교정력이 골유착성 티타니움 임프란트의 초기 고정에 미치는 영향에 관한 실험적 연구

이 성 자 ${ }^{1)}$ 정 규 림 ${ }^{2)}$

본 연구는 경희대학교 치과대학 교정과와 Biosstech ${ }^{\circledR}$ 이 개발한 교정용 골유착성 티타니움 임프란트를 이용하여 임프 란트 매식 후 가해지는 교정력이 임프란트의 골유착에 미치는 영향과 임프란트 제거 후 손상된 치조골의 치유를 알아보 기 위해 시행되였다. acid-etched type, sand-blasted type, sand-blasted \& acid-etched type, 3 종류의 교정용 임프란트 24 개를 2 마리 실험 동물의 구강 내에 식립하였다. $\operatorname{dog} 1$ 의 상하악 좌축에 식립한 6 개 임프란트에는 식립 후 교정력을 주지 않았고, 우측에 식립한 6 개 임프란트에는 식립 즉시 $200-300 \mathrm{gm}$ 의 교정력을 가하였다. $\operatorname{dog} 2$ 에서는 임프란트 식립 후 4 주의 치유기간을 기다린 후, 골 내에 고정되어 있는 모든 임프란트에 4 주 동안 $200-300 \mathrm{gm}$ 의 교정력을 가하였다. 4 주, 8 주의 관찰 기간이 지난 후 실험 동물을 각각 희생시켜 임프란트와 주위 조직을 포함하는 비탈회 표본을 제작하여 광학 현미경하에서 검경하였다.

이 실험을 통해 다음과 같은 결과를 얻었다.

1. 골내 고정에 성공한 임프란트들의 식립 4주 후 조직 소견에서, 식립 즉시 교정력을 가한 임프란트와 교정력을 가하지 않은 임프란트 사이에 조직학적 차이가 없었다. 두 군 모두에서 미성숙 소주골이 임프란트 식립시 손상된 부위로 생성 되고 있었으며 부분적인 골유착이 보였다.
2. 임프란트 식립 부위의 골손상이 완전히 치유되기 전에 가해진 교정력은 골유착의 진행을 방해하지 않았다. 4주의 치유 기간 후 4주간 교정럭을 가한 임프란트의 조직소견에서 골조직과 임프란트 계면 사이의 접촉은 더 넓은 부위로 진행 되었고 나사골을 채우고 있는 신생골은 기저골의 구조와 형태를 닮은 충판골로 성숙되어 있었다.
3. 식립 후 임프란트 주위 연조직 염증이 심했던 임프란트는 대부분 탈락되거나 동요가 있었으며, 실혐 동물 희생시 동요 가 있었던 임프란트의 조직 소견에서 임프란트 주위는 연조직으로 둘러 쌓여 골조직과 분리되어 있었다.
4. 골네 고정에 실패한 임프란트의 식립 부위에서는 임프란트 제거 2 주 후 염증 소견없이 왕성한 골형성을 나타내는 조 직학적 소견이 관찰되었다.
(주요단어 : 골유착, 교정려, 교정용임프란트)

I. 서 론

저항원의 확보는 치열의 교정이나 악안면정형을

[^0]위한 치료 계획을 세우는데 필수적인 고려사항이며, 저항원의 한계로 인하여 치료방법의 선택에도 여러 가지 제한이 있다. 충분한 저항원의 확보가 불가능한 경우 특정치아의 발거가 고려되거나 더 나아가서는 악교정 수술까지도 고려하게 된다. 악안면 정형력이 나 치아 이동을 위한 저항원은 구강내 또는 구강외에 서 얻을 수 있다. 구강외 저항원은 안정적인 저항원이 기는 하나 전적으로 환자의 협조도에 그 결과를 의존

해야 한다는 단점이 있어서 고정성 교정 장치에서 주 로 이용되어온 저항원은 하나 또는 여러개의 치아를 이용하는 구강내 저항원이었다. 치아에서 저항원을 얻는 경우 작용-반작용의 물리적 법칙에 의해 저항원 으로 쓰이는 치아에 바라지 않는 치아 이동이 일어나 고, 그나마 저항원으로 꼭 필요한 치아가 상실되었을 경우에는 치료에 어려움이 따르며, 악정형력을 얻기 위해 치아에서 저항원을 얻은 경우 악골 자체가 아닌 단지 치조골에서만 그 효과가 나타나는 경우가 많았 다.
따라서 원하지 않는 치아 이동을 일으키지 않으며, 환자의 협조도에 의존하지도 않고, 기저골 자체에 영 향을 줄 수 있는 저항윈을 찾는 연구들이 시작되었으 며 그 중 하나가 골내에서 저항원을 찾는 시도였다. 골내에 금속 물질을 심어 저항원으로 쓰고자 하는 발 상은 골절 정복 수술시 사용하는 screw나 plate, pin 에서 시작되었다. 악골 골절이나 악안면 성형 수술 후 에 골편의 고정을 위해 쓰이는 pin이나 screw에는 저 작 연하 등의 악골 운동에 의해 매식 후 즉시 힘이 가 해지며, 특히 distraction osteogenesis을 위해 사용하 는 pin 은 수술직 후부터 상당한 양의 힘을 오랫동안 견디어야한다.
1945년 Gainsforth와 $\mathrm{Higley}^{1)}$ 는 당시로서는 가장 생체 적합성이 우수한 외과용 vitallium screw를 개 의 악골내에 심어서 이들 스크류에 교정력을 적용시 키는 실험을 했다. 이 실험에서 모든 스크류는 16 일에 서 31 일 사이에 탈락되었다. 이 실험은 vitallium screw의 골내 저항원으로서의 유용성을 입증하지 못 하였으나, 골내 저항원 사용에 대한 가능성을 예시하 였다.

