한국인 성인의 교근 두께에 관한 초음파검사적 연구

이 연 희 ${ }^{1)}$.차 봉 근 ${ }^{2)}$. 박 인 우 ${ }^{3)}$

Abstract

일반적으로 골의 형태와 구조는 부착 근육의 활성과 밀접한 관련이 있다고 알려져 있으며, 특히 악안면 형태와 저작 근 기능과의 관계는 많은 임상 및 동물 실험을 통해 연구되어 왔다. 초음파검사는 임상적 적용이 용이하고 비용이 저렴할 뿐만 아니라 환자에 대한 유해성이 적어 의학분야의 여러 영 역에서 널리 이용되고 있다.

이 연구의 목적은 교근의 두께와 악안면 골격 형태와의 상관성을 평가하는 것으로, 강릉대학교 치과대학 남학생 35 명과 여학생 15 명을 대상으로 하였다. 교근의 두께 측정에는 7.5 MHz 의 고해상도 직선 탐촉자에 의한 초음파진단장치 가 사용되었고, 악안면 골격 형태의 결정은 측방 두부계측방사선사진 분석을 통해 이루어졌다. 이상의 계측치로부터 얻어진 결론은 다음과 같다.

1. 남자에서 교근의 평균 두께는 안정 상태에서는 $13.8 \pm 1.71 \mathrm{~mm}$, 최대 교합 상태에서 $14.8 \pm 1.77 \mathrm{~mm}$ 였으며 여자에서는 안정 상태에서 $11.6 \pm 1.58 \mathrm{~mm}$, 최대 교합 상태에서 $12.4 \pm 1.47 \mathrm{~mm}$ 로 나타났다.
2. 교근의 두께는 남녀모두 안정 상태보다 최대 교합 상태에서 유의하게 증가하였다 $(\mathrm{P}<0.05)$.
3. 교근의 두께는 안정 상태와 최대 교합 상태 모두에서 남자가 여자보다 유의하게 두꺼웠다 $(\mathrm{P}<0.05)$.
4. 교근의 두께는 남자에서 안정 상태와 최대 교합 상태 모두 하악평면각과는 음의 상관 관계가 있고 하악지 고경, 전두개저 길이와는 양의 상관 관계가 있음을 알 수 있었다 $(\mathrm{P}<0.05)$.
5. 여자에서는 교근 두께와 유의한 상관 관계가 있는 두부계측방사선사진 분석 항목을 찾을 수 없였다 $(\mathrm{P}<0.05)$. 이로써초음파검사는 악골 근육의 기능을 평가하는 전통적인 방법에 대해 추가적인 정보를 제공해 줄 수 있을 것으 로 사료된다.
(주요단어 : 교근, 측방 두부계측방사선사진 분석, 악안면 골격 형태, 초음파검사)

I. 서 론

골의 형태와 구조는 부착 근육의 활성과 밀접한 관 련이 있다 ${ }^{1-6)}$. Wolff ${ }^{1 /}$ 는 대퇴골 두부의 모양과 내부

[^0]구조가 하지의 기능과 밀접한 관련이 있다고 지적했 으며, Moss^{2} 는 안면의 성장이 연조직에 의해 중개되 는 기능적인 요구에 대한 반응으로서 일어난다고 보 고하였다. Goldstein ${ }^{33}$ 도 실험 연구를 통해, 반복되는 기계적 웅력과 이에 따른 골조직의 형태적 변화 사이 에는 유의할만한 상관 관계가 있다고 보고한 바 있다. 이러한 이론은 악안면 골격계에도 적용할 수 있다. Beecher ${ }^{4}$ 등은 교합 기능에 의한 근육의 자극이 안면 구조의 조화로운 발육에 중요한 역할을 한다고 보고 하면서, 분말과 액상형의 유동성 음식 섭취에 의해 근 육의 크기 및 활성이 감소되고 이에 따라 골 침착이

감소되어 하악골 성장에 영향을 줄 수 있다고 지적하 였다. Kuroe ${ }^{5)}$ 등도 인류의 식습관 변화에 의한 저작계 기능의 감소를 언급하면서, 저작시 기능적 자극이 부 족하면 과두를 포함한 하악골 전반의 저발육을 가져 올 수 있다고 보고하였다. Durkin ${ }^{6)}$ 은 발생학적으로 악안면 영역의 골은 주로 막성골이기 때문에 연골 골 화에 의해 형성된 사지의 장골과 비교해 근육 자극의 영향 등과 같은 환경적 요소에 더 많이 영향을 받는 다고 주장하였다.
악안면 영역의 근육 중에서 저작근의 기능은 전통 적으로 근전도 검사 ${ }^{77}$, 교합력 검사 ${ }^{87}$ 및 근육 검시 ${ }^{9}$ 등 의 간접적 방법으로 평가되어 왔으며, 최근에는 컴퓨 터 단층촬영, 자기공명영상등을 이용한 연구들이 시 도되고 있다 ${ }^{10-13)}$. Weijs ${ }^{10,11)}$ 등은 컴퓨터 단층촬영을 통한 연구에서 교근의 횡단면적은 전안면 고경, 하악 각과는 음의 상관 관계가 있고 두부 폭경, 하악골 장 경과는 양의 상관 관계가 있다고 보고하였으며, Gionhaku ${ }^{12)}$ 역시 컴퓨터 단층촬영을 통한 연구에서 교근 의 부피와 하악평면각 및 하악각과 밀접한 관계가 있 음을 보고하였다. 또한 Spronsen ${ }^{13}$ 은 자기공명영상과 컴퓨터 단층촬영을 이용한 연구에서 저작근의 횡단 면적과 부피는 최대 교합력과 관련이 있음을 보여주 었다.

