안모의 수직고경에 영향을 미치는 교정적 요인에 관한 연구

최 우 정 ${ }^{1)}$.김 상 철 ${ }^{2)}$

Abstract

전통적 교정술식인 edgewise technique으로 치료한 경우 잔여성장, 안모 유형과 발치 여부가 안모고경에 미치는 영 향과 요소를 알아보고자 165 명을 대상으로 조사하였다. 이 대상군들은 $\mathrm{SN}-\mathrm{GoGn}$ angle, Frankfort mandibular plane angle, Occluso-mandibular plane angle을 이용하여 수직 비발치군, 수직 발치군, 수평 비발치군, 수평 발치군으로 구 분하였다. 치료 전후에 두부계측방사선사진을 계측하고 통계처리하여 다음과 같은 결론을 얻었다.

1. 모든 군에서 치료 후의 전하안모고경, 전안모고경, 후안모고경이 유의하게 증가하였으며 상하악 구치고경이 유의하 게 증가하였다.
2. 치료 전후의 안모고경 변화에서 수직, 수평 안모 유형 간에 유의한 차이는 인정되지 않았다.
3. 발치군과 비발치군 간의 안모고경 변화는 유의한 차가 없었다.
4. 전하안모고경의 변화량이 성장군에서 상악 구치고경의 변화와, 성인군에서 하악 구치고경의 변화와 유의한 상관성 을 보였다.
5. 전하안모고경의 변화량에 영향을 미치는 요소는 뚜렷하지 않았다.
(주요단어 : 안모, 수직고경, 발치, 비발치, 성장)

I. 서 론

전후방과 수직적 부조화가 복합된 악골 부조화에 대하여, Angle의 부정교합 분류법이 제시된 이래 전 후방 관계를 분석하는 연구가 많이 이루어져 왔다. 또 한 안모 형태의 수직적 관계에 대한 중요성이 새로이 인식됨에 따라 수직적 부조화에 대해서도 많은 연구 가 시행되고 있다 ${ }^{1-9)}$.

[^0]Schudy ${ }^{10-1)}$ 는 수직고경을 구성하는 요소로 비강상악 복합체의 성장, 상악 대구치의 수직 성장, 하악 대구치의 수직 성장을 들었으며 이러한 수직 성장량 의 합이 하악 과두 성장보다 클 경우 하악의 후하방 회전이 일어나서 안모고경을 변화시킬수 있다고 하 였다.

수직적 안모유형을 묘사하는데 있어서도 short, average, long facial types ${ }^{12)}$; poor, good facial patterns ${ }^{13)}$; forward, backward rotators ${ }^{14)}$; hyperdivergent, neutral, hypodivergent growth patterns ${ }^{10-1,55}$ ${ }^{-6)}$; dolichocephalic, brachycephalic types ${ }^{17)}$ 등과 같 은 여러 용어들이 언급되었다.
이와같은 안모 유형의 분류는 교정치료시 치료방 법을 결정하는데 있어서 중요한 기준이 되며 많은 연

구에서 안모 유형에 따른 치료개념을 정리하였다. 즉, 하악평면각이 작고 과개교합을 보이는 증례에서는 교합을 이개시키는데 도움을 주는 비발치를 선호하 고 구외력을 사용할 경우에는 cervical headgear를 사 용하며 ㅁ급과 III급 악간 고무가 도움이 되며 치열궁 을 평탄화함으로써 교합을 이개시키는데 도움을 준 다고 하였다. 반면, 하악평면각이 크고 개교를 보이는 증례에서는 이와 상반된 개념으로 소구치를 발거하 고 구외력의 사용시에는 high-pull headgear를 사용 하며 악간고무의 사용은 최소로 하고 치열궁의 완전 한 펑탄화는 교합을 이개시킬수 있기 때문에 피해야 한다고 하였다 ${ }^{181}$.
전체 악궁길이 부조화와 악골 간의 시상관계 뿐 아 니라 안모 유형에 따라 치아 발거의 결정이 좌우되므 로, 수많은 임상가들은 긴 전안모고경과 경사진 하악 평면을 갖는 환자에서는 비록 치성과 골격적 부조화 가 미미하더라도 구치의 근심이동이 하악의 전방 회 전을 허용한다는 생각에서 소구치의 발거를 권하였 다 ${ }^{19-20)}$. 그러나 이런 가설을 지지하거나 확인하는 연 구는 아직 없으며, 단지 Pearson ${ }^{21)}$ 이 소구치 발거시 하악평면각이 감소한다고 보고했을 뿐이다. 많은 문 헌에서는 오히려 발치 치료시 유의한 수직고경의 감 소보다는 증가를 보였다고 보고하였다 ${ }^{22-6)}$.

구치의 수직이동과 안모의 수직고경과의 상관관계 에 대하여, Schudy ${ }^{11)}$ 는 무치악 환자의 수직고경을 연 구하여 구치의 변화에 의해 안면각과 하악지의 경사 도를 변화시킬수 있으며 안모의 수직고경과 구치부 높이 간에 매우 높은 상관관계가 있다고 하였다. 구치 의 정출은 성장과 땡출, 치료에 의한 결과로 일어날 수 있으므로 이에 대한 성장과 치료법에 적절한 대처 가 필요하다고 사료된다.

본 연구에서는 안모고경에 미치는 영향요소를 알 아보기 위해, 대상을 잔여성장유무, 안모유형 및 발치 여부에 따라 구분하여 교정치료에 의한 안모고경의 변화를 관찰하였다.