1980년대 이후 골유착성 골내 임프란트의 급속한 발전과 함께 교정학 분야에서도 임프란트를 골내 저 항원으로 쓰고자하는 시도들이 시작되었다. Southard ${ }^{2)}$, Roberts ${ }^{3)}$, Ödman ${ }^{4,5)}$, Linder-Aronson ${ }^{6)}$, Turley ${ }^{7}$ 등 많은 교정의들이 동물실험 및 임상 증례를 통 해 저항원으로서의 임프란트의 유용성을 입증하였다. Roberts ${ }^{8 /}$ 의 임상 증례에서 임프란트는 매우 안정적 인 저항원으로서 임프란트의 이동없이 구강 내에서 저항이 가장 강한 하악 대구치의 전방이동도 충분히 일으킬 수 있었다. 그러나 임프란트 저항원(implant anchorage)은 나름대로의 한계와 결함을 가지고 있 었다. 임프란트 저항원은 초기 치유 기간동안 부하를 가하지 않아야 하며, 시술비가 비싸다. 교정 치료 후 보철 수복에 그 임프란트를 사용할 수 없는 경우 비

싼 가격의 저항원은 환자에게 경제적 부담이 된다. 임프란트의 형태 때문에 사용 부위가 매우 제한적인 것 또한 교정의로 하어금 임프란트 저항원의 사용을 주저하게 하는 요인이 된다.
시술과정이 복잡하고 긴 치유 기간을 기다려야 하 는 임프란트 고정원의 단점을 지적하면서 Melsen ${ }^{9}$ 은 구치부가 심하게 파괴된 환자의 전치부 후방이동 및 함입을 위해 zygoma wire를 골내 저항원으로 사용한 임상 증례를 발표하였다. 이 임상 증례에 의하면 $\mathrm{zy}-$ goma wire는 사용부위가 매우 제한적이기는 하나, 시술이 간단하고 장치 설치 즉시 교정력을 가할 수 있으며, wire에 의해 일어나는 헙골내에서의 국소적 인 골개조는 그 속도가 느려 wire들은 교정에 필요한 기간인 3-6개월은 충분히 협골내에 잔존해 있었다.
시술이 간단하고 장치 설치 후 즉시 교정력을 가할 수 있는 zygoma wire의 장점을 골유착성 골내 임프 란트에 도입시킨, 또 다른 형태의 구강내 골내 저항원 인 티타니움 미니스크류(titanium miniscrew)가 Creekmore ${ }^{(0)}$, Melsen ${ }^{11)}$, Kanomi ${ }^{12)}$, Costa ${ }^{13)}$, 오와정 ${ }^{(4)}$, 박 ${ }^{(5)}$ 의 임상 증례들을 통해 제안되었다. 그들은 티타 니움 미니스크류 저항원의 장점으로 임프란트에 비 해 식립 위치의 제한을 덜 받고 설치와 철거가 쉬우 며 경제적인 점을 들고 있다. 그러나 그들이 사용한 교정력은 매우 크기가 적은 것이며, 저항원의 성격은 골유착에 의한 저항인지 단순한 기계적 접촉에 의한 저항인지 밝혀지지 않은 상태이다. 만약 티타니움 미 니스크류와 골조직 접촉면 사이에 골유착이 충분히 일어난다면, 이 저항원들은 치아 교정력뿐만 아니라 악정형력조차도 감당할 수 있을 것이다. 따라서 교정 치료 술식의 범위를 더욱 넓힐 수 있을 뿐 아니라 치 아의 발거나 악교정수술의 빈도도 줄일 수 있을 것이 다.
본 연구는 경희대학교 치과대학 교정과와 Biosstech ${ }^{(3)}$ 이 개발한 교정용 골유착성 티타니움 임프란트 를 이용하여 임프란트 매식 후 가해지는 교정력이 골 유착에 미치는 영향과 임프란트 제거 후 손상된 골조 직의 치유에 대해 알아보고자 시행되었다.

II. 실험재료 및 방법

가. 실험재료

골내 저항원으로 경희대학교 치과대학 교정과와 Biosstech ${ }^{\text {B }}$ 이 개발한 교정용 골유착성 티타니움 임

Fig. 1. Scanning electron micrographs of 3 different implant surfaces ($\times 2000$) A. acid-etched(AE). B. sand-blasted(SB). C. sand-blasted \& acid-etched(SLA)

프란트를 사용하였다. 임프란트의 반경은 2.5 mm 총 길이는 11 mm 이며 이중 골내 부분은 7 mm 이고 4 mm 의 상부 구조는 교정용 호선을 위한 2개의 구멍이 있 는 육각형 구조이다. 임프란트는 Grade1. commercially pure titanium을 선반가공(Citizen Cincom L16, Citizen Watch Co., Ltd., Japan)하여 본체를 만든 후 표면 처리하여 제작하였다. 작은 직경의 임프란트의 표면적을 최대한 넓히기 위해 acid-etch $(35 \% \mathrm{HCl}$, boiling for 20 Min .), sand-blast(Aluminum Oxide, Grit size $20-50 \mu \mathrm{~m}$), sand-blast \& acid-etch, 3 가지 방 법으로 표면처리를 하였다. 표면처리 후 초음파 세척 기(275D(Digital Control), Crest Ultrasonics Corp, USA)를 이용하여, 아세톤에서 15 분, 70% 알코올에서 20 분, 증류수에서 20 분 세척하였다. 3 종류 임프란트의 표면 거칠기를 비교하기 위하여 임프란트 표먼을 금 박 처리한 후 주사전자현미경(Hitachi S-2300, Japan) 으로 관찰하였다. 임프란트 표면을 주사전자 현미경 으로 관찰한 결과는 Fig. 1 에서와 같다.

나. 실험방법

1. 실험동물 및 처치

실험동물로는 충치나 치주염이 없는 구강건강 상 태가 좋은 $1-1.5$ 년 된 2 마리의 비글 성견(체중 12 kg , 13.5 kg)을 사용하였다. 모든 실험 기구는 고압 증기 멸균 소독하였고, 임프란트는 사용 24시간 전에 Ethylene Oxide gas로 멸균 소독하였다. 실험 동물은 Zoletil-50(Zolazepam and Tiletamine, Virbac Korea, $7-25 \mathrm{mg} / \mathrm{kg}$ of body weight)를 근육 내 주사하여 전 신마취 시킨 후, 임프란트 식립 부위는 2% lidocaine
$\mathrm{HCl}(1: 100000$ epinephrine)로 국부마취 하였다. 임 프란트 식립 부위의 점막에 절개선을 넣고 골막을 포 함한 판막을 젖힌 후, 직경 1.5 mm 의 round carbide bur와 저속 엔진을 이용하여 생리 식염수로 열이 발 생하지 않도록 냉각시키면서 피질골을 뚫은 후에 드 라이버를 사용해 임프란트를 골 내에 식립하였다. acid-etched type(AE), sand-blasted type(SB), sand -blasted \& acid-etched type(SLA) 3종류의 임프란 트 24 개를 상하악 좌우측에 각각 3 개씩 두마리 실험 동물의 구강 내에 식립하였다. 식립 위치는 상하악 좌우 대구치와 소구치의 치근 사이 또는 치근 분지부 협측 하방 부위로 임프란트의 장축과 치아의 장축이 직각이 되는 방향으로 협 측 치밀골을 지나 설측으로 임프란트를 식립하였다. 수술 후에는 감염방지를 위 해 5 일간 항생제를 근육내 주사(Gentamycin, 건일제 약, Korea, $5 \mathrm{mg} / \mathrm{kg}$, IM injection)하였고 일주일간 0.2% chlorhexidine으로 구강 내를 세척하였다
$\operatorname{dog} 1$ 에서 상하악 좌측(unloaded side)에 식립한 6 개 임프란트에는 식립 후 교정력을 주지 않았고, 우측 (loaded side)에 식립한 6개 임프란트에는 식립 즉시 $\mathrm{Ni}-\mathrm{Ti}$ closed coil spring을 이용하여 $200-300 \mathrm{gm}$ 의교 정력을 가하였다(Fig. 2).
$\operatorname{dog} 2$ 에서는 임프란트 식립 후 4주의 치유기간을 기다린 후, 골 내에 고정되어 있는 모든 임프란트들에 $\mathrm{Ni}-\mathrm{Ti}$ closed coil spring을 사용하여 $200-300 \mathrm{gm}$ 의 교정력을 가하였다.