의학분야 특히 산부인과의 산전 관리, 심장혈관계 질환 및 비뇨기관련 질환 등의 진단 영역에서 널리 이용되고 있는 초음파검사는 대상물을 직접 실시간 으로 관찰할 수 있고 신속한 측정이 가능하며, 방사선 피폭의 염려없이 여러 번의 반복 검사가 가능하다는 장점이 있다 ${ }^{14,15)}$. 초음파는 사람이 들을 수 있는 주파 수 범위 이상의 진동수를 갖는 소리로 $20,000 \mathrm{~Hz}$ 30 MHz 범위를 가지며, 이 중 인체 진단용으로는 보 통 $1 \mathrm{MHz}-20 \mathrm{MHz}$ 영역을 이용하게 된다. 초음파는 빛과 유사하게 직진하고 반사하는 성질을 갖고 있으 며, 기체 중에서는 전파가 어렵고 액체나 고체에서는 전파가 용이하다. 인체내에서는 실질 장기나 근육, 지 방 등의 조직을 잘 통과하나, 고체라 하더라도 골과 석회가 침착된 표면에서는 강하게 반사되므로 통과 가 어렵다 ${ }^{14,15)}$. 초음파진단장치의 변환기에서 발신된 초음파는 생체내를 통과하면서 성질이 다른 조직이 나 장기의 경계면에 도달하여 반사파(echo)가 발생되 게 된다. 발생된 반사파는 탐촉자에 의해 반복적으로 수신되면서 적절한 전기적 신호처리를 거쳐 영상화 된다 ${ }^{14,15)}$.
치과 영역에서의 초음파검사의 이용은 비교적 최

근에 시도되었으며 저작근의 두께와 골격 형태에 대 한 상관성 연구에 집중되고 있다 ${ }^{16-199}$. 그러나 이들 연 구는 주로 서양인을 대상으로 하였으며 연구 대상의 선정 기준이나, 좌우측 저작근의 비교 및 남녀 성차의 비교 등에 대한 연구가 아직 미흡한 상태이다. 이에 본 연구에서는 한국인 성인 남녀의 평균적인 교근 두 께를 측정하고, 이와 악안면 골격 형태 사이의 상관 관계를 규명하여 추후 연구의 기초 자료로 삼고자 한 다.

II. 연구재료 및 방법

1. 연구대상

강릉대학교 치과대학 학생으로 평균 연령이 25.8 세 (22.8-38.3세)인 남자 35명, 여자 15명을 대상으로 하였으며 다음과 같은 기준에 의해 실험 대상을 선정 하였다.

1) 전반적인 교정치료를 받은 경험이 없는 자
2) 임상 검사와 후전방 두부계측방사선사진 분석상 에서 뚜렷한 악안면 골격의 비대칭 소견이 없는 자
3) 임상적으로 측두하악관절 장애 소견이 없는 자 4) 선천적, 후천적으로 결손된 치아가 없는 자

2. 연구 방법

1) 교근의 두께 측정
7.5 MHz 의 고해상도 직선전자 탐촉자에 의한 초음 파진단장치(SA-6000 ${ }^{\circledR}$, Medison)를 이용하였으며, B -모드에서 측정하였다(Fig 1). B-모드에서는 반사파 의 강도가 점의 밝기에 따라 표시되어, 강한 반사파는 밝고 약한 반사파는 어둡게 화면에 표현된다. 탐촉자 의 주파수가 높을수록 생체내에서 흡수되기 쉬우므 로 심부까지 도달하지 못하는데, 본 연구에서는 비교 적 표층부에 있는 근육인 교근을 관찰하는 것이므로 7.5 MHz 라는 고주파수의 탐촉자를 사용하였다. 교근 의 관찰에 알맞은 화상 조작을 위해 초음파진단장치 의 전반적인 반사파의 세기를 고정하고 초점은 비교 적 피부에 가깝게 설정하였으며, 경계면의 특성을 뚜 렷이 하면서도 화상이 부드러워질 수 있도록 세부적 인 항목들을 설정하였다.

측정을 위해 연구대상자로 하여금 직립하여 앉은

Fig 1. SA-6000 ${ }^{\oplus}$. Medison.

Fig 2. Position of probe.

Fig 3. A. Ultrasound image of masseter muscle(relaxing state).
a. skin
b. outer fascia of masseter muscle.
c. inner fascia of masseter muscle.
d. lateral part of the mandibular ramus.

