Segmented TMA T-loop spring에 의한 견치 후방이동시의 응력분포에 관한 광탄성법적 분석

유 필 식 ${ }^{11}$. 윤 영 줄) 김 광 원 ${ }^{3)}$

본 연구는 교정치료를 시행함에 있어 전치부 crowding을 해결하기 위한 견치의 단독견인 방법중 새로운 segmented TMA T-loop spring으로 견치 후방견인시 치근단과 그 주위 치조골에서의 응력상태를 알아보기 위해 시행되었다. PL-3 epoxy resin으로 광탄성 모형을 제작하여 B / L ratio가 $0.25,0.5,0.75$ 인 위치로 $\mathrm{T}-\mathrm{loop}$ 을 위치시키고 각 위치에서 $5 \mathrm{~mm}, 3 \mathrm{~mm}, 1 \mathrm{~mm}$ activation하였다. 이후 광탄성 응력 해석장치를 이용하여 견치견인시 치근단과 그 주위 치조골에서 의 초기 응력 상태를 광탄성법으로 분석한 바, 다음과 같은 결론을 얻었다.

1. T-loop 위치에 상관없이 activation량이 감소할수록 상악 1 소구치 발치부위에 응력이 감소하였고 상악 1 대구치의 함입응력은 증가하였다.
2. 5 mm activation시 T-loop위치가 구치부쪽으로 이동할수록 상악 1 소구치 발치부위에 응력이 증가하였다.
3. 3 mm activation시 T-loop위치가 구치부쪽으로 이동할수록 상악 1 소구치 발치부위와 상악 1 대구치 쳡측 근심치근 근심면하방 $1 / 2$ 부위에 응력이 증가하였다.
4. 1 mm activation시 T-loop위치가 견치쪽으로 이동할수록 상악 견치의 근심치근면 상방과 치근첨 하방의 응력이 증 가하였다.
5. B / L ratio가 0.25 이고 3 mm activation시 상악견치의 치체이동이 나타났다.

이상의 결과를 종합해불 때 segmented T-loop spring의 근,원심 위치와 activation량을 조절하여 원하는 치아이동과 고정원 조절이 가능하다고 사료된다.
(주요단어: Segmented TMA T-loop spring, 견치 후방견인, 광탄성 옹력분석)

I. 서 론

전치부의 총생이 심한 경우 부가적인 공간확보를

[^0]위해 치아의 발치가 필요하고 고정성 장치를 통해 적 절한 힘과 모멘트를 형성하여 발치공간으로 치아를 이동한다. 발치공간으로 치아를 움직이는 방법은 마 찰을 허용하면서 선재를 따라 치아가 이동하는 방법 (frictional system)과 선재에 공간폐쇄용 루프를 형 성하여 마찰 없이 치아를 이동하는 방법(non-frictional system)으로 구분한다 ${ }^{11}$. 마찰을 허용하는 방법은 선재를 따라서 치아가 이동하므로 선재와 브라켓 사 이에 마찰력이 발생하여 치아이동에 유용한 힘의 크 기가 감소된다. 마찰없이 치아를 이동하는 방법은 치 아이동에 요구되는 힘을 정확히 부여할 수 있고, 모멘

트 대 힘의 비율을 조절하여 원하는 치아이동을 도모 할 수 있다. Burstone ${ }^{2,3,4)}$ 에 의하여 개발된 segmented arch technique은 마찰 없이 치아를 움직이는 방법으 로 치아이동시 α (anterior)모멘트, β (posterior)모멘 트를 와이어 밴딩을 통해 조절할 수 있기 때문에 원 하는 치아이동(조절경사이동, 치체이동, 치근이동)을 얻을 수 있고 고정원 조절이 가능하다. 또한 loaddeflection rate가 스테인레스 스틸보다 낮은 TMA 와 이어를 사용하기 때문에 비교적 일정한 크기의 힘을 부여할 수 있고 힘의 크기를 정밀하게 예측하기가 용 이하다 ${ }^{5)}$. Burstone ${ }^{4)}$ 의 segmented TMA T-loop spring은 differential α / β 모멘트를 위해 asymmetric angulation preactivation bend를 하였다. 그러나 기존 의 segmented TMA T-loop spring이 이론적으로는 우수하나 임상 적용시 와이어를 구부려야하는 불편 때문에 기존의 T-loop spring을 개선하여 좀더 간편 히 사용할 수 있도록 new retraction spring ${ }^{6,7}\left(0.017^{\prime \prime}\right.$ $\times 0.025^{\prime}$ TMA)이 개발되었다. 즉, 이전의 T-loop spring이 preactivation bend량을 전후방에 다르게 주 어 모멘트를 다르게 한 반면, 새로운 T-loop spring은 전후방에 동일 량의 preactivation bend를 준 standard T-loop spring 한가지를 이용하여 loop의 위치만 변동시킴으로써 전후방에 서로 다른 모멘트를 발생 하게 하는 방법이다. 예를 들어 standard T-loop spring을 견치와 1 대구치사이의 중간에 위치시킨다 면 전후방에 동량의 모멘트가 발생하나 loop의 위치 를 보다 전방 또는 후방으로 위치시킨다면 loop가 근 접한 부위에 보다 큰 모멘트가 발생되어 고정원의 조 절이 가능하게 된다.

