를 안정시키기 위하여 공공요금정책의 일환으로 낮은 에너지가격정책을 지속하여 전반적인 에너지절약적인 경제구조를 유도하게 되었다. 일인당 에너지비용량이 빠르게 늘어나게 되어 에너지를 적기에 공급하는 일도 어렵게 하고 있지만 대기오염과 같은 환경의 피해도 매우 크다고 할 수 있다. 둘째는 용도별 가격체계의 왜곡이다. 부문별로 산업의 대외경쟁력을 유지하기 위하여 산업용에 대하여 상대적으로 저렴한 가격을 부과하는 가격매수곡을 유지하였다. 용도별 가격매수곡은 에너지 집약적인 산업구조를 가지게 하고 있으며 산업 내에서도 에너지절약적인 생산방법이 선택되지 않는 문제점을 보이고 있다. 셋째는 에너지원간의 가격매수곡을 들 수 있다. 석유, 가스, 전력, 지역난방 등과 같은 다양한 에너지원간의 가격체계에 있어서도 정부의 직접적인 개입은 가격매수곡을 불러왔다. 에너지원간의 불합리한 교차보조(cross subsidization), 가격보조금 및 세제지원과 같은 복잡한 정책에 기인하는 문제점을 보이고 있다.

정부의 규제로 조정하는 가격체계를 가진 에너지산업은 산업의 효율성 측면에서 매우 취약할 수밖에 없다. 에너지산업의 경쟁도입과 민영화와 같은 구조개편을 앞두고 있는 시점에서 에너지가격체계에 대한 조정은 반드시 필요하다. 구조개편에 따른 사회적 비용을 최소화하기 위해서는 시장실태에 접근하는 가격구조로의 개편이 불가피하기 때문이다. 가격구조의 조정은 반드시 필요하지만 갑작스러운 가격변화는 산업 전반에 걸쳐 여러 가지 경제적인 영향을 주게 된다. 이에 대한 면밀한 분석과 다면적인 접근이 전체되어야 가격변화의 역효과를
에너지가격변화의 경제적 효과에 관한 연구

최소화하면서 가격변화를 유도할 수 있다. 본 연구는 가격정책의 변화가 국가경제에 미치는 영향에 대하여 주목하고 있다. 에너지가격의 변화가 국내 각 산업부문에 미칠 경제적 영향을 분석함으로써 정책적 의미를 제공하고자 한다.

에너지가격에 충격을 가하고 그 경제적인 효과를 분석하는 모형은 기존의 연구가 크게 두 가지로 나뉘어진다. 우선, 첫 번째는 투입-산출모형이다. 이 모형은 가격정책의 변화가 여러 산업의 비용상승에 미치는 시스템적인 영향을 분석하고 있다. 각 산업별로 비용의 상승은 분석할 수 있지만 수요의 반응성이 제공되지 않으면 경제 전반에 걸친 효과를 분석할 수 없다는 단점이 있다. 반면에 연산일반균형모형(computable general equilibrium model: CGE)에 의한 분석은 하나의 산업에서 가격의 상승이 일어날 때 경제 전반에 미치는 효과를 분석하고 있다. 이 모형은 최종수요를 포함한 경제 전반에 걸친 효과를 분석할 수 있지만 모형의 설정이 까다롭고 다양한 가격체계의 변화를 동시에 분석하기 어렵다는 단점이 있다. 본 연구에서는 두 모형의 장단점을 고려하여 이들을 결합하여 분석할 수 있는 방법을 제시하고자 한다. 즉, 에너지가격체계의 총체적인 변화를 총격으로 주고 정책 시뮬레이션을 한다. 우선 투입-산출모형을 설정하여 각 산업별 비용상승 효과를 추정하고, 그 다음에 기존의 CGE모형의 분석결과를 이용하여 경제 전반에 걸친 효과를 추정해 보는 2단계의 분석방법을 개발하고자 한다.

제Ⅱ절에서, 우리는 각 부문의 에너지수요탄력성을 계산해 볼 수 있도록 기존의 CGE모형과 투입-산출분석을 결합시키는 방법을 제시한다. 이어서 제Ⅲ절에서는 에너지가격정책의 근본적인 변화를 의미하는 가격체계 개편 시나리오를 설정하고 이 분석방법을 이용하여 결과를 추정한다. 주어진 가격변화의 시나리오가 최종수요와 총생산, 수입, 수출, 그리고 국제수지에 미치는 영향을 분석한 다. 마지막으로 제Ⅳ절에 결론이 이어진다.
Ⅱ. 모 형

1. 모형의 개요

에너지부문과 여타 산업부문 간의 미시적 연관관계를 잘 나타내 주는 자료가 투입-산출표라고 할 수 있다. 투입-산출표를 기초로 설정하는 투입-산출분석은 산업부문간의 연관관계를 이용하여 경제에 영향을 주는 어떤 측면에 따른 각 산업별 영향을 분석한다. 계산과정이 비교적 간단하고 경제의 연관관계를 고려 한다는 측면에서 매우 심독력 있는 분석방법이라고 할 수 있다. 다만, 투입-산출표는 경제가 주어진 시점에서 정태적인 상황임을 전제로 만들어진 것이어서, 가격변화가 각 산업의 최종수요에 미치는 영향을 동태적으로 파악하고자 하는 목적에는 다소 부족하다.