자세를 유지하도록 유도한 후, 구순의 외측 교련(commissure)과 귀의 이주 간 절흔(intertragic notch)을 연결한 가상선상에서 탐촉자의 전방부가 교 근의 전연에 위치하도록 위치를 조정하였다(Fig 2) ${ }^{19)}$. 하악지 표면의 최상의 반사파를 얻기 위해 탐촉자를 피부에 접촉시킬 때는 하악지에 직각이 되도록 각도 를 조절하였다. 좌우측 교근은 각각 분리 측정하였으 며, 안정 상태(resting state)와 최대 교합 상태(maximal clenching state)에서 각 2번씩 측정하여 연구 대 상 일인당 총 8 개의 영상을 얻었다. 교근의 두께는 초 음파 영상 화면을 5 등분으로 나누어 그 경계선에서 최단 직선 거리 4개의 평균으로 정하였다(Fig 3). 탐 촉자를 피부에 접촉시킬 때의 압력을 최소가 되도록 하기 위하여 술전에 압력 통각 측정계(Pressure $\mathrm{Al}-$ gometer, Somedic ${ }^{(3)}$), $2 \mathrm{~cm}^{2}$ 탐촉자를 사용해 1 kPa 미 만의 압력이 일정하게 유지되도록 하는 많은 숙련 과 정을 거쳤으며, 술자간 오차를 최소로 하기 위해 모든 측정은 한 사람의 술자에 의해 행해졌다.
2) 악안면 골격 형태의 결정 : 측방 두부계측방사선사 진 분석
두부계측방사선사진은 Cranex $3^{+} \operatorname{ceph}^{\circledR 8}$ (Soredex) 를 이용해 통상적인 방법에 따라 촬영을 시행하였고, 일인에 의해 투사도가 작성되었으며 좌우 계측점이 일치되지 않았을 때는 그 중앙점으로 하였다. 방사선 사진의 투사도상에서 설정된 계측점은 Numonics digitizer를 이용하여 Quick Ceph Image Pro ${ }^{T M}$ 프로그 램에 입력한 다음 각도와 거리를 자동 계측하였다. 이 때 사용된 계측점과 계측 항목은 다음과 같다.
<계측점 $(\operatorname{Fig} 4,5)>$
(1) S (sella turcica) : sella turcica의 중앙점
(2) N (nasion) : frontonasal suture의 최전방점
(3) Po (porion) : 외이도의 최상방점

Fig 4. Angular measurements of lateral cephalometric analysis.
(4) Or (orbitale) : 골격성 안와의 최하방점
(5) ANS(anterior nasal spine) : 정중시상면상 전비 극의 최전방점
(6) PNS(posterior nasal spine) : 익돌상악구(pterygomaxillary fissure) 전방벽의 연속선과 비강저 가 만나는 점
(7) A point: 전비극과 prosthion 사이의 상악치조돌 기 전외방의 가장 깊은 점
(8) B point: infradentale, pogonion 사이의 하악치 조돌기 외곽의 가장 깊은 점
(9) Pog (pogonion) : 정중시상면에서 골격성 이부의 최전방점
(10) $\mathrm{Me}($ menton) : 정중시상면에서 하악결합 외곽선 의 최후방점
(11) Go (gonion) : 하악의 하연과 하악지 후연의 접선 이 교차되는 인위적인 점
(12) Ar (articulare) : 하악지의 후연과 두개저 외연의 인위적인 교차점
(13) Cd (condylion) : 하악두의 최상방점
(44) I (incisor) : 상악 중절치의 절단연과 하악 중절치 의 절단연 사이의 수직적인 중간점
(55) $\mathrm{M}(\mathrm{molar})$: 상하악 제 1 대구치의 최원심 접촉점

<각도 계측 항목 $(\mathrm{Fig} 4)$ >

(1) SNA: $\angle \mathrm{S}-\mathrm{N}-\mathrm{A}$

Fig 5. Linear measurements of lateral cephalometric analysis.
(2) $\mathrm{SNB}: \angle \mathrm{S}-\mathrm{N}-\mathrm{B}$
(3) ANB: $\angle \mathrm{A}-\mathrm{N}-\mathrm{B}$
(4) Occlusal plane angle : $\angle \mathrm{FH}$ plane $(\mathrm{Or}-\mathrm{Po}) / \mathrm{oc}$ clusal plane(I-M)
(5) Mandibular plane angle : $\angle \mathrm{FH}$ plane / mandib ular plane($\mathrm{Go}-\mathrm{Me}$)
(6) Gonial angle : $\angle \mathrm{Ar}-\mathrm{Go}-\mathrm{Me}$
(7) Palatal plane angle : $\angle \mathrm{FH}$ plane / palatal plane (ANS-PNS)
(8) Angle of convexity: $\angle \mathrm{N}-\mathrm{A}-\mathrm{Pog}$
<거리 계측 항목 (Fig 5)>
(1) Wits Appraisal
(2) N -ANS(middle-third facial height)
(3) $\mathrm{N}-\mathrm{Me}$ (anterior facial height)
(4) ANS-Me(lower-third facial height)
(5) S-N(anterior cranial base)
(6) ANS-PNS(maxillary length)
(7) Ar -Go(mandibular ramus height)
(8) $\mathrm{Cd}-\mathrm{Pog}$ (mandibular length)
(9) Me-Go(mandibular body length)
3) 오차 측정

교근 두께에 대한 2 회 측정시의 검사자내 오차 (intra-observer measurement error)는 남녀, 좌우 구

Vol. 31. No. 2. 2001. Korea. J. Orthod.