치아에 교정력이 가해질 때 치조골에 발생하는 응 럭을 분석하는 방법은 holography법, strain-gauge 법, 유한요소법, 광탄성법 등이 있는데 이중 광탄성법 은 교정장치의 힘에 의해 치근부위에서 생기는 내부 응력을 가시광선 형태로 전환시켜 모형에 형성되는 등색선을 통해 응력의 분포양상과 크기를 시각적으 로 볼 수 있는 효과적인 방법 ${ }^{8)}$ 으로 치과분야에서는 1935년 $\mathrm{Zak}^{9)}$ 이 처음으로 치조골내에서 교정력의 영 향에 대해 광탄성을 이용하여 연구한 이후 광탄성을 이용한 많은 연구들이 교정학 분야에서 보고되었는 데 Caputo ${ }^{10)}$ 는 견치 견인시 견치와 대구치에 나타나 는 응력을, Chaconas ${ }^{11)}$ 는 서로 다른 gable bend를 가 진 여러 종류의 견치견인 spring에 의해 발생되는 응 력을, Baeten ${ }^{12)}$ 은 견치 견인시 견치와 대구치에 발생 하는 응력을, $\mathrm{Brodsky}^{13)}$ 는 치근경사 이동시 광탄성

Fig. 1. Photoelastic model used in this study

모형의 응력분포와 생물학적 조직반응과의 연관성에 대해, Ayala ${ }^{14)}$ 는 J hook headgear로 견치 견인시의 응력을, Itoh ${ }^{15)}$ 는 protraction headgear의 응력에 대해 연구하였고 국내에서도 많은 연구 ${ }^{16,17,18,19,20,21,22,23)}$ 가 발표되었다.

본 연구는 교정치료를 시행함에 있어 전치부 총생 을 해결하기 위해 견치를 단독으로 견인하는 방법중 새로 개발된 segmented TMA T-loop spring으로 견 치 후방견인시의 치근단과 그 주위 치조골에서의 응 력상태를 광탄성법으로 비교 연구한 바 다소의 지견 을 얻었기에 보고하고자 한다.

II. 연구재료 및 방법

가. 연구재료

1. 치아모형

상악견치, 2 소구치, 1 대구치를 Wheeler ${ }^{24)}$ 의 기준에 맞는 크기와 형태를 가지면서 PL-3보다 경질인 레진 치아를 이용하였다.

2. Bracket

상악 견치에는 Burstone vertical-tube 브라켓을, 2 소구치에는 $.018^{\prime \prime}$ slot의 standard edgewise 브라켓 을, 1 대구치에는 보조튜브가 있는 convertible 브라켓 을 밴드에 납착한 후 치아에 접착하였다.
3. 치조골 모형

상악견치부터 1 대구치까지 $0.017^{\prime \prime} \times 0.025^{\prime \prime}$ 스테인 레스 스틸 와이어를 1 소구치를 제외한 작 치아모형의 브라켓에 결찰하여 고정한 후 사각형의 실리콘 고무 틀에 위치시켰다. 이후 PL-3 type epoxy resin과 경

A)
A) Standard form

B)
B) 125% angulation

C)
C) 100% angulation

Fig. 2. 0.017×0.025-inch TMA T-loop spring shape.