이런 목적을 달성하기 위해서는 일반균형의 해를 찾아서 추가적인 정보를 얻어야야 하는데, 이 모형은 각 산업의 가격변화가 각 제조시장을 연속적으로 변화시킬 수 있는 구조를 가져야 한다. 이러한 목적에 맞는 접근방법으로 일반 연산균형모형(CGE)이 할당하다. 이 모형은 비록 많은 가정을 필요로하고, 제 산상 각각의 점이 있기는 하지만, 경제를 하나의 완성된 형태로 다룬다는 장점이 있다. 그러나 여러 가지 서로 다른 에너지가격변화의 효과를 분석하기 위해서는 서로 다른 수의 CGE모형을 구성해야 하는 문제가 있다. 더구나 CGE 모형은 복합적인 영향을 동시에 고려하여 해를 구하는 것이 매우 어렵다는 문제도 있다.

이런 상황하에서, 우리는 이 두 가지의 서로 다른 접근방법을 결합하는 방법을 모색해 보기로 한다. 우선, 우리는 투입-산출모형의 분석도구를 이용하고, 몇 가지 가정을 고려하여 이를 이미 존재하는 CGE모형의 모의실험결과와 결합 한다. 두 가지 가격의 형태에 대한 가정을 첨부하여, 전통적인 투입-산출분석을
기존의 CGE모형과 결합시킴으로써, 에너지가격의 복합적인 변화가 국내경제에 미치는 영향을 분석할 수 있는 비용효율적인 모형을 제시한다. 각 분석모형을 구체적으로 살펴보자.

2. CGE모형

\[U = \prod_{i=1}^{n} CD_i^a_i, \quad \sum_{i=1}^{n} a_i = 1, \quad a_i \geq 0 \] \hspace{1cm} (1)

여기서 \(CD_i \)는 \(i \) 복합재화의 소비를 말한다. 정부 또한 복합재화, \(CG_i \)를 소비하는데, 모형에서 이는 고정된 것으로 가정한다. 생산함수 산출을 나타내는 \(XD \)는 Leontief 함수의 부가가치를 나타내는 \(VA_i \)와 복합재화의 중간투입을 나타내는 \(IN \)으로 식 (2)와 같이 표시된다.

\[XD_i = \min \left[\frac{VA_i}{v_i}, \frac{IN_{i1}}{i_{01}}, \frac{IN_{i2}}{i_{02}}, \ldots, \frac{IN_{iN}}{i_{0N}} \right] \] \hspace{1cm} (2)

여기서 \(v_i, i_{0j} \)는 Leontief 계수이다. \(VA_i \)는 일정한 대체탄력성(constant
elasticity of substitution: CES)을 갖는 기술로 노동 \(L \)와 자본 \(K \)를 투입 요소로 사용하여 얻어진다. 생산된 산출은 수출 \(E \)와 국내재화 \(XS \)로 변환된다. 모형에는 독립적인 투자항수가 없으며, 총저축은 총투자와 일치하도록 되어 있다. 자본재는 하나의 재화부문으로 가정되며, 이 재본재 \(Z \)는 다음의 Leontief 기술로 생산된다.

\[
Z = \min \left[\frac{ID_1}{inr_1}, \frac{ID_2}{inr_2}, \ldots, \frac{ID_n}{inr_n} \right]
\]
(3)

\(inr_i \)는 Leontief 계수이다. 여기서 \(ID_i \)는 \(i \)복합재화의 투자수요를 의미한다. 이 자본재는 가계와 정부가 가져가기 위해 수요한다.

이 모형은 가격, 생산, 수요, 균형조건, 물로 등 4개의 블록으로 이루어져 있다. 이 체계는 가계, 기업, 정부의 최적화행태, 그리고 재화와 요소시장의 균형 조건들을 포함한다. 이는 \(n \)이 부문의 수라고 할 때, \((18n + 11)\)개의 식과 같은 수의 내생변수가 존재하는 체계이다. 기존의 이 모형이 한국의 산업을 23개 부문으로 구분하였으므로, 전체 식의 수는 425개가 된다.

에너지가격변화의 경제적 효과에 관한 연구

(표 1) CGE모형에서 구해지는 추정치

<table>
<thead>
<tr>
<th>변수</th>
<th>대 표</th>
<th>단 위</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dy_i)</td>
<td>1% 원유가격상승((p_4))에 따른 최종수요의 변화</td>
<td>10억 원</td>
</tr>
<tr>
<td>(dEX_i)</td>
<td>1% 원유가격상승((p_4))에 따른 수출의 변화</td>
<td>10억 원</td>
</tr>
<tr>
<td>(dIM_i)</td>
<td>1% 원유가격상승((p_4))에 따른 수입의 변화</td>
<td>10억 원</td>
</tr>
</tbody>
</table>