한국인 성인의 표근 두깨에 관한 초음파검사적 연구

Table 1. Mean and standard deviation of the variable of lateral cephalometric radiograph.

	male		female	
	mean	\pm SD	mean	\pm SD
SNA $\left({ }^{\circ}\right)$	83.3	3.78	82.3	4.01
$\mathrm{SNB}\left({ }^{\circ}\right)$	80.7	3.78	80.1	4.44
$\mathrm{ANB}\left({ }^{\circ}\right)$	2.6	2.23	2.2	2.69
Occlusal plane angle(${ }^{\circ}$)	15.6	4.56	16.8	4.21
Mandibular plane angle(${ }^{\circ}$)	24	5.3	25.9	4.47
Gonial angle(${ }^{\circ}$)	116.6	7.68	118.1	6.05
Palatal plane angle(${ }^{\circ}$)	1.6	2.91	1.1	2.62
Angle of convexity ${ }^{\circ}$)	4	5.3	3.7	5.93
Wits Appraisal(mm)	-2.2	3.85	-2.8	3.45
$\mathrm{N}-\mathrm{ANS}(\mathrm{mm})$	63.9	4.23	57	3.44
$\mathrm{N}-\mathrm{Me}(\mathrm{mm})$	142.7	5.41	129.1	5.44
ANS-Me(mm)	77.9	4.44	71	5.36
$\mathrm{S}-\mathrm{N}(\mathrm{mm})$	75.2	3.63	73	2.12
ANS-PNS(mm)	51.7	3.61	50.1	3.1
$\mathrm{Ar}-\mathrm{Go}(\mathrm{mm})$	59.4	6.04	50.7	4.03
$\mathrm{Cd}-\mathrm{Pog}(\mathrm{mm})$	130.5	5.4	120.1	6.1
$\mathrm{Me}-\mathrm{Go}(\mathrm{mm})$	84.7	8.12	80.6	3.21

분없이 교합 상태별로 전체 데이터를 대상으로 Dahlberg's double determination 방법에 의해 계산하였 다.

$$
\text { Dahlberg의 식 : } \begin{aligned}
\mathrm{Se}(\sigma \mathrm{i}) & =\sqrt{\sum d^{2} / 2 n} \\
\operatorname{Se}(\sigma \mathrm{i}) & =\text { 검사자내 측정 오차 } \\
\mathrm{d} & =2 \text { 회 측정시 차이 } \\
\mathrm{n} & =\text { 검사 대상자의 수 }
\end{aligned}
$$

4) 통계방법

이상에서 얻은 계측치를 SAS 6.12 패키지 프로그 램을 사용하여 다음과 같은 통계처리를 시행하였다.
(1) 측방 두부계측방사선사진 분석 자료의 평균 및 표준편차와 초음파검사에 의해 측정한 교근 두께 의 남녀별, 좌우별, 교합 상태별(안정/최대 교합) 평균 및 표준편차를 구하였다.
(2) 안정 상태와 최대 교합 상태에서의 좌우측 교근

두께의 차이의 유의성을 알아보기 위해 paired t -test를 시행하였다.
(3) 안정 상태와 최대 교합 상태간에 교근 두께 차이 의 유의성을 알아보고자 paired t-test를 시행하 였다.
(4) 안정 상태와 최대 교합 상태에서 교근 두께의 성 차의 유의성을 알아보기 위해 student t-test를 시행하였다.
(5) 측방 두부계측방사선사진 분석 항목과 교근 두께 사이의 상관성을 평가하기 위해 Pearson's correlation analysis 및 multiple regression analysis를 시행하였다.

III. 결 과

측방 두부계측방사선사진 분석 각 항목의 평균 및 표준편차는 Table 1과 같다.

초음파검사에 의해 교근 두께를 2 회 측정했을 때 발생한 검사자내 측정 오차를 Dahlberg's double de-

Table 2. Dahlberg error of measuring the masseter musloe thickness.

	relaxing	maximal clenching
Dahlberg error, mm	0.26	0.26
$\%$	2.05	1.91

Table 5. Difference of the masseter muscle thickness between relaxing and clenching state.

	T-value	p -value
male	-2.4075	$0.0188 *$
female	-2.3159	$0.0173 *$
* $\mathrm{P}<0.05$		

Table 3. Mean and standard deviation of the masseter muscle thickness(mm).

		relaxing			maximal clenching		
		right	left	total	right	left	
male	mean	13.7	13.9	13.8	14.7	14.8	
$(\mathrm{n}=35)$	\pm SD	1.59	1.98	1.71	1.67	2.04	
female	mean	11.5	11.6	11.6	12.3	12.5	
$(\mathrm{n}=15)$	\pm SD	1.54	1.79	1.58	1.54	1.63	

(total : mean of right and left)

Table 4. Difference between the right and left masseter muscle thickness.