Table 1. The formula of force system
B / L ratio $=0.25,0.5,0.75$
$\mathrm{L}=\mathrm{ITD}-\mathrm{A}$
L : spring 길이
A: activation량
ITD: 1대구치 auxiliary tube의 mesial에서 견치 vertical tube까지 거리
$\mathrm{B}: \mathrm{T}$-loop의 중앙부에서 견치 bracket에 90° bending하는 곳까지 거리

화제의 무게비를 $1: 1.5$ 로 하고 각각의 용기에 담아 약 $55^{\circ} \mathrm{C}$ 에서 1 시간 가량 예열한 후 서로 혼합하여 6 $0^{\circ} \mathrm{C}$ 에 이를 때 치아가 고정되어 있는 실리콘 고무틀 에 기포가 생기지 않게 천천히 치아의 CEJ 하방 1 mm 까지 부어 1 소구치 발치상황을 광탄성 모형으로 재현 하였다. (Fig. 1).

나. 연구방법

Prefabricated $0.017^{\prime \prime} \times 0.025^{\prime \prime}$ TMA segmented T-loop spring(Ormco Corp.)(Fig. 2, A)을 사용하여 template(Fig. 2, B)의 125% angulation에 맞게 Preactivation 밴딩을 한 후 trial activation을 실시하 여 다시 template(Fig. 2, C)의 100\% angulation에 맞 춰보아 spring의 잔류응력을 제거하고 안정성을 평가 하였다 ${ }^{6)}$.

이후 B / L ratio가 $0.25,0.5,0.75$ 인 위치로 $\mathrm{T}-\mathrm{loop}$ 을 위치시키고 각 위치에서 $5 \mathrm{~mm}, 3 \mathrm{~mm}, 1 \mathrm{~mm}$ activation 을 광탄성 모델에 적용(Table $1 \& 2$, Fig. 3)한 다음 광

Fig. 3. Illustration of placement of T-loop.

Table 2. Spring length \& T-loop position according to activation

	$\mathrm{B} / \mathrm{L}=0.25$				$\mathrm{~B} / \mathrm{L}=0.5$				$\mathrm{~B} / \mathrm{L}=0.75$		
$\mathrm{~A}(\mathrm{~mm})$	5	3	1	5	3	1	5	3	1		
$\mathrm{~L}(\mathrm{~mm})$	16	18	20	16	18	20	16	18	20		
$\mathrm{~B}(\mathrm{~mm})$	4	4.5	5	8	9	10	12	13.5	15		

* $\mathrm{ITD}=21 \mathrm{~mm}$

탄성 응력 해석장치를 이용하여 카메라로 촬영하였 다(Fig. 4).

응력분포 양상은 최대 주응력과 최소 주응력의 차 인 전단응력 성분의 크기에 따라 다색상의 반복무늬 로 나타나는데 등색선을 추적하여 무늬차수를 분석

Fig. 4. Circular polariscope arrangement.

하였다. 이러한 등색선은 black/yellow/red/bluegreen/yellow $/ \mathrm{red} / \mathrm{green} / \mathrm{yellow} / \mathrm{red} / \mathrm{green}$ 등의 반복 된 순서로 나타나는데 red와 green 사이를 무늬차 (fringe order)라 하고 black이 0 차, red와 blue-green 사이가 1 차, 두번째 red와 green사이가 2 차, 세번째 red와 green사이가 3 차무늬차로 분석된다. 무늬차수 가 증가할수록 응력이 증가하는 것으로 평가하였다 ${ }^{231}$

III. 연구성적

B / L ratio가 $0.25,0.5,0.75$ 인 위치로 T-loop을 위치 시키고 각 위치에서 $5 \mathrm{~mm}, 3 \mathrm{~mm}, 1 \mathrm{~mm}$ activation한 다음 광탄성법에 의해 발생된 응력분포를 절대적인 크기보다는 상대적인 응력차이를 관찰하여 아래의 결과를 얻었다.

1. B / L ratio $=0.25$ (T-loop이 전방 위치한 경우)

1) 5 mm Activation

견치의 경우 Black인 0 차의 무늬차수가 나타나는 치근첨으로부터 $1 / 5$ 위치를 회전중심으로 근심치근면 상방은 인장, 하방은 압축력에 의한 0.6 차의 응력이 관찰되었고 1 대구치의 경우도 구개측 치근의 치근첨 으로부터 $1 / 4$ 위치를 회전중심으로 원심치근면 상방 은 인장, 하방은 압축력에 의한 0.6 차의 응력이 관찰 되었다. 또한 1 소구치 발치부위 치조정에 1.2 차의 응 력이 집중되는 양상을 보였다. (Fig. 6, a).