II. 연구재료 및 방법

1. 연구 대상

원광대학교 치과대학병원 교정과에 내원하여 교정 치료를 마친 165 증례를 대상으로 치료 전후 측모두 부방사선사진을 분석하였다. 치료 시기에 따라 각각 성장군 (77 명, $12-15$ 세)과 성인군 (88 명, 17 세 이상)으

로 나누었으며, 수직적인 안모 유형에 따라 수직군 (100 명)과 수평군 (65 명)으로, 발치여부에 따라 발치 군 (69 명)과 비발치군 (96 명)으로 구분하였다. 안모 유형에 따른 분류는, 수직적 계측 항목으로 판단되는 SN 평면에 대한 하악평면각 $(\mathrm{SN}-\mathrm{GoGn})^{20,27-31)}$ 과 FH 평면에 대한 하악평면각 (FMP) ${ }^{12,23)}$, 교합평면과 하악 평면각 $(\mathrm{OMA})^{15,21,24)}$ 등에서 2 개 이상의 항목에서 1 단위 표준편차가 초과되는 대상을 수직군과 수평군 으로 정하였다.

2. 연구 방법

대상의 치료 전후 측모두부방사선사진을 통법에 따라 묘사한 후 다음과 같은 항목을 설정하여 계측하 였다. 수직선 (Vertical line)은 nasion에서 FH 평면에 수선을 내려 정하였으며 구개평면 (Palatal plane)은 ANS에서 PNS를 연결한 선으로 하였고, 하악 후방의 하방경계와 전방의 menton을 연결한 선을 하악평면 (Mandibular plane)으로 설정하였다 (Fig. 1, 2).

1) Vertical facial height factors
1. $\mathrm{SN}-\mathrm{GoGn}$ angle
2. Frankfort mandibular plane angle (FMA)
3. Occlusomandibular plane angle (OMA)
4. Lower anterior facial height (LAFH) : ANSMe (mm)
5. Facial height ratio (FHR) : $\mathrm{PFH} / \mathrm{AFH} \times 100$
6. Posterior facial height (PFH) : Se-Go (mm)
7. Anterior facial height (AFH) : $\mathrm{N}-\mathrm{Me}(\mathrm{mm})$
2) Dental factors
1. U6-V(vertical position of upper molar) : The distance from the mesiodistal midpoint of the upper first molar to palatal plane (mm)
2. L6-V(vertical position of lower molar) : The distance from the mesiodistal midpoint of the lower first molar to mandibular plane (mm)
3. U6-H(horizontal position of upper molar) : The distance from the mesiodistal midpoint of the upper first molar perpendicular to vertical line (mm)
4. $\mathrm{L} 6-\mathrm{H}$ (horizontal position of lower molar) : The distance from the mesiodistal midpoint of the lower first molar perpendicular to vertical line (mm)

Vol. 31. No. 2, 2001. Korea. J. Orthod.

Fig 1. Cephalometric variables for the evaluation of vertical dimensions. (1. SN-GoGn; 2. FMP; 3. OMA; 4. LAFH ; 5. AFH; 6. PFH)
3. 통계처리

치료 전후 변화량은 치료 후 값에서 치료 전 값을 뼤서 구하였으며 각 군별 계측항목에서 치료전후 변 화량의 평균치를 산출하고, 치료 전후 비교를 위해 paired t-test를 시행하였다. 각 군간의 차이는 Student's t-test에 의해 비교하였고 전하안모고경의 변화와 상관성을 보이는 수직 안모고경의 요소를 찾 기 위해 Pearson의 상관계수를 구하였다.

III. 연구성적

1. 치료 전후 비교 (Table 1)

모든 군에서 치료 후 전하안모고경, 전안모고경, 후 안모고경이 유의하게 증가하였으며 상하악 구치고경 이 유의하게 증가하였다. 안모고경률 (FHR;facial height ratio)은 성장군에서만 치료 후 유의하게 증가 하였고 $(\mathrm{P}<0.05)$, 상하악구치의 수평이동량은 성장군 의 하악구치에서 치료 후 유의한 근심이동이 있었다 ($\mathrm{P}<0.001$).

2. 수직군과 수평군 간의 비교 (Table 2, 3)

수직군과 수평군 모두에서 치료에 의해 전안모고

Fig 2. Measurements for the evaluation of the movements of molars. (PP. Palatal plane; MP. Mandibular plane; V. Vertical line; 1. U6-V;2. L6-V;3. U6-H ; 4. L6-H)

경, 후안모고경, 전하안모고경이 증가하였으나 군간 에 유의한 차이는 인정되지 않았다. 다만, 성장군에서 비발치로 치료하였을 때 하악구치의 수직고경의 증 가가 수직군보다 수평군에서 유의하게 더 컸다 ($\mathrm{P}<$ 0.05). 성인군의 발치 치료시 수직군에서의 전하안모 고경과 전안모고경의 증가량이 수평군보다 유의하게 많았다 ($\mathrm{P}<0.05$).
3. 발치군과 비발치군 간의 비교 (Table 4, 5, 6)

발치군, 비발치군 모두에서 전하안모고경의 증가를 보였으며 성장군에서는 비발치군에서 증가량이 더 많았고 성인군에서는 발치군에서 더 큰 증가량을 보 였지만 유의하지는 않았다. 성장기 환자에서는 수평 군에서 비슷한 양상을 보여 발치군보다 비발치군에 서 전하안모고경의 증가량이 더 컸으며, 성인 환자에 서는 수직군에서 비슷한 증가 양상으로 발치군에서 더 큰 증가량을 보였지만 유의하지는 않았다. 반면, 성인 수직군에서 후안모고경의 증가가 비발치군보다 발치군에서 유의성있게 더 크게 나타났다 ($\mathrm{P}<0.05$).

4. 전하안모고경과의 상관관계 (Table 7, 8)

치료 전 수직적 안모 형태 요소와 전하안모고경의 치료변화량 간의 상관관계는 뚜렷하지 않았다. 단 성

Table 1. Comparison of the vertical dimension between pretreatment and posttreatment (Mean \pm S.D.)