		T-value	p -value
relaxing	male	-0.4461	0.6569
	female	-0.2735	0.7865
	male	-0.2822	0.7787
	female	-0.3224	0.7496

termination 방법에 의해 계산한 결과 안정 상태에서 는 $0.26 \mathrm{~mm}(2.05 \%)$, 최대 교합 상태에서는 0.26 mm (1.91%)의 오차를 확인할 수 있었다(Table 2). 교근의 평균 두께는 안정 상태에서 남자는 $13.8 \pm 1.71 \mathrm{~mm}$, 여 자는 $11.6 \pm 1.58 \mathrm{~mm}$ 였으며, 최대 교합 상태에서 남자 는 $14.8 \pm 1.77 \mathrm{~mm}$, 여자는 $12.4 \pm 1.47 \mathrm{~mm}$ 로 나타났다 (Table 3).

안정 상태와 최대 교합 상태 각각에서 좌우측 교근 두께에 유의성 있는 차이가 존재하는지를 평가하기 위해 paired t-test를 시행하였다. 그 결과 유의수준 5% 하에서 귀무 가설을 기각할 수 없게 되어 안정 상 태와 최대 교합 상태, 남녀 모두에서 좌우 교근 두께 는 유의할만한 차이가 존재하지 않는 것으로 나타났

Table 6. Difference of the masseter muscle thickness between male and female.

	T -value	p -value
relaxing	4.3332	$0.0001 *$
maximal clenching	4.5057	$0.0000 *$
$\mathrm{P}<0.05$		

다(Table 4). 이 결과를 바탕으로 이하의 통계에서는 좌우의 구별없이 교근의 좌우측의 평균 두께를 사용 하였다.
안정 상태와 최대 교합 상태간에 교근 두께의 유의

Table 7. Pearson's correlation coefficient between the masseter muscle thickness and variable of the lateral cephalometric radiograph.

		male		female	
	relaxing	maximal clenching	relaxing	maximal clenching	
Mandibular plane angle	r	-0.414	-0.512	-0.132	-0.166
	P	$0.013 *$	$0.002 * *$	0.638	0.554
S-N	r	0.376	0.435	-0.279	-0.224
	P	$0.026 *$	$0.009 * *$	0.314	0.423
	r	0.492	0.547	0.163	0.187
Ar-Go	P	$0.003 * *$	$0.001 * *$	0.562	0.505

* $\mathrm{P}<0.05$ ** $\mathrm{P}<0.01$

Table 8. Multiple regression analysis of the masseter muscle thickness and variable of the lateral cephalometric radiograph(male).

		relaxing	maximal clenching
Mandibular plane angle	r -square	-0.214	-0.212
	P	$0.043 *$	$0.031 *$
S-N	$\mathrm{r}-$ square	-	0.110
	P	-	$0.020 *$
Ar-Go	r-square	0.243	0.299
	P	$0.003 * *$	$0.001 * *$

* $\mathrm{P}<0.05$ ** $\mathrm{P}<0.01$

한 차이가 있는지를 평가하기 위해 paired t-test를 시행한 결과, 남녀 모두 5% 의 유의수준 하에서 귀무 가설을 기각하게 되어 두 교합 상태 사이에 교근 두 께의 차이가 존재하며 안정 상태보다 최대 교합 상태 에서 유의성 있게 교근 두께가 증가하는 것으로 나타 났다(Table 5).
또한 남녀간에 교근 두께의 유의한 차이가 존재하 는지를 알아보기 위해 student t-test를 사용한 결과, 유의수준 5% 에서 귀무 가설을 기각하게 되어 안정 상태와 최대 교합 상태 모두에서 남녀간에 매우 유의 한 차이가 있음을 알 수 있었다(Table 6).
교근의 두께와 측방 두부계측방사선사진 분석의 각 항목들 사이의 상관관계를 살펴보기 위해 Pearson 의 상관 분석을 시행한 결과는 Table 7에 나타나 있 다. 교근의 두께는 남자에서는 유의수준 1% 하에서 최대 교합 상태의 하악평면각(mandibular plane angle)과 음의 상관 관계가 존재하였다. 또한 두 상태

모두에서 하악지 고경(Ar-Go)과는 양의 상관 관계를 보였고, 전두개저 길이 $(\mathrm{S}-\mathrm{N})$ 와는 최대 교합 상태에 서만 양의 상관 관계를 나타내었다. 유의수준 5% 하 에서는 안정 상태의 하악평면각, 전두개저 길이 와도 각각 음, 양의 상관 관계를 나타내었다. 반면, 여자에 서는 유의수준 1% 및 5% 하에서 유의성 있는 항목을 찾을 수 없었다.
다중회귀분석을 통하여 교근의 두께와 측방 두부 계측방사선사진 항목 사이의 상관성을 평가한 결과, 남자의 경우 안정시 그리고 최대교합상태 모두에서 하악지 고경 항목이 교근의 두께와 양의 상관관계가 있었다 $(\mathrm{P}<0.01)$. 한편 하악 평면각은 두 상태 모두에 서 교근의 두께와 음의 상관 관계를 보였으며, 최대 교합 상태의 전두개저 길이와 양의 상관 관계를 보였 다 $(\mathrm{P}<0.05)$. 반면에 여자는 남자와 달리 회귀방정식 을 도출하는데 기여하는 측방 두부계측방사선사진 항목이 존재하지 않았다 $(\mathrm{P}<0.05)$ (Table 8).