2) 3 mm Activation

견치의 근심치근면에는 응력이 거의 작용하지 않 는 상태였고 원심치근면에만 0.6 차의 압축응력이 고

Fig. 5. No T-loop spring

르게 관찰되었다. 1 대구치 협측 근심치근의 근심치근 면 하방 $1 / 3$ 에 0.8 차의 응력이 나타났고 2 소구치 원심 치근면 하방에 0 차의 black 무늬가 관찰되었다. (Fig. 6 , b).
3) 1 mm Activation

견치의 경우 치근첨으로부터 $1 / 5$ 위치를 회전중심 으로 근심치근면 상방과 치근첨 하방부에 분포된 0.6 차의 응력이 관찰되었고 2소구치 원심 치조정부위에 1.2 차의 압축응력이, 1 대구치 치근하방에 넓은 0.6 차 의 응력이 분포되어 나타냈다. (Fig. 6, c).

2. B / L ratio $=0.5$ (T-loop이 중앙예 위치한 경우)

1) 5 mm Activation
B / L ratio $=0.25,5 \mathrm{~mm}$ activation한 경우와 거의 같 은 형태의 응력분포를 나타내고 있으나 1대구치 원심 부에 형성되는 광탄성 무늬가 작게 나타넜고 1소구치

Fig. 6. B / L ratio $=0.25$

a) 5 mm Activation

b) 3 mm Activation

c) 1 mm Activation

Fig. 7. $B /$ L ratio $=0.5$

Fig. 8. B / L ratio $=0.75$

발치부위 치조정에는 보다 큰 2.0 차의 응력이 관찰되 었다. (Fig. 7, a).

2) 3 mm Activation

B / L ratio $=0.25,3 \mathrm{~mm}$ activation한 경우와 비교했 을 때 견치의 치근첨으로부터 $1 / 5$ 위치를 회전중심으 로 근심치근면 상,하방에 약간의 응력이 관찰되었고 1 대구치 협측 근심치근에 1.0 차의 응력과 1 소구치 발

치부위 치조정에 1.0 차의 응력이 나타났다. (Fig. 7, b).

3) 1 mm Activation

B / L ratio $=0.25,1 \mathrm{~mm}$ activation한 경우와 비교했 을 때 견치 근심치근면 상방과 치근첨 하방의 응력은 감소했고 원심치근면의 응력이 증가되어 관찰되었다. (Fig. 7, c).

3. B / L ratio $=0.75$ (T-loopO이 후방 위치한 경우)

1) 5 mm Activation

B / L ratio $=0.5,5 \mathrm{~mm}$ activation한 경우와 비교해 서 견치 치근 근심면에 형성되는 응력무늬가 더욱 밝 아졌고, 1 소구치 발치부위에 넓게 분포하는 2.2 차의 응력이 관찰되었다. (Fig. 8, a).

2) 3 mm Activation

B / L ratio $=0.5,3 \mathrm{~mm}$ activation한 경우와 비교해 서 견치의 회전중심을 기준으로 근심치근면 상,하방 의 응력이 증가함이 나타넜고 1대구치 혘측 근심치근 에 1.2 차의 응력과 1 소구치 발치부위 치조정에 1.2 차 의 응력이 관찰되었다. (Fig. 8, b).

3) 1 mm Activation

B / L ratio $=0.5,1 \mathrm{~mm}$ activation한 경우와 비교해 서 견치 근심치근면 응력의 무늬 밝기가 감소되어 나 타났다. (Fig. 8, c).