2. 조직준비 및 검경

실험동물은 임프란트 매식 후 4 주 $(\operatorname{dog} 1), 8$ 주 $(\operatorname{dog} 2$)에 각각 희생시켰다. Zoletil-50을 근육 내 주사하여

Fig. 2. Orthodontic titanium implants inserted ințo bifurcation areas of premolars and molars of dog1. A. upper \& lower right sides (implants loaded with $200-300 \mathrm{gm}$ of force immediately after placing) B. upper \& lower left sides(unloaded implants)

전신마취 시킨 후 0.1 M phosphate buffer에 혼합된 2.5% glutaraldehyde를 경동맥을 통하여 주입하여 두 경부를 관류 고정시켰다. 임프란트가 포함된 조직을 절제한 후 동일 고정액에 추가 고정하였다. 고정된 조 직 표본은 다시 임프란트를 중심으로 5 mm 이하의 두 께로 다듬은 다음 $50 \sim 100 \%$ 의 점진적 고농도의 알코 올로 순차적으로 탈수하였다. 최종적으로 100% 의 무 수 알코올로 3회 이상 교환 탈수 후 다시 알코올과 광 중합 레진(Technovit 7200VLC Kulzer GmbH, Germany)의 단계적 혼합용액 $(3: 1,2: 1,1: 1,1: 2$, $1: 3$)에 하루씩 침투시킨 후 순수한 Technovit 7200 VLC 용액을 2회 교환하고 적절한 주헝에 넣어 $\mathrm{Te}-$ chnovit 7200 VLC 로 8 시간 이상 광중합 시켜 포매를 완료하였다. 중합이 완료된 Technovit block은 다시 plexiglass slide에 Technovit 7210 접착 레진으로 피 막두께 $10 \mu \mathrm{~m}$ 이하로 부착시킨 다음 Cutting Machine (MG 3000 Exakt, Germany)으로 $100-200 \mu \mathrm{~m}$ 정도의 두께로 절삭한 후, 다시 Microgrinding Machine(MG 4000 Exakt, Germany)으로 $30 \mu \mathrm{~m}$ 정도 두께의 비탈회 경조직 표본을 제작하였다. 제작된 표본은 H\&E 염색 하여 광학 현미경하에서 검경하였다.

III. 실험결과

가. 육안적 관찰

1. $\operatorname{dog} 1$
$\mathrm{AE}, \mathrm{SB}, \mathrm{SLA}$ 세 종류의 교정용 임프란트 12 개를 상하악 좌우 구강 내에 식립하였다. 임프란트의 상부

구조는 모두 구강 내로 노출시켰고, 상하악 좌촉은 교 정력을 가하지 않았고 상하악 우측은 식립 즉시 200 -300 gm 의 힘을 가하였다. 2 주 후 점막의 움직임으로 인하여 임프란트의 상부 구조가 연조직 하방으로 묻 힌 임프란트 주위의 연조직은 치유가 잘 일어났고, 연 조직 위로 상부구조가 노출된 임프란트들의 주위 연 조직은 엄증이 있었다. 임프란트 식립 후 즉시 교정력 을 가한 것 중 하악에 심은 임프란트의 주위 연조직 은 특히 심한 염증과 동요도를 보였다(Fig. 3) 12개 임프란트 중 특히 연조직 염증이 심하고 동요가 있었 던 2 개의 임프란트 (implant4, implant10)는 14 일 16 일 째 각각 제거하였다.

식립 4주 후, 12 개 임프란트 중 6 개가 동요없이 골 내에 유지되어 있었다. 이들 6 개를 식립 위치에 따라 분류하면 상악 4 개 하악 2 개이고, 표면 처리 방식에 따라 분류하면 AE 2 개 SB 3 개 SLA1개이며, 교정력 적 용 여부에 따라 분류하면 unloaded implant 4개 loaded implant 2 개이다. 골내에 고정되어 있던 2 개의 loaded implant는 모두 상악에 식립한 것으로 SBtype 과 SLA type implant이다(Table 1).

2. $\operatorname{dog} 2$

$\mathrm{AE}, \mathrm{SB}, \mathrm{SLA}$ 세종류의 임프란트 12 개를 $\operatorname{dog} 2$ 의 구강 내에 식립한 후 4 주 동안 치유기간을 기다렸다. $\operatorname{dog} 1$ 에서와 같이 상악에서 점막의 움직임으로 인하 여 연조직 내로 상부 구조가 침하된 임프란트(submerged implant) 주위의 연조직은 2 주 후 염증 없이 잘 치유되었고, 상부 구조가 연조직 밖으로 노출된 임 프란트 주위의 연조직에는 실험기간 내내 염증이 있 었다. 식립 4주 후 12 개의 임프란트 중 9 개가 흔들림 없이 골 내에 단단히 고정되어 있었다. 이들 9개 임프 란트에 $200-300 \mathrm{gm}$ 의 교정력을 가하였다. 교정력을 4 주 동안 가한 후, 실험 동물 희생시 8 개 임프란트는 동요 없이 골 내에 단단히 고정되어 있었고 1 개의 임 프란트에는 약간의 동요가 있었다(Table 2).