IV. 총괄 및 고안

1. 연구대상 설정

본 연구의 대상은 교정 치료의 경험이 없고 선천적, 후천적인 상실치가 없으며, 악관절 장애 소견 및 뚜렷 한 골격적 비대칭이 존재하지 않는 성인으로 선정하 였다. 불안정한 교합에 의해 악안면 근육의 수축 시간 이 연장되고 악관절에 비정상적인 하중을 초래하여 악관절 기능 장애를 야기할 수 있는 한편, ${ }^{20)}$ 이러한 악관절 기능 장애에 의한 근육 긴장이 두경부의 자세 및 연하 습관에 영향을 주어 안정 상태의 하악 위치 와 교합 접촉 양상을 변화시킬 수 있다 ${ }^{21)}$. 골격적인 비대칭이 있는 경우 역시 부착된 근육과 밀접한 관련 이 있으므로 ${ }^{22)}$ 연구 대상에서 제외하였다.

2. 초음파진단장치에 의한 근육 두께의 측정

초음파검사는 서론에서 언급한 많은 장점들이 있는 반면에 조직 경계간의 영상이 뚜렷치 않아 정량적인 측정이 어렵고 술자의 숙련도에 의해 많은 영향을 받 는다는 것을 단점으로 들 수 있다. 따라서 측정 근육 횡단면에 대한 구조와 초음파 스캔상의 구조를 구별 해내는 술자의 경험이 필수적이며, 다양한 영상의 원 인을 인지하는 것이 바람직하다. 건전한 근육은 초음 파에 대해 거의 반사적이지 않을 뿐 아니라, 불규칙한 결합조직 다발 때문에 초음파가 일관성 없이 통과되 어 불균일한 점상 형태를 나타낸다. 반면 건과 골은 초음파에 대해 반사적이므로 보다 뚜렷한 백색 띠 헝 태로 나타나 근육과 이들의 구별이 가능하다(Fig 3) ${ }^{233}$.

한편, 초음파검사를 이용한 근육 두께 측정에 있어 서의 신뢰성은 해부용 시체에서 실제 측정치와의 차 이, 검사자내 오차 등의 방법에 의해 평가되어 왔다 ${ }^{16,24)}$. Fukunaga ${ }^{24)}$ 등은 5 MHz 탐촉자와 초음파검사를 사용하여 피하 지방과 근육 및 골을 관찰한 결과, 해 부용 시체에서 측정치와의 차이가 각각 5% 이내, $0.3-3.7 \%$ 라고 보고한 바 있다. 그 후 Kiliaridis ${ }^{16)}$ 는 7 MHz 탐촉자와 초음파검사를 사용한 교근 두께 측정 에서 검사자내 오차가 $4.0-7.1 \%$ 라고 보고하면서, 이 장비가 교근의 두께를 측정하는데 있어 재현성 있고 정확한 방법이라고 지적하였다. 본 연구에서 안정 상 태와 최대 교합 상태에서 좌우측 각각 2회씩 측정하 여 발생한 검사자내 오차는 약 2% 내외로써 (Table 2) 앞서의 연구보다 작았는데, 이는 검사자가 일인이었

던 점과 동시에 좀 더 명확한 표층 구조물의 영상을 얻을 수 있는 고주파의 탐촉자를 이용한 결과인 것으 로 사료된다.
Cady ${ }^{25)}$ 등은 탐촉자의 경사도가 골격근의 일정한 영상을 얻는데 중요한 요소라고 지적하면서 근다발 의 장축에 대해 직각으로 탐촉자를 위치시켰을 때 조 직 실질의 반사파는 매우 강한 선으로, 60-70도로 위 치시켰을 때는 약하고 불규칙적인 선으로 나타난다 고 보고하였다. 본 연구에서는 탐촉자를 하악지에 대 해 직각으로 위치시키기 위해 하악지 표면 최상의 반 사파를 얻을 때까지 각도를 변화시켰다.
또한 근육의 두께는 탐촉자를 누르는 힘이나 근육 의 수축 상태에 의해 영향을 받을 수 있다. 따라서 초 음파검사를 이용했을 때 안정 상태에서의 교근 두께 측정이 최대 교합 상태에서의 측정보다 그 재현성이 떨어질 것이다 ${ }^{18)}$. 본 연구에서는 탐촉자를 피부에 접 촉시킬 때 최소한의 압력을 적용하기 위해 Pressure Algometer(Somedic ${ }^{\circledR}$)를 사용하였다. 이때 초음파진 단장치 탐촉자의 피부 접촉 면적과 Algometer 탐촉자 의 피부 접촉 면적이 다르기 때문에, 사용된 1 kPa 이 하의 힘이 동일하게 적용되었다고 볼 수 없으나, 유사 조작의 숙지에는 도움이 되었다고 사료된다.
교근은 양측성 근육임에도 불구하고 기존의 대부분 의 연구들에서는 골격적 비대칭이 없다는 전제하에 혹은 그러한 전제없이 좌우를 구별하여 측정하지 않 고 연구를 시행하였다 ${ }^{16,17,19)}$. 본 연구에서는 이러한 점 을 보안하기 위하여 좌우측 교근 두께를 모두 측정하 여 유의한 차이가 존재하지 않는다는 것을 학인한후 그들의 평균으로 모든 분석을 시행하였다(Table 4).