IV. 총괄 및 고안

치아에 교정력이 가해지면 치조골에 전달되어 생 물학적 변화에 의해 치아의 이동이 일어나게 된다. 이 때 치조골에 의해 운동이 제한된 치아의 한 지점에 힘을 가했을 때 경사이동 없이 치체이동이 일어나는 점을 저항중심이라고 하는데 치아의 저항중심은 단 근치인 경우 치아장축상에 있으며 치조정에서 치근 단쪽 치근길이의 $1 / 3-1 / 2$ 사이에 위치하고 있다 ${ }^{1,25,26)}$. 힘의 작용점과 저항중심간의 관계에 따라 치아 이동은 일반적으로 치체이동, 경사이동 그리고 경사 이동과 치체이동이 혼합되는 세가지 형태중 하나로 나타날 수 있다 ${ }^{27)}$. 치아이동은 회전중심과 모멘트를 이용하여 좀더 정확하게 설명될 수 있다. 즉 모멘트의 크기와 브라켓에 적용되는 힘 사이의 비율(M/F ratio)에 의해 치아이동이 결정된다. 브라켓에 단지 단일 힘만을 가하게 되면 회전중심은 저항중심의 바로 아 래에 위치하게 되어 치아이동은 비조절성 경사이동 이 일어나게 된다. 하지만 모멘트가 증가하면서 회전 중심은 치근단쪽으로 이동하여 조절성 경사이동이 일어나며 무한대가 되면서 치체이동이 일어난다. 만 약 브라켓과 저항중심 사이의 거리가 10 mm 라고 가 정하면 M / F ratio가 $0 / 1$ 일때는 비조절성 경사이동을, 5/1-7/1인 경우에는 조절성 경사이동을, $10 / 1$ 인 경우

에는 치체이동을 하며 $12 / 1$ 또는 그 이상일 경우에는 치근이동을 하게된다 ${ }^{6,28,29)}$.

치아 이동시에는 뉴턴의 제3법칙인 작용과 반작용 의 법칙이 적용되는데 움직이는 치아에 저항할 수 있 는 고정원이 필요하다. 발치공간으로의 치아이동은 전치부와 구치부의 이동량, 즉 고정원에 따라 3 가지 형(A, B, C 형)으로 분류할 수 있다 ${ }^{4,13)}$. A형은 구치부 위치를 최대로 고정하며(maximum anchorage), B 형 은 전치부와 구치부의 이동을 반반씩하고(moderate anchorage), C형은 전치부의 위치를 최대로 고정 (minimum anchorage)할 때 사용한다. 발치공간으로 치아이동시 고정원을 조절하기 위한 많은 방법들이 발표되었는데 Tweed의 tip-back bend, Tip-edge mechanics, intermaxillary elastics, headgear등을 이 용하여 전치부와 구치부에 서로 다른 모멘트와 힘을 적용하여 $\mathrm{M} / \mathrm{Fratio}$ 를 조절할 수 있다잉. . Burstone의 segmented arch technique 에서도 M/F ratio를 술자 의 임의대로 조정할 수 있기 때문에 고정원 조절이 가능하다. 즉 전치부와 구치부에 적용되는 힘은 같지 만 T-loop의 위치이동을 통해 전치부와 구치부의 M / F ratio를 다르게 조절함으로써 한쪽은 조절성 경 사이동 $(\mathrm{M} / \mathrm{F}=7)$ 이 다른쪽은 치근이동 $(\mathrm{M} / \mathrm{F}=12)$ 이 일 어나게 되어 치근이동보다 조절성 경사이동이 빠르 게 일어나기 때문에 고정원을 조절할 수 있다. 또한 이동되는 치아도 처음에는 조절성 경사이동이 일어 나나 점차 발치공간이 폐쇄되면서 M/F ratio가 증가 하여 치체이동, 치근이동이 일어나므로 치근의 평행 이 이루어질 수 있다 ${ }^{4,3,3,311}$.

Burstone은 B/L ratio가 0.25 일 때는 T-loop이 보 다 전방부(견치)에 위치하여 M / F ratio가 구치부보다 전방부에 크게 형성되며, 0.5 일 때는 중앙에 위치하여 전후방 같은 량의 M / F ratio가 형성되고, 0.75 일 때는 후방부(구치부)에 보다 큰 M/F ratio가 발생됨을 실 험적 결과로 발표했다. ${ }^{6}$

본 실험에서는 B / L ratio가 $0.25,0.5,0.75$ 인 위치로 T-loop을 위치시키고 각 위치에서 $5 \mathrm{~mm}, 3 \mathrm{~mm}, 1 \mathrm{~mm}$ activation한 후 광탄성법을 이용하여 각각의 응력분 포를 시각적으로 관찰하였다.
B / L ratio가 0.25 일 때 견치의 경우 5 mm activation 시 치근첨으로부터 $1 / 5$ 부위를 회전중심으로 치관이 원심으로 회전하는 경사이동 양상이 나타났고 3 mm activation시에는 원심치근면에 응력이 집중되는 치 체이동 양상이, 1 mm activationt시에는 치근첨이 원 심으로 이동하는 치근이동의 응력분포 양상을 보였