Variables	Adolescent			Adult		
	Pretreatment ($\mathrm{n}=77$)	Postreatment $(\mathrm{n}=77)$	P-value	Pretreatment $(\mathrm{n}=88)$	Posttreatment $(\mathrm{n}=88)$	P-value
LAFH	67.62 ± 9.17	72.34 ± 5.92	$0.000^{* * *}$	72.39 ± 4.74	73.39 ± 4.77	$0.000^{* * *}$
FHR	62.90 ± 8.87	63.66 ± 9.42	0.010^{*}	65.39 ± 5.02	65.20 ± 5.06	0.117
PFH	76.85 ± 6.17	81.48 ± 6.96	$0.000^{* * *}$	84.80 ± 7.20	85.73 ± 7.35	$0.000^{* * *}$
AFH	123.57 ± 8.79	129.81 ± 9.27	$0.000^{* * *}$	129.84 ± 6.84	131.51 ± 6.86	$0.000^{* * *}$
U6-V	24.19 ± 6.57	26.39 ± 6.70	$0.000^{* * *}$	26.18 ± 2.09	27.22 ± 4.71	0.035^{*}
L6-V	32.28 ± 2.69	35.03 ± 2.80	$0.000^{* * *}$	35.62 ± 2.80	36.55 ± 2.86	$0.000^{* * *}$
U6-H	30.44 ± 4.16	29.74 ± 6.30	0.239	28.91 ± 3.49	28.53 ± 3.92	0.097
L6-H	28.64 ± 4.35	27.18 ± 4.45	$0.000^{* * *}$	26.98 ± 3.72	26.60 ± 3.89	0.136
*. P						

${ }^{*}: \mathrm{P}<0.05,{ }^{* *}: \mathrm{P}<0.01,{ }^{* * *}: \mathrm{P}<0.001$

Table 2. Comparison of the change of vertical dimension between vertical and horizontal group by treatment methods in adolescents (Mean \pm S.D.)

Variables	Extraction			Nonextraction		
	Vertical ($\mathrm{n}=31$)	Horizontal $(\mathrm{n}=3)$	P-value	Vertical (n=23)	Horizontal (n=20)	P-value
LAFH	3.95 ± 3.32	2.92 ± 5.54	0.631	3.78 ± 3.11	7.23 ± 14.54	0.309
FHR	0.72 ± 3.43	1.74 ± 2.15	0.621	0.54 ± 1.87	0.93 ± 1.50	0.461
PFH	3.79 ± 3.04	6.62 ± 7.16	0.566	4.57 ± 3.52	5.67 ± 4.71	0.386
AFH	5.57 ± 4.23	6.77 ± 7.72	0.664	6.25 ± 4.55	7.18 ± 6.43	0.583
U6-V	2.32 ± 1.75	3.04 ± 3.88	0.779	1.97 ± 1.90	2.14 ± 2.58	0.797
L6-V	3.18 ± 1.39	1.62 ± 2.30	0.089	1.83 ± 1.62	3.28 ± 2.61	0.039^{*}
U6-H	-1.08 ± 7.51	-1.99 ± 0.28	0.509	0.12 ± 2.50	-0.83 ± 2.74	0.234
L6-H	-2.48 ± 2.98	-4.01 ± 2.71	0.400	0.20 ± 2.97	-1.39 ± 3.33	0.103

* $: ~ \mathrm{P}<0.05$

Table 3. Comparison of the change of vertical dimension between vertical and horizontal group by treatment methods in adults (Mean \pm S.D.)

Variables	Extraction			Nonextraction		
	Vertical $(\mathrm{n}=25)$	Horizontal $(\mathrm{n}=10)$	P-value	Vertical ($\mathrm{n}=21$)	Horizontal $(\mathrm{n}=32)$	P-value
LAFH	1.64 ± 1.57	0.37 ± 0.84	0.022^{*}	0.75 ± 1.83	0.82 ± 145	0.883
FHR	-0.11 ± 1.16	0.28 ± 0.92	0.335	-0.41 ± 0.79	-0.25 ± 1.31	0.567
PFH	1.32 ± 1.69	0.58 ± 1.00	0.208	0.29 ± 1.46	1.14 ± 1.55	0.053
AFH	3.07 ± 3.83	-0.51 ± 3.97	0.018^{*}	1.38 ± 2.87	1.43 ± 2.68	0.948
U6-V	1.04 ± 1.05	0.59 ± 1.46	0.318	2.25 ± 9.17	0.37 ± 1.11	0.361
L6-V	1.32 ± 1.62	1.24 ± 1.10	0.883	0.60 ± 1.11	0.73 ± 0.89	0.631
U6-H	-1.04 ± 1.47	-2.80 ± 2.93	0.098	0.32 ± 1.42	0.42 ± 2.01	0.836
L6-H	-1.33 ± 2.17	-2.51 ± 2.84	0.195	0.58 ± 2.16	0.40 ± 1.72	0.745

[^1]Table 4. Comparison of the change of vertical dimension during treatment between extraction group and nonextraction group (Mean \pm S.D.)

variables	Adolescent				Adult	
	Extraction ($\mathrm{n}=34$)	Nonextraction ($\mathrm{n}=43$)	P-value	Extraction ($\mathrm{n}=35$)	Nonextraction ($\mathrm{n}=53$)	P -value
LAFH	3.86 ± 3.46	5.39 ± 10.1	0.406	1.28 ± 1.50	0.79 ± 1.60	0.158
FHR	0.81 ± 3.43	0.72 ± 1.70	0.885	0.001 ± 1.10	-0.31 ± 1.13	0.198
PFH	4.04 ± 3.49	5.08 ± 4.10	0.242	1.11 ± 1.54	0.80 ± 1.56	0.367
AFH	5.68 ± 4.48	6.68 ± 5.46	0.378	2.05 ± 4.15	1.41 ± 2.73	0.426
U6-V	2.38 ± 1.93	2.05 ± 2.22	0.489	0.91 ± 1.17	1.12 ± 5.82	0.806
L6-V	3.04 ± 1.51	2.50 ± 2.23	0.232	1.30 ± 1.47	0.68 ± 0.97	0.033^{*}
U6-H	-1.16 ± 7.17	-0.32 ± 2.63	0.476	-1.54 ± 2.11	0.38 ± 1.78	$0.000^{* * *}$
L6-H	-2.62 ± 2.95	-0.54 ± 3.21	$0.005^{* *}$	-1.67 ± 2.39	0.47 ± 1.89	$0.000^{* * *}$
${ }^{*}: \mathrm{P}<0.05,{ }^{* *}: \mathrm{P}<0.01,{ }^{* * *}: \mathrm{P}<0.001$						

Table 5. Comparison of the change of vertical dimension between extraction and nonextraction by vertical dysplasia in adolescents (Mean \pm S.D.)