3. 교근 두께의 인종차 및 성차

오 $^{26)}$ 등의 연구에 의하면 한국인 성인 남자는 스칸 디나비아계 백인보다 전두개저 길이, 하악각은 작고 하악평면각과 전안면 고경은 큰 양상을 보였으며, 하 악체의 장경과 하악지 고경은 동일하다고 보고하였 는데, 이는 두개안면구조는 인종에 따라 차이가 존재 한다는 것을 의미한다. 본 연구에서 초음파검사로 측 정한 교근 두께의 평균을 살펴보면 안정 상태에서 남 자는 $13.8 \pm 1.71 \mathrm{~mm}$, 여자는 $11.6 \pm 1.58 \mathrm{~mm}$ 이며, 쳐대 교합 상태에서 남자는 $14.8 \pm 1.77 \mathrm{~mm}$, 여자는 $12.4 \pm$ 1.47 mm 로 나타났는데, 이는 성인을 대상으로 한 다 른 국외의 연구들과는 $0.3-4.1 \mathrm{~mm}$ 정도의 차이를 보 이는 것이다(Table 3, 9). 특히 한국인을 대상으로 한

Table 9. Comparison of the mean of the masseter muscle thickness.

	relaxing		maximal clenching	
	male	female	male	female
1991, Kiliaridis et al	9.7 ± 1.5	8.7 ± 1.6	15.1 ± 1.9	13.0 ± 1.8
1992, Bakke et al	-	$8.83-11.08$	-	$9.84-12.57$
1998, Kubota et al	15.8 ± 3.0	-	16.7 ± 2.7	-
2000, this study	13.8 ± 1.71	11.6 ± 1.58	14.8 ± 1.77	12.4 ± 1.47

본 연구나 Kubota ${ }^{19)}$ 의 일본인 연구에서 안정 상태의 교근 두께가 백인을 대상으로 한 Kiliaridis ${ }^{16)}$ 의 연구 결과보다 뚜렷하게 두꺼운 것을 확인할 수 있는데 (Table 3, 9), 이는 교근 두께의 명확한 인종적인 차이 를 입증하는 결과로 생각된다.
Brekhus ${ }^{277}$, Kawamura ${ }^{28)}$ 는 정상교합을 갖는 성인 남녀의 최대 교합 상태에서의 교합력을 각 치아별로 조사하였는데 남자의 평균 교합력이 여자보다 더 컸 으며, 그 차이는 전치부에서 구치부로 갈수록 더 증가 한다고 보고하였다. Bakke ${ }^{177}$, Raadsheer ${ }^{299}$ 등이 교근 의 두께와 교합력 사이에는 유의한 양의 상관관계가 있다고 지적한 것을 바탕으로 할 때, 이들의 연구는 남 자가 여자보다 교근의 두께가 유의하게 두껍다는 결 과를 나타낸 본 연구와 잘 부합되는 것이다(Table 6).

4. 교근의 두깨와 악안면 형태 사이의 관계

$\mathrm{Hovell}^{301}, \mathrm{Becker}^{31}$ 는 수직 성장군에서 하악각전 절흔이 깊어지는 것은 하악 과두의 성장이 부족할 때 에도 교근 등이 지속적으로 성장하여 하악각 부위 하 방에 골이 침착되기 때문이라고 보고하였고, Hendricksen ${ }^{32)}$ 은 저작근의 길이를 외과적으로 변화시킬 때 발생되는 하악각 부위의 변화를 연구한 바 있다. Ingervall ${ }^{8)}$ 등은 최대 교합력이 작을수록 상대적으로 장안모를 가진다고 지적하면서 이는 근육이 수축되 는 동안 발생한 장력에서 기인된다고 설명하였다. 동 시에 그들은 근육 두께와의 상관성에 대해 언급하면 서 근육의 두께는 근섬유의 수와 그들의 크기에 의존 한다고 하였다. 교합 기능에 의한 근육의 자극이 안면 구조의 조화로운 발육에 중요한 역할을 하는데, 부드 럽거나 액상형의 음식을 많이 섭취하는 식생활을 할 수록 근육의 크기 및 활성이 감소된다. 이에 따라 골 침착이 감소되어 하악골 성장에 영향을 줄 수 있다 ${ }^{4,5)}$.