나. 조직학적 소견

1. 식립 4주 후 소견(dog1)

실험 동물 희생 시 동요가 없던 임프란트 주위에는 기존골 표면으로부터 새로이 형성되어온 미성숙 소 주골들이 임프란트 식립시 손상된 나사 주위의 많은 부위를 채우고 있었으며 부분적으로 골조직과 임프 란트 표면이 직접 접촉하는 부위(골유착)도 관찰되었

Fig. 3. intraoral photographs 2 weeks after placing implants in dog1.

Table 1. Implants inserted into dog1

No	location	force application	implant type	progress
1			AE	$+^{+}$
2	maxillary left	unloaded	SB	$+^{*}$
3			SLA	$+^{* *}$
4		AE	-	
5	maxillary right	loaded	SB	$+^{*}$
6			SLA	$+^{*}$
7		AE	$+^{*}$	
8	mandibular left	unloaded	SB	$+^{*}$
9			SLA	$+^{+*}$
10			AE	-
11	mandibular right	loaded	SB	$+^{* *}$
12			SLA	$+^{* *}$

[^1]Table 2. Implants inserted into dog 2

No	location	implant type	progress
1		AE	$+^{*}$
2	maxillary left	SB	-
3		SLA	$+^{*}$
4		AE	$+^{*}$
5	maxillary right	SB	$+^{*}$
6		SLA	$-^{*}$
7		AE	$+^{* *}$
8	mandibular left	SB	$+^{*}$
9		SLA	$+^{*}$
10		AE	$+^{*}$
11	mandibular right	SB	-
12		SLA	$+^{*}$

- implant removed 4 weeks after placing because of mobility
+ * implant remained stable in bone 4 weeks after loading with $200-300 \mathrm{gm}$ of force
+**implant remained in bone 4 weeks after loading with $200-300 \mathrm{gm}$ of force, but mobile
: All 9 out of 12 implants remained stable in bone after 4 weeks healing period were loaded with $200-300 \mathrm{gm}$ of force

Fig. 4. Photomicrographs of tissue surrounding the stable implant inserted into dog 1
A, B. The immature woven bone is growing into the threads from the mature lamellar bone of the original compacta(A: mandible, B: maxilla)
C. Most part of thread space is filled with the immature woven bone, but some part is engaged with loose fibrous connective tissue
D. An eccentric section of a cutting cone

The osteoblasts line the surface of the bone separated by a pale layer of osteoid($O B$: osteoblast. OS : osteoid)
The center of the cone is filled with capillaries and vascular loose connective tissue (C : capillary. CT : connective tissue)

다. 그러나 아직 골조직과 임프란트 계면 사이에는 섬 유성 결합 조직이 많이 개재되어 있었고 섬유성 결합 조직내에는 신생 혈관들이 많이 관찰되었다. 소주골 의 표면은 활동성 조골 세포층으로 피복되어 있어 골 형성이 왕성하게 일어나고 있음을 알수 있었다(Fig. 4).

실험 동물 희생 시 동요가 있던 임프란트 주위는 섬유성 결합조직으로 쌓여 있었고, 섬유성 결합 조직 내에는 신생 혈관의 증식과 만성 염증 시 나타나는 plasma cell, lymphocyte, neutrophil 등의 염증 세포 들이 많이 보였으며, 섬유성 결합 조직 사이 사이에

Fig. 5. Photomicrographs of tissue surrounding the mobile implant inserted into dog 1
A. Most thread surface is encapsulated with the fibrous connective tissue
B. Infiltration of the inflammatory cells and proliferation of the capillaries are seen in loose connective tissue. (N : neutrophil. P : plasma cell. L : lymphocyte)

신생 유골이 관찰되었다(Fig. 5).

2. 식립 8주 후 소견(dog 2.)

실험 동물 희생 시 동요가 없던 임프란트 주위의 골결손 부위는 기존골의 형태와 구조를 가진 성숙 층 판골로 수복되었다. 대부분의 임프란트 표면에서는골 유착이 일어났으나, 일부에서는 아직 섬유성 결합조 직이 임프란트와 신생골 사이에 개재되어 있었다. 골

Fig. 6. Photomicrographs of tissue surrounding the stable implants inserted into the maxillae of dog 2. The mature lamellar bone is covering a considerable part of the thread. Note the density of the bone surrounding the implant.
A. implant3-maxillary SLA
B. implant4-maxillary $A E$
C. implant5-maxillary SB

Fig. 7. Photomicrographs of tissue surrounding the stable implants inserted into the mandible of dog 2.
A. implant8-mandibular SB

The mature lamellar bone is covering a considerable part of the thread.
Lamellar bone is showing numerous Haversian systems of varying ages.
The newer systems have larger central canals.
B.C. implant9-mandibular SLA

The head of a cutting cone(arrow) in lamellar bone.
The osteoclasts form the leading edge of the bone resorption followed by tall columnar osteoblasts.
The cutting cone is filled with a vascular loose connective tissue.

내막은 파골 세포와 활동성 조골 세포층으로 피복되 어 있어, 골개조가 활발히 일어나고 있음을 알 수 있었다(Fig. 6, Fig. 7).
식립 8주 후 동요가 있었던 임프란트는 대부분의 임프란트 표면과 골조직 사이에 연조직이 개재되어 임프란트 표면이 골조직으로부터 분리되어 있었다. 신생골이 기존골층으로부터 생성되고 있었으나, 성숙 도가 낮은 소주골들로 이루어져 있었다. 신생 소주골 외층의 골내막에는 많은 퐈골 세포들과 조골 세포들 이 피복되어 있었다(Fig. 8).
3. implant 제거 2주 후 소견
$\operatorname{dog} 1$ 에서 임프란트 식립 2주 후 심한 연조직 염증 과 동요가 있던 임프란트를 제거하고 2 주의 치유 기 간을 지넨 후 조직을 절제하여 탈회 표본을 제작, $\mathrm{H} \& \mathrm{E}$ 염색하여, 임프란트 식립 시 손상된 골조직의 치유 과정을 광학현미경으로 관찰하였다.

염증의 소견은 나타나지 않았고 밀집된 섬유성 결 합 조직들 사이 사이에는 새로운 소주골들이 엉성하 게 형성되어 있었다. 불뀨칙하게 형성된 소주골 표면 은 활동성 조골세포층으로 피복되어 있었고 소주골 안에는 크고 둥근 형태의 골세포들이 불규칙하게 배

Fig. 8. Photomicrographs of tissue surrounding the mobile implant inserted into the mandible of dog 2.
A. Most thread surface of the implant is encapsulated with the fibrous connective tissue. The immature woven bone is growing into the thread space. The newly-formed bone is defined by darker staining from the original compacta.
B. The osteoclast is seen resorbing the trabeculae, indicating active resorption as well as formation.