Variables	Vertical			Horizontal		
	Extraction $(\mathrm{n}=31)$	Nonextraction $(\mathrm{n}=23)$	P-value	Extraction ($\mathrm{n}=3$)	Nonextraction ($\mathrm{n}=20$)	P-value
LAFH	3.95 ± 3.32	3.78 ± 3.11	0.849	2.92 ± 5.54	4.19 ± 5.20	0.700
FHR	0.72 ± 3.43	0.54 ± 1.87	0.804	1.74 ± 2.15	0.73 ± 1.22	0.242
PFH	3.79 ± 3.04	4.57 ± 3.52	0.390	6.62 ± 7.16	5.79 ± 4.64	0.789
AFH	5.57 ± 4.23	6.25 ± 4.55	0.576	6.77 ± 7.72	7.20 ± 6.42	0.917
U6-V	2.32 ± 1.75	1.97 ± 1.90	0.483	3.04 ± 3.88	2.00 ± 2.55	0.539
L6-V	3.18 ± 1.39	1.83 ± 1.62	$0.002^{* *}$	-1.25 ± 2.12	0.05 ± 1.41	0.172
U6-H	-1.08 ± 7.51	0.12 ± 2.50	0.460	-1.65 ± 1.95	0.75 ± 5.06	0.432
L6-H	-2.48 ± 2.98	0.20 ± 2.97	$0.002^{* *}$	1.62 ± 2.30	3.38 ± 2.55	0.276

${ }^{*}: \mathrm{P}<0.05,{ }^{*}: \mathrm{P}<0.01,{ }^{* * *}: \mathrm{P}<0.001$

Table 6. Comparison of the change of vertical dimension between extraction and nonextraction by vertical dysplasia in adults (Mean \pm S.D.)

Variables	Vertical			Horizontal		
	Extraction $(\mathrm{n}=25)$	Nonextraction $(\mathrm{n}=21)$	P -value	Extraction ($\mathrm{n}=10$)	Nonextraction ($\mathrm{n}=32$)	P-value
LAFH	1.64 ± 1.57	0.75 ± 1.83	0.089	0.37 ± 0.84	0.82 ± 1.42	0.361
FHR	-0.11 ± 1.16	-0.41 ± 0.79	0.314	0.28 ± 0.92	-0.25 ± 1.31	0.238
PFH	1.32 ± 1.69	0.29 ± 1.46	0.034^{*}	1.14 ± 1.55	0.58 ± 1.00	0.298
AFH	3.07 ± 3.83	1.38 ± 2.87	0.106	-0.51 ± 3.97	1.43 ± 2.68	0.083
U6-V	1.04 ± 1.05	2.25 ± 9.17	0.513	0.59 ± 1.46	0.37 ± 1.11	0.613
L6-V	1.32 ± 1.62	0.60 ± 1.11	0.081	1.24 ± 1.10	0.73 ± 0.89	0.146
U6-H	-1.04 ± 1.47	0.32 ± 1.42	$0.003^{* * *}$	-2.80 ± 2.93	0.42 ± 2.01	$0.001^{* * *}$
L6-H	-1.33 ± 2.17	0.58 ± 2.16	$0.005^{* * *}$	-2.51 ± 2.84	0.40 ± 1.72	$0.010^{* *}$
$*: \mathrm{P}<0.05,{ }^{* *}: \mathrm{P}<0.01,{ }^{* * *}: \mathrm{P}<0.001$						

Table 7. Correlation of the change of LAFH to vertical facial factors in pretreatment and the change of dental factors in adolescents (Pearson's correlation coefficient: r)

${ }^{*}: \mathrm{P}<0.05,{ }^{* *}: \mathrm{P}<0.01,{ }^{* * *}: \mathrm{P}<0.001$
VN, vertical \& nonextraction group; VE, vertical \& extraction group; HN, horizontal nonextraction group; HE, horizontal extraction group

Table 8. Correlation of the change of LAFH to vertical facial factors in pretreatment and the change of dental factors in adults (Pearson's correlation coefficient; r)

Variables		Adult				
		VN	VE	HN	HE	Total
		($\mathrm{n}=21$)	($\mathrm{n}=25$)	($\mathrm{n}=32$)	($\mathrm{n}=10$)	($\mathrm{n}=88$)
Vertical facial factors in pretreatment	SN-GoGn	0.05	-0.13	-0.03	-0.25	0.10
	FMP	-0.02	0.04	-0.06	-0.08	0.12
	OMA	-0.16	-0.28	-0.09	-0.08	-0.02
	FHR	-0.32	-0.32	-0.17	0.56	0.00
	PFH	-0.32	-0.35	-0.24	0.26	0.09
	AFH	-0.20	-0.09	0.03	0.45	-0.07
The change of dental factors	U6-V	0.04	$0.43{ }^{*}$	-0.34	-0.03	0.02
	L6-V	$0.68{ }^{* * *}$	$0.41{ }^{*}$	$0.61{ }^{* * *}$	0.15	$0.51{ }^{* * *}$
	U6-H	0.01	0.29	0.15	-0.44	0.06
	L6-H	-0.14	0.31	0.25	$-0.65 *$	0.03

${ }^{*}: \mathrm{P}<0.05,{ }^{* *}: \mathrm{P}<0.01,{ }^{* * *}: \mathrm{P}<0.001$
VN, vertical \& nonextraction group; VE, vertical \& extraction group; HN, horizontal nonextraction group; HE, horizontal extraction group

가지 변수에서 약한 상관관계를 보였다. 성장군에서 장군의 후안모고경과 FHR 에서 각각 음, 양의 상관관 계를 나타냈다. 치성 변수들의 치료에 의한 변화량과 전하안모고경의 치료변화량 간의 상관관계에서는 몇

는 상악구치의 수직이동과 전하안모고경 간에 양의 상관관계를 보였으며, 성인군에서는 하악구치의 수직 이동과 전하안모고경 간에 양의 상관관계를 보였다. 성인 수평 발치군에서는 하악구치의 수평이동과 전

하안모고경 변화량 간에 음의 상관관계를 나타냈다.