다. B / L ratio가 $0.5,0.75$ 일때도 activation랑이 감소할 수록 견치의 경사이동 양상이 점점 감소하고 치근이 동의 응력무늬가 증가하는 양상을 나타냈다. 구치부 의 경우는 1 대구치와 2 소구치가 와이어로 연결되어 있고 1 대구치는 3 개의 치근이 존재하므로 B / L ratio 와 activation량에 따른 다양한 응력분포양상을 정확 히 분석하기 어려웠다. T-loop이 삽입되는 1 대구치의 경우 보조튜브의 수평길이가 길어 activation량이 감 소할수록 모멘트효과가 1 대구치의 합입력으로 전환 되어 치근하방에 응력분포가 증가되어 나타났다. 또 한 M / F ratio상 1 대구치와 2 소구치가 치체이동의 전 방이동럭을 받게되어도 1 대구치의 전방이동력이 2 소 구치에 전달되어 2소구치에는 경사이동 양상의 응력 분포가 나타난 것으로 사료된다. T-loop위치에 상관 없이 즉 B / L ratio에 관계없이 activation량이 감소할 수록 1 소구치 발치부위 치조정에 집중되는 응력이 감 소함이 관찰되었는데 이는 activation량 감소에 따른 M / F ratio증가로 치근부위는 서로 접근하고 치관부 위는 멀어지려는 힘이 작용하였기 때문인 것으로 사 료된다. 5 mm activation시 발생되는 수평력은 거의 동일하지만 T-loop 위치가 구치부로 이동할수록 1소 구치 발치부위에 응력의 증가현상이 관찰되었다. 이 는 T-loop 위치가 구치부쪽으로 이동할수록 견치의 $\mathrm{M} / \mathrm{Fratio}$ 가 감소하여 점점더 발치와쪽으로 경사이 동되는 현상의 증가가, T -loop위치가 견치로 이동할 수록 구치부 경사이동의 증가보다 발치부위 응럭의 증가에 더 많은 영향을 끼첬을 것으로 사료된다. 3 mm activation시 T -loop위치가 구치부로 이동할수 록 발치부위 응력이 증가하였는데 이 역시 위의 5 mm activation시와 같이 견치의 경사이동 현상 증가가 발 치부위 응력증가에 영향을 끼쳤을 것으로 사료되었 고 1 대구치 협측 근심치근 근심면 하방 $1 / 2$ 의 응럭또 한 증가하는 양상이 관찰되었는데 이는 T -loop이 후 방위치 할수록 1 대구치의 M / F ratio가 증가하여 치근 이동 양상이 증가한 것으로 사료된다. 1 mm activation시는 T-loop이 견치로 이동할수록 견치의 치근 이동 양상이 증가되어 나타났다.

이상의 결과에서 T-loop의 위치에 따라 견치와 구 치부에 서로 다른 M / F ratio가 형성되어 고정원의 조 절이 가능하고 activation량이 줄어듦에 따라 M / F ratio가 증가하여 root movement에 의한 치근평형이 이루어진다는 Burstone의 실험결과와 거의 일치됨을 알 수 있었다.

본 실험에서 $5,3,1 \mathrm{~mm}$ activation한 이유는 T-loop
spring이 deactivation 되어감에 따른 치아이동 양상 의 변화여부를 파악하기 위해서였고, 2 대구치를 제외 한 이유는 2 대구치가 단지 고정원의 역할만을 할 것 이라 판단했기 때문이다.

임상에서 견치를 후방으로 견인하는 경우는 부가 적인 공간을 확보하여 전치부의 심한 총생을 해소 하 고자 하는 경우이다. 이와 같이 spring의 위치에 따라 서로 다른 모멘트를 얻을 수 있고 공간페쇄에 의한 spring deactivation시에도 전후방에 동일한 모멘트의 차이가 계속 발생되기 때문에 고정원을 조절해야하 는 임상적인 경우에 유용하게 사용할 수 있다. 그러나 약간의 spring위치변화에도 서로 다른 모멘트가 형성 되기 때문에 부작용이 발생할 수도 있다 ${ }^{22,24)}$. 또한 T-loop spring에 의해 발생되는 힘과 모멘트는 와이 어 크기, 재료, spring의 형태, spring의 위치, activation량 등에 따라 변화하기 때문에 정확한 치아이동 을 통한 만족스런 치료결과를 위해서는 spring을 정 확히 조절할 수 있는 술자의 숙련된 기술이 필요하리 라 사료된다.