3. 투입-산출 분석

국민경제를 \(n \)개의 산업과, 가계의 정부구매를 포함하는 1개의 최종수요로 나눌 수 있다고 하자. 각 부문 사이의 거래의 화폐적 가치는 다음의 거래행렬식 \(S \)로 표시될 수 있다.

\[
S = \begin{pmatrix}
 x_{11} & x_{12} & \cdots & x_{1n} & y_1 & y_1 \\
 x_{21} & x_{22} & \cdots & x_{2n} & y_2 & y_2 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 x_{ni} & x_{ni} & \cdots & x_{ni} & y_n & y_n \\
 v_1 & v_2 & \cdots & v_n & & \\
\end{pmatrix}
\quad (4)
\]

여기서 \(p_i \)는 재화의 단위당 가격을 나타낸다. \(y_i \)는 산출물에 대한 최종수요, 그리고 \(v_i \)는 \(i \)번째 산업의 부가가치를 나타낸다. 각 열은 투입의 중간재, 최종 재화로의 사용을, 그리고 각 행은 한 산업에 대한 중간재와 요소투입을 나타낸다. \(a_{ij} \)는 투입계수로 정의되며, 이는 \(i \)번째 재화의 투입이 \(j \)산업의 총산출물

- 501 -
에서 차지하는 비중으로 표시된다.

\[a_{ij} = \frac{x_{ij}}{x_i} \] \hspace{1cm} (5)

여기서, \(x_i = \sum_{j=1}^{n} x_{ij} + y_j \) \hspace{1cm} (6)

투입-산출표에서 구해지는 이들 투입계수는 일정하다고 가정한다. 투입계수가 일정하다는 가정은 여러 가지 투입요소를 결합하여 생산되는 산출물의 비용을 일차적으로 계산해 내는 데에 있어서는 매우 유용하며 적절하지만, 가격의 변화에 따라 투입구성 자체가 변화하는 것을 감안하여 계산해야 하는 이차적인 효과는 계산할 수 없다. 그러나 조세효과의 효과를 계산하거나, 투입구성의 변화에 따른 조세수입 등을 계산하는데는 이차적인 효과를 구하는 것이 필수적인 일이다.

선형대수를 이용, 우리는 다음의 관계가 성립함을 보일 수 있다.

\[(I-A')P = V \] \hspace{1cm} (7)
\[X = (I-A)^{-1} Y \] \hspace{1cm} (8)

여기서

\[A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, \quad P = \begin{pmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{pmatrix}, \quad V = \begin{pmatrix} v_1/x_1 \\ v_2/x_2 \\ \vdots \\ v_n/x_n \end{pmatrix}. \]
에너지가격변화의 경제적 효과에 관한 연구

\[
X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}
\]

이 때 \(I \)는 identity 행렬이다. 식 (7)은 식 (4)와 (5)로부터 행렬식으로 다시 표시함으로써 쉽게 얻어진다. 만약 \((I - A')^{-1}\)가 nonsingular이면, 가격벡터는 다음과 같이 표시된다.

\[
P = (I - A')^{-1} V
\] \hspace{1cm} (9)

의사적 가격변화가 다른 부문에 미치는 영향은 분석하기 위해, 우리는 식 (9)를 수정할 수 있다. 즉, 가격벡터를 내생적 가격(\(P'\))과 의사적 가격(\(P^E\)) 벡터로 나누고, \(k\)개 부문의 가격이 변화했다고 가정해 보자. 그러면 \(P^E\)는 \((k \times 1)\), \(P'\)는 \((n-k) \times 1\) 벡터가 된다. 식 (4)의 거래행렬식 \(S\)로부터, 우리는 위에서 표시된 가격변화를 의사화하는 식을 도출할 수 있다.

\[
A'P' + A'P^E + \hat{v} = P'
\] \hspace{1cm} (10)

여기서 \(A'\), \(\hat{v}\)는 각각 투입계수행렬과 의사적 가격변화가 일어난 부문을 제외한 부문의 부가가치를의 벡터이다. \(A'\)는 의사적 가격변화가 있는 부문의 투입계수행렬로 \((n-k) \times k\)이다. 의사적 가격변화의 충격을 계산하기 위해, 부가가치율이 변하지 않는다는 가정하에 식 (10)의 양변을 전미분한다. 즉, \(d\hat{v} = 0\)이다. 약간의 정리 이후, 우리는 의사적 가격변화가 타 부문에 미치는 영향을 다음과 같이 얻을 수 있다.
\[dP^I = (I - A')^{-1} A' dP^E \] (11)

여기에서 \(dP^E \)가 수입원유가의 인상이라는 외생적인 가격베터의 변화라고 한다면, \((I - A')^{-1} A' \)는 외생적 가격총격에 따른 가격탄력성이라고 해석할 수 있다. 식 (11)을 이용하여 우리는 수입원유가의 인상이라는 원유부문(네 번째 부문)에서의 총격이 다른 \(i \) 번째 부문에 주는 영향 \((dp_i / dp_4) \)을 계산할 수 있게 된다.