IV. 총괄 및 고안

1. 치료 전후 비교 (Table 1)

성장군이나 성인군 모두에서 안모고경을 나타내는 전안모고경, 후안모고경, 전하안모고경이 치료후 유 의하게 증가하였다. 이는 Horn^{25} 의 의견과 일치하는 데 그는 전안모고경은 수술적 방법 없이는 감소시킬 수 없다고 하였다. Facial height ratio (FHR)는 성장 군에서만 유의한 증가를 보였으며 $(\mathrm{P}<0.05)$ 이는 성 장 요소에 의한 증가때문이라 사료된다. 상하악 구치 고경 또한 치료에 의해 유의한 증가를 보였으며 대부 분의 교정술식이 정출을 야기하며 이런 정출은 안모 고경을 유지 또는 증가시킨다는 의견 ${ }^{24-6)}$ 을 지지해 주 고 있다. 상하악구치의 수평이동에 있어서는 성장군 의 하악구치에서만 치료 후 유의한 근심이동을 보였 다 $(\mathrm{P}<0.001)$. 이는 선택된 대상들의 전후방적 부조화 의 차이 즉, I, I, III급을 모두 포함하고 있어 서로 다른 anchorage의 사용때문이라 여겨진다.
2. 수직군과 수평군간의 비교 (Table 2, 3)

성장군과 성인군에서 수직군과 수평군 간의 치료 변화량의 비교에 있어 유의한 차이를 보이지 않았다. 본 연구결과 다양한 안모의 형태가 성장이나 치료에 따라서 다르게 반응한다는 연구 $35-9)$ 와 같이 안모 유형 에 따라 하악의 더 큰 opening과 closing을 보이지 않 았다. 즉, 일반적인muscular anchorage 개념 ${ }^{17)}$ 처럼 과개교합과 낮은 하악평면 그리고 brachyfacial type 에서는 anchor가 강하고, 그 반대 경우에서는 anchor 가 약하게 되어 수직고경이 변화하는 것이 본 연구결 과에서는 나타나지 않았다.
Ricketts ${ }^{17}$ 는 치료 후의 facial axis의 변화량을 통 해 서로 다른 안모 유형과 치료방법에 대한 효과를 연구한 결과 brachyfacial types에서는 cervical headgear와 ㅍ급 고무를, dolichofacial types에서는 ㅍ 급 고무는 패하고 high-pull headgear를 사용해야한 다고 하였다. Klapper ${ }^{23}$ 와 Cook^{40} 도 치료 전 안모유형 보다는 사용된 치료기전이 하악회전 반응을 변화시 켰다고 하였다.
본 연구의 성장군에서의 결과는 Klapper ${ }^{233}$, Cook ${ }^{40)}$ 의 연구와 일치한다. 성장의 요소를 배제한 성인군에

서는 발치 치료시 전하안모고경과 전안모고경이 수 평군보다 수직군에서 치료 후 유의하게 더 많이 증가 하였다 $(\mathrm{P}<0.05)$. 이는 성장이 없을 경우 치료에 의한 안모고경의 변화는 안모 유형에 영향을 받을 수 있다 는 것을 알 수 있다. 그러나 본 연구에 포함된 대상들 이 구외력을 사용하지 않은 환자들 임을 고려해 볼 때 성인 환자에서 구외력을 동시에 적용했을 때 다른 결과를 가져올 수 있을 것이다.

3. 발치군과 비발치군간의 비교 (Table 4, 5, 6)

안모고경은 치료 후 증가하였으나 발치군과 비발 치군 간에 유의한 차이는 없었다. 상하악구치는 두 군 모두 치료 후 정출되었으나 발치군과 비발치군 간에 유의한 차이는 없었다. 이는 제1소구치 발거가 구치 부의 근심이동을 허용하여 교합의 수직고경 감소를 초래한다고 주장했던 Cole ${ }^{41)}$, Tully ${ }^{427}$, Wyatt ${ }^{43}$ 의 연 구 결과와는 상이한 것이고 반면에 발치군에서도 수 직고경의 증가를 보고한 McLaughlin과 Bennett, ${ }^{18)}$ Yamaguchi와 Nanda ${ }^{22)}$, Klapper ${ }^{231}$, Vaden과 Harris ${ }^{24)}$, Staggers ${ }^{25)}$, 강 ${ }^{26)}$ 등의 연구와 일치한다.

Yamaguchi와 Nanda ${ }^{22)}$ 는 발치군과 비발치군에서 하악골 회전 효과를 비교하여 상부견인 headgear 치 료군이나 악간고무만을 사용한 군 모두 안모고경은 발치군보다 비발치군에서 유의하게 더 컸다고 보고 하였다. 평균 12 세 2 개월인 그들의 연구대상과 유사 한 본 연구의 성장군에서도 유의한 차이는 인정되지 않았지만 비발치군에서 발치군보다 안모고경의 증가 가 더 많았다. 또한 하악구치의 근심이동이 발치군에 서 유의하게 더 많았으며 $(\mathrm{P}<0.01)$ 수직군에서 하악 구치의 수직고경이 비발치군보다 발치군에서 유의하 게 더 증가하였다 $(\mathrm{P}<0.01)$ (Table 5).
Staggers ${ }^{25)}$ 또한 발치군과 비발치군의 수직고경을 비교한 결과 치료 후 두 군 사이에 유의한 차이가 없 었고 두 군 모두에서 상하악 제 1 대구치의 정출과 전 안모고경의 증가를 관찰하였다. 본 연구에 포함된 ㅍ, 때급 부정교합에서의 안모고경의 증가는 구치의 전 방이동이 반드시 수직거리의 상실을 야기하지 않음 을 알 수 있다. 그러나 이들의 연구는 성장이 있는 대 상을 연구한 것이며 교정 치료시 하악 회전에 대해 성장에 의한 효과와 치료에 의한 변화 간의 구별이 필요하다. 대부분의 연구들은 나이를 기준으로 성장 을 조정하였으며 본 연구에서도 17 세 이후에 교정치 료를 시작한 환자를 성장이 배제된 성인군으로 구성