Fig. 9. photomicrographs of the woven bone at the site of implant(dog1-implant4) which was removed 2 weeks after insertion. The osteoblasts line the almost randomly organized trabeculae.
The osteocytes(OCT) are large and irregularly spaced.
Prominent capillaries and undifferentiated mesenchymal cells are present between the trabeculae.

열되어 있었다(Fig. 9).

IV. 총괄 및 교안

고전적인 교정치료 술식에 일반적으로 사용되어온 치아고정원은 교정치료의 한계 요인이 되어왔다. 보

다 안정적인 고정원을 얻기 위한 여러 가지 술식들이 개발되어 왔으며 그 중 하나가 골유착성 임프란트를 이용한 골내고정원의 개발이다. 골유착성 임프란트 고정원의 사용으로 보다 단순한 교정장치로 보다 만 족할만한 결과를 얻을 수 있을 것이다. 그러나 이를 위해서는 골유착 양과 질의 조절을 통해 고정원의 크

기를 조절할 수 있어야 하며, 이는 임프란트의 골유착 에 영향을 미치는 여러 가지 요인에 대한 이해를 통 해서만 가능한 일이며, 골유착과 교정력의 관계를 밝 히기 위한 연구는 필수적이다.

골유착(osseointegration)이란 광학 현미경하에서 연조직의 개재없이 매식체가 생체골과 직접 접촉하 고 있는 상태로 외부의 하중을 골내로 직접 전달할 수 있는 구조 및 기능적 결합이다. 골유착의 부재는 임프란트의 동요로 나타나며 움직이는 임프란트는 실패한 임프란트이다. 임프란트 실패의 세가지 주요 원인 인자는 감염, 손상된 치유, 과부하이며 이 세가 지 인자들은 상호연관성을 갖는다. 즉 초기 감염이나 조기 부하는 수술시 손상된 조직의 치유를 방해한다 16,17,18)

이 실험의 결과에서도 골유착 실패의 원인을 복합 적으로 생각해 볼 수 있다. $\operatorname{dog} 1$ 의 구강 내에 식립한 임프란트 12 개 중 6 개는 4 주 후 골내 고정에 성공하 였으나 6 개는 골내 고정에 실패하였다. 골내 고정에 성공한 6개 임프란트의 조직 소견에서 미성숙 소주골 이 임프란트 식립시 손상된 부위로 생성되고 있었으 며 부분적인 골유착이 보였다. 골유착에 실패한 6 개 중 4 개는 식립 즉시 교정력을 가한 것이고, 2 개는 식 립 후 힘을 주지 않은 것이다. 4 주의 초기 치유 기간 을 가진 $\operatorname{dog} 2$ 에서는 12 개 임프란트 중 9 개가 식립 4 주 후 골내에 유지되어 있었으며, 이 9개의 임프란트 에 4 주간 교정력을 가하였다. 식립 8 주 후 조직소견에 서 9 개 중 8 개에서 대부분의 골조직과 임프란트 계면 사이에서 골유착이 있었고, 1 개는 연조직으로 둘러 쌓여 있었다. 골유착이 일어난 8개 임프란트 주위의 골조직은 성숙 층판골로 이루어져 있었으며, 아직 골 개조가 활발히 일어나고 있었다.
$\operatorname{dog} 1$ 에서 하악 loaded implant 3 개는 모두 골내 고 정에 실패하였으나, loaded implant중 상악의 2개 임 프란트는 식립 즉시 $200-300 \mathrm{gm}$ 의 교정력을 가했슴 에도 골유착이 일어났다. $\operatorname{dog} 2$ 에서는 4 주의 초기 치 유 기간 중 교정력을 가하지 않았슴에도 3 개의 임프 란트가 골내 고정에, 실패하였으며, 나머지 9 개의 임 프란트는 식립시 손상된 부위에 골개조가 진행되고 있는 시기인 식립 4 주 후에 교정력을 가했슴에도 임 프란트 주위 골조직의 재형성은 계속 진행되어 식립 8주 후에는 성숙한 층판골이 임프란트 주위 손상 부 위를 채우고 있었다. 이러한 결과에서 임프란트의 골 유착 실패 요인으로 조기 부하 이외에 다른 요인을 생각할 수 있다. 즉 조기 부하와 감염, 수술시 조직의

손상이 복합적으로 작용하여 임프란트의 골유착 실 패를 야기하는 것으로 보이나, 조기 부하보다는 감염 이 임프란트 실패의 주요인이라 생각되며, 감염은 임 프란트 식립시 임프란트 표면의 직접적인 세균 오염 이나 인접한 주위 조직의 감염, 또는 노출면에 축척된 치태에 의해 생길 수 있으며 수술시 조직 손상에 의 해 악화되는 것으로 생각된다.

비탈희표본제작술 ${ }^{19)}$ 의 개발로 티타니움 임프란트 의 생체적합성과 골유착성이 가시적으로 증명된 이 후, 장기적인 고정을 위한 표면 처리 방식과 외과적 술식의 개발이 지속적인 연구의 대상이 되고 있다.

Bränemark등은 ${ }^{16,17,18.22)}$ 골유착 성공을 위해 초기 고정의 중요성을 강조하면서, 이를 위해서는 상피의 하방 증식을 막고 이식체를 구강내 세균 및 교합력으 로부터 보호하기 위해 이식체를 초기 치유기간 동안 치은 하방에 묻어두어야 한다고 하였다. 치유 기간 동 안 부하가 가해진 이식체와 골조직 사이에는 연조직 이 개재되어 결국 탈락된다고 하였다. Turley ${ }^{7}$ 은 동 물 실험에서 골내 임프란트를 다양한 교정력과 정형 력을 위한 저항원으로 성공적으로 사용하였다. 이 연 구에서 골내에서 20 주의 치유 기간을 주고 상부구조 를 설치한 모든 two-stage 임프란트는 성공하였으나, one-stage 임프란트의 47% 만이 단단한 고정을 얻어 유지되었다. 이들이 공통적으로 주장하는 골유착 실 패의 원인은 초기 부하와 감염이며, 이를 막기 위해 two-stage operation을 권하고 있다.