4. CGE모형과 투입-산출분석의 결합

CGE모형과 투입-산출분석을 결합하기 위하여, 우리는 가격 메커니즘에 2개의 새로운 가정이 필요하다. 첫째로, 각 부문의 최종수요는 자기 자신의 가격의 함수라고 가정한다. 둘째로, 각 부문의 가격은 모든 타부문의 가격의 함수라 가정한다. 우리가 상정하는 경제에서, 가격은 아주 민감하게 응적이므로써, 다른 가격의 총격을 모두 흡수할 수 있다고 가정하는 것을 말한다. 따라서 어떤 부문에서의 가격총격은 다른 모든 부문의 가격에 영향을 준다. 다음으로 영향을 받는 부문의 가격은 해당 부문의 최종수요에 영향을 주게 된다는 논리이다. 다소간 비현실적이된 가정이지만 두 모형을 결합하는데 반드시 필요한 가정이다. 가정의 구체적인 내용을 수식으로 표시하면 다음과 같다.

\[y_i = y(p_i) \]

\[p_i = p_i(p_1, p_2, \ldots, p_n), \quad i = 1, 2, \ldots, n \]

수입원유가의 변화가 다른 산업에서 최종수요에 미치는 영향은 위의 가정하에서는 다음과 같이 나누어질 수 있다.
에너지가격변화의 경제적 효과에 관한 연구

\[\frac{dy_i}{dp_i} = \frac{dy_i}{dp_1} \frac{dp_i}{dp_1}, \quad i = 1, 2, \ldots, n \]

이미 우리가 가격변화에 따른 최종수요의 변화, \(\left(\frac{dy_i}{dp_i} \right) \)와 \(\left(\frac{dp_i}{dp_1} \right) \)를 각각 CGE모형과 투입-산출분석으로부터 알고 있으므로, 각 부문의 가격탄력성(\(\eta_i \))은 다음과 같이 쉽게 얻을 수 있다.

\[\eta_i = \frac{dy_i}{dp_i} \frac{p_i}{y_i} = \frac{dy_i}{dp_1} \frac{dp_i}{dp_1} \frac{p_i}{y_i} \quad (12) \]

위와 같이 부문별 가격탄력성을 얻고 나면, 최종수요의 변화는 \(dy_i = \eta_i \frac{dp_i}{p_i} y_i \)로 표시될 수 있다. 최종수요의 변화(\(dy_i \))를 얻은 후, 식 (8)의 양변을 전미분함으로써 우리는 또한 총산출의 변화 \(dX = (I - A)^{-1}dY \)를 얻을 수 있다.

수입, 수출, 그리고 국제수지에 대한 수입원유가의 변화효과는, 단순히 식 (12)를 확장, 수입과 수출의 가격탄력성을 각각 \(\eta_i^{IM} \)와 \(\eta_i^{EX} \)로 다음과 같이 구하면 된다.

\[\eta_i^{p} = \frac{dD_i}{dp_i} \frac{p_i}{D_i} = \frac{dD_i}{dp_1} \frac{dp_i}{dp_1} \frac{p_i}{D_i} \]

여기서, \(D = IM, EX \)

그러므로 주어진 가격증격에 따른 수입, 수출의 변화는 \(dD_i = \eta_i^{p} \frac{dp_i}{p_i} D_i \)가 쉽게 얻을 수 있게 된다.
III. 에너지가격변화의 효과

에너지가격변화가 부문별 수요와 생산에 미치는 영향을 분석하기 위해, 우리는 특정한 부문구분이 필요하다. 에너지가격세계의 변화에 따른 경제적 영향을 분석하기 위한 목적에 부합하도록 전세산업을 29개 부문으로 나누었다. 산업의 분류는 표준직업 분류에 에너지부문을 보다 세부적으로 분류하는 방식을 채택하였다.1) 기존의 연구 결과를 이용한 CGE모형 또한 이 부문분류에 맞도록 해당연도의 투입-산출표, 국민소득, 생산추계, 기타변수자료를 이용, 재구성하였다. <표 2>는 CGE모형의 모의실험결과를 통해 얻어진 값들을 요약, 정리한 것이 다. 이 결과는 국제원유가격이 1% 상승하는 경우를 모형에서 시뮬레이션한 결과이다. 29개의 부문별로 최종수요, 수출, 그리고 수입의 변화액이 10억 원 단위로 표시되어 있다. 국제 원유가가 상승하면 대체로 모든 부문에서 최종수요가 줄어들고 수출은 미세하게 늘어나며, 수입은 원유수입을 중심으로 상당폭 줄어드는 것으로 결과가 전개되고 있다.