하였으며 그 결과 안모고경은 발치군과 비발치군 모 두 증가하였으나 유의한 차이가 없었다. 구치이동에 있어서는 하악구치의 정출이 비발치군 보다 발치군 에서 유의하게 더 많았으며 $(\mathrm{P}<0.05)$ 상하악구치의 근심이동이 발치군에서 유의하게 더 많았다 $(\mathrm{P}<0.01)$ (Table 4). 이는 성장이 완료된 군에서 전치부 수직피 개도에 따라 비교 연구한 강 ${ }^{26)}$ 의 연구 결과와 비슷하 다. Chua ${ }^{44}$ 는 Michigan Growth Standard를 이용하 여 표준화 값을 구함으로써 성장을 배제한 교정치료 만의 효과를 비교한 결과 비발치군에서는 전하안모 고경의 유의한 증가가 있었던 반면, 발치군에서는 유 의한 변화가 없었다고 보고하였다.

안모 유형에 따라 비교해 본 결과로는 성장군에서 는 발치와 비발치 간의 유의한 차이를 보이지 않았고 이는 Klapper ${ }^{23)}$ 의 연구와 일치한다. 그는 dolichofacial과 brachyfacial growth patterns으로 나누어 소 구치 발치와 비발치 치료효과를 연구한 결과 두 군간 의 facial axis 변화의 유의한 차이가 없었다고 하였 다.

교정치료 후 안모고경의 증가를 가져오는 원인으 로 $\mathrm{Kuhn}^{19)}$ 은 후방구치의 수직이동이 전안모고경의 증가를 초래한다고 하였으며 하악 후방회전의 기여 요소로 하악구치의 정출을 언급한 많은 연구가 있었 다 ${ }^{17-8,21,45-6)}$. Pearson ${ }^{21)}$ 은 치열의 후방부위에서의 수 직고경 조절의 중요성을 널리 알렸으며 특히 높은 하 악평면각을 갖는 II급 부정교합의 치료 중 구치의 정 출을 조절하여 전안모고경을 조절하기 위한 몇가지 치료방식을 제안하였다 ${ }^{21,48)}$. 또한 Dougherty ${ }^{49)}$ 는 발 치 증례에서 필요한 부가적인 치아이동이 anchorage loss를 일으켜 정출을 증가시키는 것 같다고 설명하 였다.

본 연구의 치료방법의 선택에 있어서 분명히 더 긴 전하안모고경을 가진 대상에서 발치 치료를 선호하 였을지라도 발치군에서 안모고경의 감소를 볼 수 없 었고 오히려 증가한 것을 보았을 때 발치 치료가 수 직고경을 감소시키지는 않는 것 같다. Horn^{34} 은 FHI (facial height index; ratio of PFH to AFH)의 감소는 leveling, anchorage 및 poor directional force가 사용 될 때 일어날 수 있다고 하였고 이는 하악의 후하방 회전을 의미한다고 하였으며, 전안모고경보다 후안모 고경이 더 많이 증가함에 의해 Facial height ratio (FHR) 의 증가가 \amalg 급 부정교합의 바람직한 개선을 의미한다고 하였다 ${ }^{24)}$. 본 연구에서도 성장군 모두와 성인의 수평 비발치군에서만 FHR 의 증가를 보였고

나머지군에서는 모두 감소하였다. 치아 배열의 원칙 이 정출에 의한 것임을 고려할 때, 수직고경의 감소를 기대하기는 어려우며 안모 유형이 수직적인 앙상을 보이는 환자에서 일반적으로 받아들여지는 발치 방 법은 구치의 정출을 적극적이고 주의깊게 막지 않는 이상 안모의 수직고경을 조절하는데 발치가 안전하 지만은 않다는 것을 보여주고 있다. 그러나 치아의 정 출을 최소화하는 증례에서는 과도한 수직고경의 증 가는 억제될 수 있을 것이다.

4. 전하안모교경가의 상관관계 (Table 7, 8)

치료 전 수직적 변수와 전하안모고경 (LAFH) 변화 량 간의 상관관계는 뚜렷하지 않았다. 단, 성장군의 FHR과 후안모고경에서 각각 양의 상관관계와 음의 상관관계를 보임으로써 치료 전 후안모고경이 클수 록 치료에 의한 전하안모고경의 증가량이 적었던 것 을 보여주었다. Cook ${ }^{40)}$ 은 안모 유형의 predictors로써 사용된 Y-axis, XY-axis, MP angle 등 하악 회전 반 응을 예측할 수 있는 변수는 없음을 관찰하였으며 Björk ${ }^{14)}$, Baumrind ${ }^{47)}$ 또한 같은 연구 결과를 보고하 였다. 본 연구의 성장군의 수평 비발치군에서만 전하 안모고경의 변화량과 occluso-mandibular angle (OMA)이 약한 양의 상관계수를 보임으로써 치료 전 교합평면각이 클수록 치료 후 전하안모고경이 많이 증가한 것을 알 수 있었다.

상하악구치의 이동과 전하안모고경의 치료변화량 간의 상관관계에 있어서는 다른 연구 ${ }^{19,24,45)}$ 와 비슷하 게 나타났다. 성장군에서는 4군 모두에서 상악구치의 정출이 많을수록 전하안모고경이 증가하였고 하악구 치의 정출량은 수직군에서만 양의 상관관계를 보였 다. 반면, 성인 환자에서는 수평 비발치군을 제외한 모든 군에서 하악구치의 정출이 많을수록 전하안모 고경이 증가하였다. 상악구치의 정출량은 수직 발치군 에서만 양의 상관관계를 보였다. 이는 Schudy ${ }^{11)}$ 의 의 견과 맥락을 같이 하는 것으로 치료군과 비치료군에 있어 수직 성장의 차이는 하악의 치조돌기에서 있었 다고 하였다. 상악구치는 "bite opener’라고 언급되면 서 상악구치의 치조고경이 수직적 부조화를 나타내 는데 가장 중요한 역할을 하고 하악구치의 치조고경 은 치료시 가장 중요하다고 하였다 ${ }^{16,19,50)}$.