본 연구에서는 단순한 2 차원적인 광탄성 모형을 이 용하였기에 실제의 치조골과 치아 사이에 발생되는 응력분포와는 차이가 있으리라 사료되며 이를 보완 하기 위해서는 치조골과 치아의 탄성계수와 일치하 는 진보된 재료로 인간의 악골구조와 동일한 삼차원 적인 모형을 통해 계속적인 연구가 필요하리라고 사 료된다.

V. 결 론

임상교정학 분야에서 많이 사용되고 있는 Burstone의 segmented TMA T-loop spring으로 견치견 인시 치근단과 그 주위 치조골에서의 초기 응력 상태 를 광탄성법으로 분석한 바, 다음과 같은 결론을 얻었 다.

1. T-loop 위치에 상관없이 activation량이 감소할수 록 상악 1 소구치 발치부위에 응력이 감소하였고 상 악 1 대구치의 함입응력은 증가하였다.
2. 5 mm activation시 T -loop위치가 구치부쪽으로 이 동할수록 상악 1 소구치 발치부위에 응력이 증가하 였다.
3. 3mm activation시 T-loop위치가 구치부쪽으로 이 동할수록 상악 1 소구치 발치부위와 상악 1 대구치 협측 근심치근 근심면하방 $1 / 2$ 부위에 응력이 증가

하였다.
4. 1 mm activation시 T-loop위치가 견치쪽으로 이동 할수록 상악 견치의 근심치근면 상방과 치근첨 하 방의 응력이 증가하였다.
5. B / L ratio가 0.25 이고 3 mm activation시 상악견치 의 치체이동이 나타났다.

이상의 결과를 종합해볼 때 segmented T-loop spring의 근,원심 위치와 activation량을 조절하여 원 하는 치아이동과 고정원 조절이 가능하다고 사료된 다.

참 고 문 헌

1. 전국치과대학 교정학 교수헙의회. 치과교정학, 서울 : 지성출판사, 1999 : 364-82.
2. Burstone CJ. The rationale of the segmented arch. Am J Orthod 1962 : 48: 805-21.
3. Burstone CJ. The mechanism of the segmented arch technique. Angle Onthod 1966:36:99-120.
4. Burstone CJ. The segmented arch approach to space closure. Am J Orthod 1982: 82 :361-378.
5. Burstone CJ, Goldberg AJ. Beta-titanium : A new orthodontic alloy. Am J Orthod 1980:77:121-32.
6. 박영철. 최신교정치료학 (Segmented arch technique), 서울:지성출판사, 1995: 73-116.
7. Paul Gjessing. Biomechanical design and clinical evaluation of a new canine retraction spring. Am J Orthod $1985: 87: 353-62$.
8. 김형일. 광탄성 응럭분석 개요, 부산치대논문집 $1983: 5: 87-92$.
9. Zak B. Photoelastic analysis in der orthodontischen meahanik. Oesterr Z Stomatol 1935:33: 22-37.
10. Caputo AA. Photnelastic visualization of orthodontic forces during canine retraction. Am J Orthod 1974:65:250-9.
11. Chaconas SJ. Effects of wire size, loop configuration, and gabling on canine -retraction spring. Am J Orthod 1974:65:58-71.
12. Baeten LR. Canine retraction: A photoelastic study. Am J Orthod