다음 단계에서는 에너지가격의 변화가 최종수요, 생산, 수입, 수출, 그리고 국내 제수지에 미치는 영향을 분석하기 위해 우리는 다음과 같이 복합적인 국내 에너지가격의 변화 시나리오를 설정하였다. 국내 에너지가격변화에 대한 기본적인 시나리오는 정책적인 판단을 근거로 가장 현실성 있고 정책적 합의가 있는 방향으로 설정하여야 한다. 시나리오의 설정에서는 정부가 조정하고 있는 에너지 가격에서 가장 중요한 부분을 차지하고 있는 조세정책에 대한 몇 가지 가정이 필요하다. 우선 첫째로 기존의 조세체계에 새로운 조세를 도입하거나 추가적인 과세를 하여 세수를 늘리는 방안은 고려하지 않는다. 조세저항을 야기할 수 있 기 때문이다. 둘째, 조세수입의 크기를 바꾸기보다는 각 부문으로부터의 에너지 조세수입의 분포를 합리적으로 배분하는 것이 보다 현실적이며 실험 가능한 것

1) 산업부문별 분류코드는 부록을 참조하시오.
에너지가격변화의 경제적 효과에 관한 연구

〈표 2〉 원유도입가상승에 따른 CGE 모의실험결과
(단위: 10억 원)

<table>
<thead>
<tr>
<th>코드</th>
<th>산업 부문</th>
<th>최종수요의 변화</th>
<th>수출의 변화</th>
<th>수입의 변화</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>농림수산</td>
<td>-126.66</td>
<td>16.85</td>
<td>-194.18</td>
</tr>
<tr>
<td>2</td>
<td>무역 및 운반</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>유연성</td>
<td>0.00</td>
<td>-34.48</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>원유</td>
<td>0.00</td>
<td>-553.33</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>전자기기</td>
<td>0.09</td>
<td>-8.80</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>금속광업</td>
<td>0.00</td>
<td>-10.10</td>
<td>16.22</td>
</tr>
<tr>
<td>7</td>
<td>음식료품 및 담배</td>
<td>-532.10</td>
<td>13.44</td>
<td>-213.85</td>
</tr>
<tr>
<td>8</td>
<td>섬유 및 가죽</td>
<td>-202.91</td>
<td>93.12</td>
<td>-132.14</td>
</tr>
<tr>
<td>9</td>
<td>종이 및 목재</td>
<td>-16.81</td>
<td>3.54</td>
<td>-33.72</td>
</tr>
<tr>
<td>10</td>
<td>석탄제품</td>
<td>-30.16</td>
<td>0.11</td>
<td>-0.63</td>
</tr>
<tr>
<td>11</td>
<td>유발유</td>
<td>-57.02</td>
<td>-249.43</td>
<td>-307.73</td>
</tr>
<tr>
<td>12</td>
<td>동유</td>
<td>-23.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>경유</td>
<td>-68.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>B-C유</td>
<td>-44.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>LPG</td>
<td>-18.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>기타석유제품</td>
<td>-69.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>화학 및 화학관련제품</td>
<td>-781.73</td>
<td>-36.19</td>
<td>44.09</td>
</tr>
<tr>
<td>18</td>
<td>요업 및 토목</td>
<td>-18.13</td>
<td>-2.35</td>
<td>52.73</td>
</tr>
<tr>
<td>19</td>
<td>1차금속</td>
<td>0.00</td>
<td>5.17</td>
<td>93.37</td>
</tr>
<tr>
<td>20</td>
<td>금속, 일반기계</td>
<td>353.47</td>
<td>37.79</td>
<td>15.13</td>
</tr>
<tr>
<td>21</td>
<td>전기전자, 정밀기계</td>
<td>-48.63</td>
<td>72.25</td>
<td>-79.11</td>
</tr>
<tr>
<td>22</td>
<td>수송장비</td>
<td>35.15</td>
<td>23.83</td>
<td>-55.33</td>
</tr>
<tr>
<td>23</td>
<td>기타제도업</td>
<td>-60.10</td>
<td>14.75</td>
<td>-32.85</td>
</tr>
<tr>
<td>24</td>
<td>전력</td>
<td>-70.86</td>
<td>-0.06</td>
<td>-0.11</td>
</tr>
<tr>
<td>25</td>
<td>가스</td>
<td>-20.98</td>
<td>-0.04</td>
<td>-0.1</td>
</tr>
<tr>
<td>26</td>
<td>지역난방</td>
<td>-4.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>건설</td>
<td>1311.60</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>도소매, 운수, 통신, 금융</td>
<td>-1005.62</td>
<td>21.95</td>
<td>-68.18</td>
</tr>
<tr>
<td>29</td>
<td>사회 및 개인서비스</td>
<td>-121.50</td>
<td>3.22</td>
<td>-25.43</td>
</tr>
</tbody>
</table>
김수덕・손양훈

〈표 3〉 가격변화효과분석을 위한 기본사회

(단위: 원)

<table>
<thead>
<tr>
<th>코드</th>
<th>에너지원</th>
<th>현재의 가격(P_i)</th>
<th>s^*</th>
<th>조세부과(tax)</th>
<th>dp_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>회발유</td>
<td>1045.64</td>
<td>99.39</td>
<td>-74.07</td>
<td>-0.09505</td>
</tr>
<tr>
<td>12</td>
<td>동 유</td>
<td>379.43</td>
<td>-74.07</td>
<td>219.45</td>
<td>0.44191</td>
</tr>
<tr>
<td>13</td>
<td>경 육</td>
<td>496.59</td>
<td>28.20</td>
<td>-13.48</td>
<td>0.12301</td>
</tr>
<tr>
<td>14</td>
<td>B-C유</td>
<td>229.25</td>
<td>11.87</td>
<td>3.29</td>
<td>0.21076</td>
</tr>
<tr>
<td>15</td>
<td>LPG</td>
<td>542.60</td>
<td>3.65</td>
<td>-12.39</td>
<td>-0.02044</td>
</tr>
<tr>
<td>24</td>
<td>전력</td>
<td>71.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>가스</td>
<td>427.55</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

주: $s^* =$ 생산비용보조, $dp_i = (s^* + tax)/p_i$.