그러나 최근 많은 학자들은 임프란트에 가해지는 힘의 크기와 치태를 적절히 조절할 수만 있다면 one-stage operation에 의해서도 충분한 골유착을 얻 을 수 있슴을 임상 증례 및 동물 실험을 통해 보여주 고 있다 ${ }^{20-28)}$. 이는 초기 부하보다는 감염이 골유착 실 패의 치명적인 요인임을 말해 주는 것으로, 이 실험의 결과와 일치하는 이론이다.
Gotfredsen ${ }^{20,21)}$, Sagara ${ }^{23)}$ 등의 동물 실험 및 임상 증례에서 임프란트 식립 후 초기 치유기간 동안 치태 와 초기 부하를 적절히 조절한 경우, submerged type 과 supramerged type 사이에 골유착 정도의 차이가 나타나지 않았으나, 치태 조절되지 않는 경우에는 supramerged type에서 치조골능의 높이가 헌저히 감 소하였다. Buser ${ }^{24)}$ 는 ITI screw의 임상. 실험 보고에 서, non-submerged 임프란트를 식립 후 초기 하중과 치태 조절이 잘 된다면 submerged 임프란트와 같은 정도로 골유착에 성공할 수 있다고 하였다. Tarnow 등은 ${ }^{2 \overline{2} 27,28)}$ 주 임프란트(main implant)의 골유착을 기

다리는 동안 저작 기능을 환자에게 주기 위해 직경이 작은 임시 임프란트(transitional implant)를 주 임프 란트(main implant)의 중간 중간에 심어 즉시 상부 구조물을 만들어 주었다. 임시 임프란트는 주 임프란 트에 골유착이 일어나는 3-6개월 후에는 철거하는 것 이다. 그러나 이들 임시 임프란트 중 많은 양에서 식 립 즉시 교합력을 감당함에도 불구하고 골유착이 일 어났다. 임시 임프란트는 여러 가지 임프란트 중 가장 교정용 저항원의 개념에 부합하는 것으로 티타니움 미니 임프란트의 교정용 저항원으로서의 적용 가능 성을 말해주는 것이다. 임시 임프란트의 크기와 형태 는 교정용 임프란트와 비슷하며, 그들의 사용기간도 비슷하다. 임시 임프란트에서와 같이 교정용 임프란 트도 식립 후 교정력과 감염의 주 원인인 치태를 적 절히 조절한다면 교정치료 기간 중 골내에서 충분히 유지될 수 있으리라 생각된다. 이 실험에서 성공적으 로 골유착이 일어난 상악에 식립한 immediately loaded implants는 실험기간 내내 임프란트 주위의 연조 직에 염증이 없었으며, 4주 후 조직 표본에서는 골유 착을 확인할 수 있었다. 그러나 골내 고정에 실패한 하악의 immediately loaded implants의 주위 연조직 에는 심한 염증 있었으며, 실험기간 중 연조직 염증이 심한 임프란트의 조직 표본에서는 섬유성 결합조직 이 매식체와 골조직 사이에 개재되어 있었고, 결합조 직내에는 많은 염증 세포들이 관찰되었다.
최근의 여러 연구에 의하면 치과 임프란트의 성공 은 임프란트 표면의 화학적 성분뿐만 아니라 미세구 조의 영향도 받는다고 한다 ${ }^{29-34}$. 가토의 실험에서 Carlsson ${ }^{35)}$ 은 표면이 거칠게 처리된 티타니움 임프란 트와 매끈하게 처리된 임프란트를 비교 시 식립 6주 후 거친면을 가진 임프란트에서 더 높은 removal torque가 측정되었다고 하였다. 본 실험에 사용된 임 프란트들은 표면처리가 된 것들로 3종류 모두 골유착 을 일으키기에 충분한 거칠기를 갖고 있슴을 주사전 자 현미경 사진을 통해 확인하였다. 조직 소견에서 3 종류 임프란트의 표면 미세 구조에 따른 골유착의 차 이를 발견할 수 없었다.

교정용 골내 저항원의 식립 부위로 상악에서는 전 비극하방, 정중구개봉합부, 협골하능, 하악에서는 symphysis area, retromolar area, 무치악 부위가 추천 되고 있으나, 임상적으로 비각화치은 부위에 심은 스 크류는 스크류 주위의 연조직에 지속적으로 염증이 생겨 스크류가 일찍 탈락하는 경우가 많아, 실제 임상 에서 주로 이용하는 식립 부위는 각화 치은이 있는

치아와 치아 사이 치조골 부위이다 ${ }^{10-15)}$. 치간 골은 헙 설면으로는 충분한 두께를 가지나 전후방으로는 매 우 골량이 적은 부위로 이 부위에서의 골 파괴는 치 아의 상실로 이어질 수 있다. 따라서 교정용 티타니움 임프란트를 사용할 때는 식립시 치간골의 손상을 최 소화하는 기술적 고려이외에 임프란트 제거 후 임프 란트 제거 부위 결손골의 치유 과정에 대한 연구가 반드시 필요하다. 이 실험에서 임프란트 식립 2주 후 연조직 염증이 심하고 동요가 심한 2 개의 임프란트를 제거하고 2 주의 치유 기간을 지낸 후 조직을 절제하 여 탈회 표본을 제작하였다. 이 표본에서 임프란트 제 거 부위는 염증 소견없이 골개조가 왕성하게 일어나 고 있었다.
Bränemark ${ }^{18)}$ 은 티타니움의 생체적합성을 알아보 기 위한 동물 실험에서 티타니움 임프란트에 일단 골 유착이 일어나면 $50-100 \mathrm{~kg}$ 의 인장력에도 저항하며 교합력하에서도 수년간 강한 결합을 유지할 수 있다 고 하였다. Albrektsson ${ }^{177}$ 은 동물 실험에서 티타니움 임프란트와 골조직 사이에 골유착이 일어난 수 년 후 임프란트를 제거하는 실험을 하였는데, 이 경우 임프 란트와 골조직의 계면이 아닌 기저골에서 파절이 일 어나거나 매식체 자체가 파절되었다.
이러한 강도의 골유착은 장기적인 안정성을 요하 는 치과 매식체를 위한 것으로, 만약 교정용 임프란트 에 이런 골유착이 일어난다면 임프란트 제거시 치조 골에 손상을 줄 수 있고 치주조직에 치명적인 손상을 줄 수도 있다. 따라서 교정용 티타니움 임프란트의 골 내 저항원으로서의 유용성을 밝히기 위해서는 교정 용 저항원으로서 필요한 최소한의 골유착 정도를 알 아 보기 위한 연구와 임프란트 제거 후 임프란트 주 위 손상 골 조직의 치유에 대한 장기적인 연구가 더 진행되어야 하며 이에 골유착에 큰 영향을 미치는 시 간적 요소와 힘의 다양성에 대한 고려가 더해져야 한 다고 생각한다.