이상과 같은 선학들의 보고를 바탕으로 본 연구에 서는, 모든 부정교합에서 발치 여부에 관계 없이 대구 치가 전방으로 변위되고 상하적으로 정출되는 것을

보였으며 성인군에서는 발치군에서 더 많이 정출되 었다. 한편, 치료 후 하악 회전을 예측할 수 있는 치료 전 변수는 뚜렷하지 않았다. 따라서 수직적 안모 유형 을 가진 환자에서 발치 치료시 적극적인 구치고경의 조절이 필요하리라 사료된다. 앞으로의 연구는 치료 후 유지기간 동안의 수직고경의 변화를 관찰하는 것 이 필요하며 성인 환자에서 적극적인 방법으로 구치 의 조절을 한 경우와도 비교해 보아야 할 것이다.

V. 결 론

전통적 교정술식인 edgewise technique으로 치료 한 경우 잔여성장, 안모 유형과 발치 여부가 안모고경 에 미치는 영향과 요소를 알아보고자 165 명을 대상으 로 조사하였다. 이 대상군들의 치료전후 측모두부방 사선사진 상에서 $\mathrm{SN}-\mathrm{GoGn}, \mathrm{FMA}, \mathrm{OMA}$ 각을 이용하 여 수직 비발치군, 수직 발치군, 수평 비발치군, 수평 발치군으로 구분하여 다음과 같은 결론을 얻었다.

1. 모든 군에서 치료 후의 전하안모고경, 전안모고경, 후안모고경이 유의하게 증가하였으며 상하악 구치 고경이 유의하게 증가하였다.
2. 안모고경의 변화에서 수직, 수평 안모 유형 간에 유의한 차이는 인정되지 않았다.
3. 발치군과 비발치군 간의 안모고경 변화는 유의한 차가 없었다.
4. 전하안모고경의 변화량이 성장군에서 상악 구치고 경의 변화와, 성인군에서 하악 구치고경의 변화와 유의한 상관성을 보였다.
5. 전하안모고경의 변화량에 영향을 미치는 요소는 뚜렷하지 않았다.

참 그 문 헌

1. Richardson A. Skeletal factors in anterior open-bite and deep bite. Am J Orthod 1969: 56:114-27.
2. Isaacson JR. Extreme variation in vertical facial growth and associated variation in skeletal and dental relations. Angle Orthod 1971: 41 : 219-29.
3. Kim YH. Overbite depth indicator with particular reference to anterior open-bite. Am J Orthod 1974:65:586-611.
4. Trouten JC, Enlow DH, Rabine M, Phelps AE, Swedlow D. Morphologic factors in openbite and deep bite. Angle Orthod 1983:53: 192-211.
5. 배근욱, 유영규. 악안면 두개골격의 수직, 수평적 부조화에 관한 두부방 사선 계측학적 연구. 대치교정지 1988:18:175-88.
6. 신문창, 장영일. 골격형 III급 부정교합자의 수직부조화에 관한 연구. 대

치교정지 $1990: 20: 333-54$.
7. Nielson IL. Vertical malocclusion: etiology, development, diagnosis and some aspects of treatment. Angle Orthod 1991:61:247-60.
8. 문성철, 장영일. Multiloop Edgewise Archwire기법으로 치료된 전치개 교증례의 두부방사선 사진 계측학적 평가. 대치교정지 1993:23:565606.
9. Janson GRP, Metaxas A, Woodside DG. Variation in maxillary and mandibular molar and incisor vertical dimension in 12-year-old subjects with excess, normal, and short lower anterior face height. Am J Orthod Dentofac Orthop 1994:106:409-18.
10. Schudy FF. Vertical growth versus anteroposterior growth as related to function and treatment. Angle Orthod 1964:34:75-93
11. Schudy FF. The rotation of the mandible resulting from growth : its implications in orthodontic treatment. Angle Orthod $1965: 35: 36-50$.
12. Bishara SE. The Role of mandible plane inclination in orthodontic diagnosis. Angle Orthod 1975: $45: 223-73$.
13. Wylie WL, Johnson EL. Rapid evaluation of facial dysplasia in the vertical plane. Angle Orthod $1952: 22: 165-82$.
14. Björk A. Prediction of mandibular growth rotation. Am J Orthod 1969 : 55:585-99
15. Schudy FF. Cant of the occlusal plane and inclination of teeth. Angle Orthod 1963:33:69-82.
16. Schudy FF. The control of vertical over-bite in clinical orthodontics. Angle Orthod $1968: 38: 19-39$.
17. Ricketts RM. The influence orthodontic treatment on facial growth and development. Angle Orthod 1960:30:103-31.
18. McLaughlin RP, Bennett JC. The extraction-nonextraction dilemma as it relates to TMD. Angle Orthod 1995: 65:175-86.
19. Kuhn RJ. Control of anterior vertical dimension and proper selection of extraoral anchorage. Angle Orthod $1968: 38: 340-9$.
20. Fields HW, Profitt WR, Nixon WL, Philip C, Stanek E. Facial patteren difference in longed-face children and adults. Am J Orthod 1984:85: 217-23.
21. Pearson LE. Vertical control through use of mandibular posterior intrusive forces. Angle Orthod 1973:43:194-200.
22. Yamaguchi K, Nanda RS. The effects of extraction and nonextraction on the mandibular position. Am J Orthod 1991:100:443-52.
23. Klapper L, Navarro SF. The influence of extraction and nonextraction orthodontic treatment on brachyfacial and dolichofacial growth pattern. Am J Orthod Dentofac Orthop 1992:101:425-30.
24. Vaden JL, Harris EF, Sinclair PM. Clinical ramifications of posterior and anterior facial height changes between treated and untreated Class II samples. Am J Orthod Dentofac Orthop 1994:105:438-43.
25. Staggers JA. Vertical changes following first premolar extraction. Am J Orthod Dentofac Orthop $1994: 105: 19-24$.
26. 강상훈, 남동석. I 급 부정교합자의 안면수직고경 딫 교합평면 경사도에 관한 치료전후 두부 X -선 계측학적 연구. 대치교정지 $1995: 25$: 111-28.
27. Nahoum HI. Vertical proportion and the palatal plane anterior openbite. Am J Onthod 1969:59: 273-82.
28. Sassouni V, Nanda S. Analysis of dentofacial vertical proportions. Am J Orthod 1964:50:801-23.
29. Sassouni V. Classification of skeletal facial types. Am J Orthod 1969 : 55: 109-23.
30. Subtelny JD, Sakuda M. Open-bite: Diagnosis and treatment. Am J Orthod $1964: 50: 337-57$.
31. Cangialosi TJ. Skeletal morphological features of anterior open bite. Am J Orthod 1984: $85: 28-36$.
32. Hapak FH. Cephalometric appraisal of the open-bite cases. Angle