으로 판단한다. 셋째, 조세수입개혁의 목표는 조세증발적으로 설정한다. 현재의 에너지부문으로부터의 조세수입은 Btu/carbon의 함량에 따라 모든 에너지부문으로 재분배하는 것을 의미한다. 즉, 회발유와 경유, 이외의 연료에서 얻어지는 현재의 조세수입을 에너지와 탄소함량을 균등으로 모든 에너지부문에 대해 재분배한다. 마지막으로 수송부문의 조세는 수송연료와 수송용 차량으로부터의 조세 수입을 고려하여 고안한다.

이와 같은 가정들은 기본적으로 조세비용을 OECD국가들의 연료가격에 있어서의 평균조세율에 근접하도록 하는 방향으로 설정하고 있다. 시나리오의 구체적인 내용은 〈표 3〉에 정리되어 있다. 구체적인 내용은 회발유가 9.5% 상승, 동유는 19.5% 하락, 경유는 44% 상승, B-C유는 12.3% 상승, LPG는 2.5% 하락, 전력은 21% 상승, 마지막으로 가스는 2% 하락을 의미한다. 위에서 설정한 근거에 따른 가격 시나리오는 석유프로세스 가동대에서는 경유가격의 대폭 상승과 동유가격의 하락, 그리고 회발유가격의 상승으로 대표된다. 이 밖에도 전력가격이 상대적으로 높아지는 변화로서 에너지부문의 가격에 반응을 상당히 완화하면서 에너지가격은 전반적으로 상승하도록 하는 대안으로 평가할 수 있다.

- 508 -
에너지가격변화의 경제적 효과에 관한 연구

(표 4) 모의실험결과: 가격변화에 따른 최종수요와 총산출의 변화

(단위: %)

<table>
<thead>
<tr>
<th>산업부문</th>
<th>가격탄력성 η_i</th>
<th>가격변화 dP^l</th>
<th>최종수요 $dy_i/y_i \times 100$</th>
<th>총산출 $(dx_i/x_i) \times 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>농림수산</td>
<td>-1.03026</td>
<td>0.98767</td>
<td>-0.85612</td>
<td>-1.01756</td>
</tr>
<tr>
<td>무연탄</td>
<td>0</td>
<td>1.83061</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>육연탄</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>원유</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>천연가스</td>
<td>0.03260</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>금속광업</td>
<td>0</td>
<td>2.15339</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>음식료품 및 닭배</td>
<td>-1.45473</td>
<td>0.98986</td>
<td>-1.00144</td>
<td>-1.43124</td>
</tr>
<tr>
<td>섬유 및 가죽</td>
<td>-1.57637</td>
<td>1.12796</td>
<td>-1.01566</td>
<td>-1.78809</td>
</tr>
<tr>
<td>종이 및 목재</td>
<td>-0.52169</td>
<td>1.54829</td>
<td>-0.40939</td>
<td>-0.80773</td>
</tr>
<tr>
<td>석탄제품</td>
<td>-3.29668</td>
<td>0.84777</td>
<td>-1.20983</td>
<td>-2.79398</td>
</tr>
<tr>
<td>화학제품</td>
<td>-0.27395</td>
<td>9.50500</td>
<td>-2.60399</td>
<td>-2.60394</td>
</tr>
<tr>
<td>등유</td>
<td>-0.11932</td>
<td>-19.52100</td>
<td>2.32929</td>
<td>2.32924</td>
</tr>
<tr>
<td>경유</td>
<td>-0.11870</td>
<td>44.19100</td>
<td>-5.24550</td>
<td>-5.24545</td>
</tr>
<tr>
<td>B-C유</td>
<td>-0.10851</td>
<td>12.30100</td>
<td>-1.33475</td>
<td>-1.33475</td>
</tr>
<tr>
<td>LPG</td>
<td>-0.12092</td>
<td>-2.48400</td>
<td>0.30042</td>
<td>0.30037</td>
</tr>
<tr>
<td>기타석유제품</td>
<td>-0.13688</td>
<td>0.89153</td>
<td>-0.08781</td>
<td>-0.12204</td>
</tr>
<tr>
<td>화학 및 화학관련제품</td>
<td>-12.06963</td>
<td>1.44673</td>
<td>-8.56798</td>
<td>-17.46160</td>
</tr>
<tr>
<td>요업 및 토석</td>
<td>-2.00368</td>
<td>2.23229</td>
<td>-2.66207</td>
<td>-4.47280</td>
</tr>
<tr>
<td>1차금속</td>
<td>0</td>
<td>2.13558</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>금속, 일반기계</td>
<td>1.20667</td>
<td>1.24300</td>
<td>0.70126</td>
<td>1.49989</td>
</tr>
<tr>
<td>전기전자, 정밀기계</td>
<td>-0.34791</td>
<td>0.88564</td>
<td>-0.15620</td>
<td>-0.30812</td>
</tr>
<tr>
<td>수송장비</td>
<td>0.15228</td>
<td>1.02717</td>
<td>0.07818</td>
<td>0.15642</td>
</tr>
<tr>
<td>기타제조업</td>
<td>-1.44008</td>
<td>1.03563</td>
<td>-0.82311</td>
<td>-1.49139</td>
</tr>
<tr>
<td>전력</td>
<td>-0.82282</td>
<td>21.07600</td>
<td>-3.76351</td>
<td>-17.34179</td>
</tr>
<tr>
<td>가스</td>
<td>-1.00698</td>
<td>-2.04400</td>
<td>2.10438</td>
<td>2.05826</td>
</tr>
<tr>
<td>지역난방</td>
<td>-0.61809</td>
<td>5.82177</td>
<td>-2.60115</td>
<td>-3.59840</td>
</tr>
<tr>
<td>전설</td>
<td>1.48908</td>
<td>1.08505</td>
<td>0.97797</td>
<td>1.61572</td>
</tr>
<tr>
<td>도소매, 운수, 통신, 금융</td>
<td>-1.19924</td>
<td>1.06710</td>
<td>-0.97762</td>
<td>-1.27971</td>
</tr>
<tr>
<td>사회 및 개인서비스</td>
<td>-0.22129</td>
<td>0.81780</td>
<td>-0.11394</td>
<td>-0.18097</td>
</tr>
</tbody>
</table>