V. 결 론

본 연구는 경희대학교 치과대학 교정과와 Biosstech ${ }^{\circledR}$ 이 개발한 교정용 골유착성 티타니움 임프란트 (osseointegrated titanium implant)를 이용하여 임프 란트 매식 후 가해지는 교정력이 임프란트의 골유착 에 미치는 영향과 임프란트 제거 후 손상된 치조골의 치유를 알아보기 위해 시행되었다. acid-etched type (AE), sand-blasted type(SB), sand-blasted \& acid-
etched type(SLA) 3종류의 임프란트 24개를 2마리 실험 동물의 구강 내에 식립하였다. $\operatorname{dog} 1$ 의 상하악 좌측에 식립한 6개 임프란트에는 식립 후 교정력을 주지 않았고, 우측에 식립한 6개 임프란트에는 임프 란트 식립 즉시 $200-300 \mathrm{gm}$ 의 교정력을 가하였다. $\operatorname{dog} 2$ 에서는 임프란트 식립 후 4 주의 치유기간을 기 다린 후, 골 내에 고정되어 있는 모든 임프란트들에 4 주 동안 $200-300 \mathrm{gm}$ 의 교정력을 가하였다.

이 실험을 통해 다음과 같은 결과를 얻었다.

1. 골내 고정에 성공한 임프란트들의 식립 4주 후 조 직 소견에서, 식립 즉시 교정력을 가한 임프란트와 교정력을 가하지 않은 임프란트 사이에 조직학적 차이가 없었다. 두 군 모두에서 미성숙 소주골이 임프란트 식립시 손상된 부위로 생성되고 있었으 며 부분적인 골유착이 보였다.
2. 임프란트 식립 부위의 골손상이 완전히 치유되기 전에 가해진 교정력은 골유착의 진행을 방해하지 않았다. 4 주의 치유 기간 후 4주간 교정력을 가한 임프란트의 조직소견에서 골조직과 임프란트 계 면 사이의 접촉은 더 넓은 부위로 진행되었고 나 사골을 채우고 있는 신생골은 기저골의 구조와 형 태를 닮은 층판골로 성숙되어 있었다.
3. 식립 후 임프란트 주위 연조직 염증이 심했던 임프 란트는 대부분 탈락되거나 동요가 있었으며, 실험 동물 희생시 동요가 있었던 임프란트의 조직 소견 에서 임프란트 주위는 연조직으로 둘러 쌓여 골조 직과 분리되어 있었다.
4. 골내 고정에 실패한 임프란트의 식립 부위에서는 임프란트 제거 2주 후 염증 소견없이 왕성한 골형 성을 나타내는 조직학적 소견이 관찰되었다.

이상의 결과에서 교정용 임프란트의 골유착 실패 는 초기 부하보다는 감염에 의해 더 많은 영향을 받 음을 알 수 있었다. 조직 손상을 최소화할 수 있는 시 술 후에 적절히 교정력의 크기와 치태를 관리할 수 있다면 이 임프란트는 식립 즉시 교정력을 가할 수 있는 골내 저항원으로 충분한 역할을 할 수 있으리라 생각된다.