Orthod 1964:34:65-72.
33. Elis E, McNamara SA. Components of adult Class III openbite malocclusion. Am J Orthod 1984:86:382-91.
34. Horm AJ. Facial height index. Am J Orthod Dentofac Orthop 1992 : 102: 180-6.
35. Cross JJ. Facial growth: Before, during, and following orthodontic treatment. Am J Orthod $1977: 71: 68-77$.
36. Nanda SK. Pattem of vertical growth in the face. Am J Orthod Dentofac Orthop 1988: 93 : 103-16.
37. Zaher AR, Bishara SE, Jakobsen JR. Posttreatment changes in different facial types. Angle Orthod 1994:64:425-35.
38. Schudy GF. Postreatment craniofacial growth: its implication in orthodontic treatment. Am J Orthod 1974:65:39-57.
39. Bishara SE, Jakobaen JR. Longitudinal changes in three normal facial types. Am J Orthod 1985: 88: 466-502.
40. Cook AH. Control of the vertical dimension in Class II correction using a cervical headgear and lower utility arch in growing. patientsPart I. Am J Orthod Dentofac Orthop 1994:106:376-88.
41. Cole HJ. Certain results of extraction in the treatment of malocclusion. Angle Orthod $1948: 8: 103-13$.
42. Tully WJ. The role of extractions in orthodontic treatment. Br Dent J 1959: 107: 199-205.
43. Wyatt NE. Preventing adverse effects on the temporomandibular joint through orthodontic treatment. Am J Orthod Dentofac Orthop 1987 : 91 : 493-9.
44. Chua AL. Joseph YS. The effects of extraction versus nonextraction orthodontic treatment of the growth of the lower anterior face height Am J Orthod Dentofac Orthop 1993: 104:361-68.
45. Creekmore TD. Inhibition or stimulation of vertical growth of the facial complex, Its significance to treatment. Angle Orthod 1967 : 37 : 285-97.
46. Cusimano CC. Effects of four first premolr extractions on the mandibular plane angle. Los Angeles: University of Southern Califonia, Department of Orthodontics, 1993.
47. Baumrind S, Korn EL, West E. Prediction of mandibular rotation : an empirical test of clinician performance. Am J Orthod 1984:86: 371-85.
48. Pearson LE. Vertical control in fully-banded orthodontic treatment. Angle Orthod 1986 : 56 : 205-24.
49. Dougherty, Harry L. The effect of mechanical forces upon the mandibular buccal forces upon the mandibular buccal segments during orthodontic treatment. Am J Orthod 1968:54:29-49, 83-103.
50 . Brown PA. A cephalometric evaluation of high-pull molar headgear and face-bow neck strap therapy. Am J Orthod $1978: 74: 621-32$.

Evaluation of factors influencing the change of vertical dimension of face after orthodontic treatment

Woo-Jeong Choi, Sang-Cheol Kim
Department of Orthodontics, College of Dentistry, Wonkwang University

The change of the vertical dimension is of fundamental importance to the orthodontist. However, the choice between the two methods of treatment, extraction versus nonextraction, is not clear. It is not verified that the extraction method decreases vertical dimension; or nonextraction methods result in an increase in vertical dimension.
The purpose of this study was to evaluate the changes of vertical dimension of face after the orthodontic treatment with standard edgewise technique, and to compare them in relation to facial types and bicuspid extraction.
The subjects consisted of 165 orthodontic patients (77 of adolescents, 88 of adults), and was divided into vertical nonextraction (VN) group, vertical extraction (VE) group, horizontal nonextraction (HN) group, horizontal extraction (HE) group. Pre-and Post-treatment cephalograms were taken with standard method, traced, and digitized for each subject. The comparison of the measurements were statistically executed with Student's t -test.

The results were as follows :

1. The facial height and molar height were increased after orthodontic treatment in the all groups.
2. No significant difference was found in the facial height change between the vertical and horizontal groups.
3. No significant difference was found in the facial height change between the extraction and nonextraction groups. 4. As the upper molars were extruded in adolescents group and lower molars were extruded in adults group, lower anterior facial height (LAFH) was increased.
4. None of the pretreatment variables correlates to the change of lower anterior facial height (LAFH).

KOREA. J. ORTHOD. 2001:31(2): 187-97

* Key words: Vertical dimension. Extraction. Non-extraction, Growth

[^0]: ${ }^{12}$ 원광대학교 치과대학 교정학교실, 대학원생.
 ${ }^{2)}$ 원광대학교 치퐈대학 꾜정학교실, 교수.
 표신저자:김상철
 전북 익산시 신룡동 344-2
 원광대학표 치가대학/063-850-1960
 sangkim@wonkwang.ac.kr

[^1]: * $: ~ \mathrm{P}<0.05$