| 계 | 1.25813 | -0.94032 | -1.57963 |
다음 단계로 이론분문에서 정리한 식 (11), (12)에 따라 시뮬레이션한 결과가 <표 4>에 요약되어 있다. 이 표는 29개의 산업별로 가격변화 시나리오에 따른 최종수요와 총산출의 변화율을 백분율로 표시하고 있다. 2) 현재의 가격왜곡을 시정하는 방향으로 조세정책을 바꿀 경우에 특히 <표 3>과 같이 경유가격을 상승시키는 것으로 대표되는 가격정책의 변화는 산업별로 매우 다른 결과를 나타내고 있음을 보여주고 있다. 우선 에너지산업 내에서는 경유가격의 대폭 상승으로 대표되는 가격시나리오의 결과는 경유의 최종수요가 5.2% 감소하고, 크발유가 약 2.6% 감소하는 것으로 나타났다. 반면에 동유와 LPG는 상대가격변화에 따라 최종수요가 다소 늘어나게 된다. 전기가격의 상승은 전기의 최종수요를 3.8% 감소시킬 것으로 전망되며 지역난방도 2.6% 감소하게 된다. 반면에 가스는 상대가격의 변화에 따라 2.1% 최종수요가 늘어날 전망이다.

산업에서는 에너지를 집약적으로 사용하는 화학 및 화학관련제품, 요업 및 토석 등의 산업에서 원가상승과 최종수요의 감축이 일어나고 있다. 특히 화학 및 화학관련제품은 8.6% 최종수요가 줄어드는 것으로 나타난다. 이 밖에도 음료품이나 섬유 및 가죽, 그리고 건설업과 같은 산업도 1% 내외의 최종수요 위축이 불가피할 것으로 보인다. 전체산업에서는 0.9%의 최종수요의 위축과 1.6%의 총산출 감소가 일어날 것으로 전망된다. 3)

IV. 결 론

정부주도의 에너지정책을 지속해 온 우리 나라는 에너지가격체제의 인위적인 조정을 반복해 오면서 심각한 가격왜곡을 겪고 있다. 시장에서 견제와 균형에

2) 최종수요와 총산출 이외에도 수출과 수입에 관해서도 같은 분석을 할 수 있다.
3) 수입과 수출의 변화에 대해서도 같은 분석을 할 수 있다. 그 결과는 국제수지의 변화로 나타난다. 에너지가격체제의 변화는 에너지 수입의 감소와 수출의 소폭 증가로 나타난다. 그 순효과를 구하면 무역수지에 미치는 결과는 7,350억 원의 흩자로 나타난다.
에너지가격변화의 경제적 효과에 관한 연구

의해 가격이 결정되는 것이 아니라 정책목표에 따라 인위적인 조정을 해온 결과라고 할 수 있다. 에너지산업에도 경쟁을 도입하고 민영화를 추진하는 구조개편이 본격화하고 있다. 구조개편을 원활하게 추진하기 위하여 혹은 에너지가격을 급격하게 변화시키는데 따른 사회적 비용을 최소화하는 일이 매우 중요하다.

가격체계를 변화시킬 때 경제적인 효과를 측정할 수 있는 모형을 개발하면 정책의 효과를 사전적으로 시뮬레이션할 수 있다는 장점이 있다. 연산일반균형 모형은 경제이론을 기초로 특정경제정책이나 외부충격의 효과를 모의실험의 결과로 보여 줄 수 있다. 그러나, 이 모형은 특히 다중의 정책효과를 관찰해 보기 위해서는 시간적 노력과 계산과정이 필요하게 된다. 반면에 투입-산출분석은 다중의 시나리오를 분석하거나 모형을 만드는데 있어 매우 효율적인 면이 있으나, 산업생산이나 최종수요의 변화를 보이기에 있어서는 한계가 있다. 모형 자체가 정태적이며 고정된 계수를 이용한 접근방법이기 때문이다.