참 교 문 헌

[^2] bilities in basal bone. Am J Orthod Oral Surg 1945:31:406-417.
2. Southard TE, Buckley MJ, Spivey JD, Krizan KE, Casko JS. Intrusion anchorage potential of teeth versus rigid endosseous implants: A clinical and radiographic evaluation. Am J Orthod Dentofac Orthop 1995: 107 : 115-20.
3. Roberts WE, Helm FR, Marshall KJ, Gongloff RK. Rigid endosseous implants for orthodontic and orthopedic anchorage. Angle Orthod 1989 : 59: 24-256.
4. Ödman J, Lekholm U, Jemt T, Thilander B. Ossenintegrated implants as orthodontic anchorage in the treatment of partially edentulous adult patients. Europ J Orthod 1994:16:187-201.
5. Ödman J, Lekholm U, Jemt T, Bränemark PI, Thilander B. Osseointegrated titanium implants-a new approach in orthodontic treatment. Europ J Orthod 1988: 10:98-105.
6. Linder-Aronson S, Nordenram Å, Anneroth G. Titanium implant anchorage in orthodontic treatment : an experimental investigation in monkeys. Europ J Orthod $1990: 12: 414-9$.
7. Turley PK, Kean C, Schur J, Stefanac J, Gray J, Hennes J, Poon LC. Orthodontic force application to titanium endosseous implants. Angle Orthed 1988:58:151-62.
8. Roberts WE, Nelson CL, Goodacre CJ. Rigid implant anchorage to close a mandibular first molar extraction site. J Clin Orthod 1994 : 28: 693-704.
9. Melsen B, Petersen JK, Costa A. Zygoma ligature : An alternative form of maxillary anchorage. J Clin Orthod 1998:32:154-9.
10. Creekmore TD, Eklund MK. The possibility of skeletal anchorage. J Clin Orthod 1983:17:266-9.
11. Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res 2000:3:23-8.
12. Kanomi R. Mini-implant for orthodontic anchorage. J Clin Orthod 1997 : 31 : 763-7.
13. Costa A, Raffaini M, Melsen B. Miniscrews as orthodontic anchorage : A preliminary report. Int J Adult Orthod Orthognath Surg 1998: 13: 201-9.
14. 오문영, 정규림, 권용대, 류동목, 이백수. 구강내 고정원으로의 Miniscrew 이용증례. 대치협회지 2000:22:18-21.
15. 박효상. The skeletal cortical anchorage using titanium microscrew implants, 대치교정지 1999:29:699-706.
16. Abrektsson T. Direct bone anchorage of dental implants. J Prosthet Dent 1983:50:255-61.
17. Albrektsson T, Sernerby L. Direct bone anchorage of dental implants : Clinical and experimental considerations of the concept of osseointegration. Int J Prosthodont 1990:3:30-41.
18. Bränemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983:50:399-410.
19. Donath K, Breuner GA. A method of the study of uncalcified bones and teeth with attached soft tissue. J Oral Pathol 1982:11:318-26.
20. Gotfredsen K, Rostrup E, Hjorting-Hansen E, Budtz-Jorgensen E. Histological and histomorphometrical evaluation of tissue reactions adjacent to endosteal implants in monkeys. Clin Oral Impl Res 1991 :2:30-7.
21. Gotfredsen K, Hjorting-Hansen E, Budtz-Jorgensen E. Clinical and radiographic evaluation of submerged and non-submerged implants in monkeys. Int J Prosthodont 1990:3:463-7
22. Akagawa Y, Hashimoto H, Kondo N. Initial bone-implant interfaces of submergible and supramergible endosseous single crystal sapphire implants. J Prosthet Dent 1986:5:96-9.
23. Sagara M, Akagawa Y, Nikai H. The effects of early occlusal loading on one-stage titanium alloy implants in beagle dogs : A pilot study. J Prosthet Dent 1993: 69:281-8.
24. Buser D, Weber HP, Lang NP. Tissue integration of non-submerged implants: 1-year results of a respective study with 100 ITI hollow -cylinder and hollow-screw implants. Clin Oral Impl Res 1990:1: 33-40.
25. Schnitman PA, Wöhrle PS, Rubinstein JE. Immediate fixed interim prostheses supported by two-stage threaded implants : Methodology and results. J Oral Implantol 1990:16:96-105.
26. Schnitman PA. Bränemark implants loaded with fixed interim prostheses at fixture placement : Nine-year follow-up. J Oral Implantol 1995:21:235.
27. Tarnow DP, Emtiaz S, Classi A. Immediate loading of threaded implants at stage 1 surgery in edentulous arches: Ten consecutive case reports with 1 to 5 year data. Int J Oral Maxllofac Implants 1997: 12:319-24.
28. 이성복. 보조임프란트에 의한 즉시보철치료법, 대치이식학회지 2000 : 3:1-4.
29. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface : A histometric study in the canine mandible. J Biomed Mater Res $1998: 40: 1-11$.
30. Sennerby L, Ericson LE, Thomsen P, Lekholm U, Astrand P. Structure of the bone-titanium interface in retrieved clinical oral implants. Clin Oral Impl Res 1991:2:103-11.
31. Klokkevold PR, Nishimura RD, Adachi M, Caputo A. Osseointegration enhanced by chemical etching of the titanium surface. Clin Oral Impl Res 1997: $8: 442-7$.
32. Ericsson I, Johansson CB, Bystedt H, Norton MR. A histomorphometric evaluation of bone-to-implant contact on machine-prepared and roughened titanium dental implants. Clin Oral Impl Res 1994:5: 202-6.
33. Matthew IR, Frame JW, Browne RM, Millar BG. In vivo surface analysis of titanium and stainless steel miniplates and screws. Int J Oral Maxillofac Surg $1996: 25: 463-8$.
34. Tjellstrom A, Jacobsson M, Albrektsson T. Removal torque of osseointegrated craniofacial implants : A clinical study. Int J Oral Maxllofac Implants $1988: 3: 287-9$.
35. Carlsson L, Rostlund T, Albrektsson B. Removal torques for polished and rough titanium implants. Int J Oral Maxllofac Implants 1988: 3 : 21-4.

The effect of early loading on the direct bone-to-implant surface contact of the orthodontic osseointegrated titanium implant

Sung-Ja Lee, Kyu-Rhim Chung
Department of Orthodontics, School of Dentistry, Graduate School, Kyung Hee University

The orthodontic osseointegrated titanium implant, a kind of intraoral skeletal anchorage can be an alternative to tooth-bome anchorage, in case that the conventional tooth-bome anchorage is not available or the anchorage is critical. This study was conducted to elucidate the effect of early loading on the osseointegration of the orthodontic titanium implant and the healing process of the impaired bone at the site of implant after removing it. In two adult beagle dogs 24 osseointegrated titanium implants were inserted into the alveolar bone, with 12 implants placed in each dog. In dog1, 6 out of 12 implants were loaded with $200-300 \mathrm{gm}$ of force immediately after placing, and the remaining 6 implants were not loaded for 4 weeks. In dog2, all 12 implants had healing period of 4 weeks, and then were loaded with $200-300 \mathrm{gm}$ of force for another 4weeks. Following an observation period of 4 and 8 weeks, the animals were sacrificed. Then the implants and the surrounding bone of dogl and dog2 were removed, respectively. Undecalcified sections along the long axis of implant were made and the degree of osseointegration was examined under the light microscope. The results were as follows.

1. In the histologic features of tissues around implants anchored in dogl, there was no difference between immediately loaded implants and unloaded implants. Immature woven bone was ingrowing into the thread spaces from the original compacta and in direct contact with the implant surface in part.
2. The premature loading just after 4weeks healing period did not halt the progress of the osseointegration between bone and implant surface. The woven bone around the implants was maturing into the lamellar bone which resembled the structure of the original compacta at the end of 8weeks observation period.
3. Most implants with the inflammed surrounding mucosa were lost or mobile. The mobile implants were encapsulated by fibrous connective tissue which separated the implant surface from the bone.
4. The impaired bone at the site of the implant failed to anchor was showing recovery without inflammatory reaction 2weeks after removing, with the immaure woven bone lined by active osteoblasts and osteoid.

Based on the results of this study, the integration of this orthodontic implant seemed to be impaired by the inflammation of the tissue surrounding the implant rather than by early loading on implant, and increased with time lapsed after placing the implant. The use of implant described in this report can be recommended as an orthodontic anchorage unit immediately after insertion under the careful control of orthodontic force applied and plaque.

KOREA. J. ORTHOD. 2001 : 31(2): 173-85

* Key words: Osseointegration. Orthodontic force, Orthodontic titanium implant

[^0]: 1) 경희대학교 치뫄대학 교정학교실, 박사.
 2) 경희대학교 치과대학 교정학교실. 교수.

 * 본 연구는 보건복지부(과제번호 : HMP-00-B-20507-0184)에 의해 지원되었습니다. 표신저자 : 이성자
 서울시 광진구 중곡2동 40-1호
 성재치과의원 / 02-457-6535
 leevin@unitel.co.kr

[^1]: - implant removed 2 weeks after insertion because of sev ere mobility and inflammation
 $+{ }^{*}$ implant remained stable in bone 4 weeks after insertion
 +*implant remained in bone 4 weeks after insertion, but mobile

[^2]: 1. Gainsforth BL, Higley LB. A study of orthodontic anchorage possi-