1975: 67:11-23.
13. Broosky JF. Root tipping : A photoelastic histopathologic correlation. Am J Orthod 1975:67:1-10.
14. Ayala. Canine retraction with J hook headgear. Am J Orthod 1980:7 8:538-47.
15. Itoh T. Photoelastic effects of maxillary protraction on the craniofacial complex. Am J Orthod 1985: 87: 117-24.
16. 고기영. Transpalatal Lingual Arch에 의한 골내응력 분포에 관한 광탄 성학적 연구, 대치교정지 1997:27:711-21.
17. 김광호. 각종의 headgear를 이용한 정형력이 두개안면골에 미치는 영향 에 관한 광탄성학적 연구, 대치교정지 1986:16:71-81.
18. 백혜정, 백형선. 상악 전치부 Intrusion시 초기응력 분포에 관한 광탄성 학적 분석, 대치교정지 1997:27:401-9.
19. 이승호, 김정기. MEAW의 응력분포에 관한 광탄성학적 연구, 대치교정 지 1994:24:969-82.
20. 이형철, 전윤식. TMA wire로 제작된 3종류의 MVLAW의 초기응력 분 포에 관한 광탄성학적 연구, 대치교정지 1995:25:73-85.
21. 염정배, 이병태. MEAW가 야기하는 응력분포에 관한 광탄성학적 연구, 대치교정지 $1990: 20(2): 267-81$.
22. 전윤식. 3종류의 구치부 uprighting spring의 초기응력 분포에 관한 광탄 성학적 연구, 대치교정지 $1994: 24(3): 709-19$.
23. 최진휴, 김종철. Molar uprighting spring에 의해 발생되는 치조골내의 응력분포에 관한 광탄성학적 연구, 대치교정지 $1991: 21: 353-66$.
24. Wheeler RC. Dental anatomy, physiology and occlusion, 6th ed. Philadelphia 1984
25. Burstone CJ, Pryputniewicz RJ. Holographic determination of center of rotation produced by orthodontic forces. Am J Orthod 1980:77: 396-409.
26. Shigeyuki M, Caputo AA. Center of resistance of anterior arch segment. Am J Orthod Dentofac Orthop 2000: 118: 171-8.
27. Smith RJ, Burstone CJ. Mechanics of tooth movement. Am J Orthod 1984:85:294-307.
28. Kusy RP, Tulloch JF. Analysis of moment/force ratios in the mechanics of tooth movement. Am J Orthod 1986:90:127-31.
29. Tanne, Koenig. Moment to force ratios and the center of rotation. Am J Orthod Dentofac Orthop 1988:94:426-31.
30. Kuhlgerg, Burstone. T-loop posotion and anchorage control. Am J Orthod Dentofac Orthop 1997: 112:12-8.
31. Hoenigl et al. The centered T-loop - a new way of preactivation. Am J Orthod Dentofac Orthop 1995:108:149-53.

ABSTRACT -

A photoelastic study of the stress distribution on canine retraction by segmented TMA T-loop spring.

Pil-Sik Yu, Young-Jooh Yoon, Kwang-Won Kim
Department of Orthodontics, College of Dentistry, Chosun University

The segmented TMA T-loop spring, used for reciprocal space closure and described by Burstone, was used to achievebodily movement of canine. Photoelastic analysis is a technique for the transformation of internal stress into visible light patterns. The two-dimensional photoelastic stress analysis was performed, and stress distribution was recorded by photography. The purpose of this study was to visualize photoelastically the distribution of forces transmitted to the alveolus and surrounding structures using new segmented TMA T-loop spring for canine retraction.

The results were as follows:

1. Decreased activation produced decreased stress of upper 1st. premolar extraction site and increased intrusive stress of upper 1st. molar, regardless of T-loop position.
2. At 5 mm activation, More posterior positioning of T-loop produced an increased stress in upper 1st. premolar extraction site.
3. At 3 mm activation, More posterior positioning of T-loop produced an increased stress in upper 1st. premolar extraction site and mesial lower half of upper 1st. molar mesio-buccal root.
4. At 1 mm activation, More anterior positioning of T -loop produced an increased stress in upper mesial and blew apex area of upper canine root.
5. $0.25 \mathrm{~B} / \mathrm{L}$ ratio and 3 mm activation produced bodily movement of canine.

To summarize, desired tooth movement and anchorage requirement is possible by altering the activation and mesio-distal position of the T -loop spring.

KOREA. J. ORTHOD. 2001:31(2):199-207
※ Key words : Segmented TMA T-loop spring. Canine retraction. Photoelastic analysis

[^0]: 1) 조선대학꾜 치과대학 꾜정학 꾜실 전공의.
 ${ }^{2)}$ 조선대학꾜 치가대학 꾜정학 꾜실 조교수.
 ${ }^{3)}$ 조선대학교 치과대학 꾜정학 꾜실 꾜수. 표신저자 : 유필식
 광주 광역시 동구 서석동 421.
 조선대학꾜 치과병원 꾜정파
 Yupilsik@Korea.com