본 연구에서는 몇 가지 가정을 기초로 하여 상기 두 가지의 접근방법을 결합하고 있다. 에너지가격체계를 정책적으로 변화시킬 때 경제의 미치는 영향을 비교적 비용효율적인 방법으로 제공하기 위한 것이다. 기존에 개발된 연산일반균형모형의 시뮬레이션 결과를 이용하고 비교적 분석이 용이한 투입-산출모형을 설정한 후 양자를 결합하는 방법을 채택하고 있다.

결합모형을 설정하고 이를 이용하여 에너지가격체계를 조정하는 정책의 효과를 분석하였다. 에너지가격변화의 충격이 물가수준에 주는 직접적인 영향은, 부분별 생산가중치를 고려할 때, 약 0.127%로 계산된다. 산업간의 연관효과가 고려된 후, 물가수준에 대한 총효과는 대략 1.258%이다. 에너지산업내에서는 상대 가격의 변화에 따라 최종수요의 구조가 변하게 된다. 즉, 가격변화에 따라 에너지제품간의 최종수요의 변화가 나타난다. 산업부문별로는 에너지집약적인 산업에서 상대적으로 높게 나타난다. 최종수요는 가격변화와 반대방향으로 변화하며, 이는 경제이론에 예측하는 것과 일관된다. 에너지가격차격이 최종수요에 미치는 영향은 -0.940%, 그리고 총생산에 미치는 영향은 -1.580%로 나타났다.
부록 1 29개 산업부문 구분에 대한 정보

<table>
<thead>
<tr>
<th>번호</th>
<th>1</th>
<th>1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1121</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>2101</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2102</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2111</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2112</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2121 2122 2123 2124 2131 2132 2133 2134 2135 2136 2137</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3101 3102 3103 3104 3105 3106 3111 3112 3113 3114 3115 3121 3122 3123 3131 3132 3133 3134</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3141 3142 3143 3151 3152 3153 3154 3155 3156 3161 3162 3163 3166 3171 3172 3173</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3174 3175 3176 3177 3178 3181 3191</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3201 3202 3203 3204 3205 3206 3207 3211 3212 3213 3214 3215 3216 3217 3218 3219 3221 3222</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3223 3224 3225 3231 3232 3233 3241 3242 3243 3244 3245 3246</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3301 3302 3303 3304 3305 3306 3311 3312 3313 3314 3315 3316 3317 3318 3319</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>3501 3502</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>3512</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3514</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3515</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>3516</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>3517</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>3519 3513 3518 3735</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3569 3603 3604 3611 3612 3621 3622 3631 3632 3641 3642 3643 3651 3652 3653 3661 3662</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>3663 3664 3665 3666 3667 3668 3671 3672 3673 3681 3682 3683</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3701 3702 3703 3711 3712 3713 3714 3721 3722 3723 3731 3732 3733 3734 3736</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>3791 3801 3802 3803 3804 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3831 3832 3833 3834 3835 3836 3837 3838</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3891 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4021 4022 4023 4024 4025 4026 4027 4028 4029</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4101 4102 4103 4104 4105 4106 4107 4108 4111 4112 4113 4114 4115 4116 4117 4118 4121 4122 4123 4124 4125 4126 4131 4132 4141 4142 4143 4144 4145 4201 4202 4203 4204 4205 4206</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>4301 4302 4303 4304 4305 4306 4307 4311 4312 4313 4321 4322 4323 4324</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>4341 4342 4304 4401 4402 4403 4404 4405 4411 4412 4413 4414 4415 4416 4417</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>5101 5102 5103 5104</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>5111</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5112</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>5113 5201 5202 5203 5204 5205 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6101 6102 6201 6202 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6401</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>6402 6403 6404 6405 6501 6502 6503 6504 6505 6506 6601 6602 6603 6606 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>6701 6702 6801 6802 6803 6804 6805 6806 6807 6811 6812 6813 6814 6815 6816 6817 6901 6902</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>6903 6904 6905 6906 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 8101 8111 8121</td>
</tr>
</tbody>
</table>

에너지가격변화의 경제적 효과에 관한 연구

참 고 문 헌

ABSTRACT

Measuring the Economic Impact of the Energy Price Changes in Korea

Suduk Kim · Yang-Hoon Sonn

We investigate a practical method of calculating the impact of multiple domestic energy price change on the final demand, production, the export and import change, the change in the balance of payment of Korean economy. By combining an existing computable general equilibrium (CGE) model with the traditional input-output analysis with two additional assumptions on the price behavior, we provide a cost-effective method of analyzing the impact of multiple energy price changes on the domestic economy.

The energy price shock we used in this paper is 0.127% increase weighted by the sectoral productions. The total impacts on price level and GDP are 1.258% and -0.940%, respectively. The impact on the total output (GDP and intermediate goods) is about -1.580%.