특히 교근은 가장 강력한 저작근으로 상악골의 관골 돌기 및 관골궁에서 기시하여 하악골의 하악각 및 하 악지의 외측면과 근육돌기에 부착하므로, 이들의 기 능적 자극이 감소하면 후안면 고경을 결정하는 ${ }^{39}$ 과 두나 하악지의 저발육을 가져올 것으로 사료된다. Table 9에서 보이는 교근 두께의 차이는 인종적인 안 면 골격의 차이와 더불어 간접적으로 서양인이 동양 인보다 더 부드럽고 액상형의 음식을 많이 섭취하는 식생활에서 기인한 것으로도 해석할 수 있을 것으로 생각된다.
Sassouni ${ }^{33)}$ 는 좋은 안모 비율에서 해부학적인 수평 기준선들- SN 평면, FH 평면, 구개 평면, 교합 평면 및 하악 평면은 한 점으로 수렴하는 경향이 있다고 지적했으며, 이 평면들이 전방으로 갈수록 상대적으 로 급격해진다면 안모 비율은 전방부는 길고 후방부 는 쫇게 되어 개방교합이 되는 경향이 있다고 주장하 였다. 또한 Jarabak ${ }^{34}$ 은 하악지 고경과 하악각은 후안 면 고경에 영향을 주는 중요한 요소라고 지적하먼서, 하악지 성장이 크면 후안면 고경이 증가되며 하악지 성장이 작으면 후안면 고경이 감소된다고 하였다. 본 연구의 결과 남자에서 교근 두께는 하악평면각 (mandibular plane angle)과 유의한 음의 상관 관계, 하악지 고경과는 양의 상관관계가 존재하였는데, 이 는 교근의 두께가 증가할수록 후안면 고경이 전안면 고경보다 상대적으로 큰 골격 형태를 가지게 된다는 것을 의미하는 것이다(Table 7, 8). 다만 Jarabak의 이론에 기초하여 교근 두께와 하악각 사이에 유의한 양의 상관 관계가 있을 것으로 예상했으나, 본 연구에 서는 5% 의 유의수준 하에서 상관성을 찾을 수 없었 다. Kubota ${ }^{19}$ 는 80명의 남자 성인을 대상으로 초음파 검사와 두부계측방사선사진을 토대로 한 연구에서 교근의 두께가 하악평면각의 크기와는 음의 관계에 있으며, 하악지 고경과는 양의 관계가 있다고 보고하

여 본 연구의 결과와 유사함을 알 수 있었고, 상관 분 석과 다중회귀분석 결과도 대부분 일치하였다. Raadsheer ${ }^{35)}$ 등은 329 명의 성장하는 남녀 아동을 대상으 로 인체 계측 캘리퍼스와 초음파검사를 이용해 교근 의 두께와 안면 형태와의 관계에 대해 연구한 결과, 교근의 두께는 전안면 고경, 하악골의 장경과는 음의 관계가 있고, 하악각사이 폭경, 양관골간 폭경과는 양 의 관계가 있다는 것을 보여 주었다. 이 연구는 안면 형태를 결정하는 방법과 연구 대상이 본 연구와 달랐 으므로 직접적인 비교는 불가능하다. 하지만 정상적 인 안면 성장을 하는 대조군의 교근 두께를 바탕으로 하여, 악정형 치료에 의한 악골의 성장량이나 성장 방 향의 변화 혹은 부정교합 형태의 변화 연구에서 근육 두께의 변화를 관찰함으로써 그 상관성을 평가할 수 있는 가능성을 제시해 준다.

상악골의 수평적인 성장량은 안면의 다양한 봉합 부에서의 성장에 의해 결정되며 접형후두 연골결합 의 첨가성 성장에 의해 간접적으로 조절되는데, 성장 의 중심인 접형후두 연골결합은 후두개저에 속하고 과두를 수용하는 측두골도 후두개저에 속하므로 접 형후두 연골결합은 하악 과두에 영향을 미칠 수 있다 ${ }^{34)}$. 본 연구의 결과 남자는 최대 교합 상태에서 교근 의 두께가 전두개저 길이와 양의 상관 관계를 보였는 데, 이는 앞서 설명한 전두개저 길이와 하악 과두와의 관련성에서 그 원인을 찾아볼 수 있을 것으로 사료되 나 이에 대해서는 향후 좀더 많은 연구가 뒤따라야 할 것으로 사료된다.
Kiliaridis ${ }^{16)}$ 등은 40 명의 성인남녀를 대상으로 한 초 음퐈검사와 안모 사진을 이용한 연구에서 단안모를 가진 여성이 장안모를 갖는 여성보다 더 두꺼운 교근 을 갖는 반면 남자는 유의성 있는 상관성을 보이지 않 았다고 보고하면서, 남성에서 교근과 안면 형태가 상 관성 없는 결과를 보인 것은 대다수의 실험 대상 남성 들의 전신적인 근육강화훈련에 의한 잦은 클렌칭이 간접적으로 교근의 두께에 영향을 주었기 때문인 것 으로 추정하였다. 위의 연구는 여성에서 교근 두께와 안면 형태 사이에 상관성을 찾을 수 없었던 본 연구와 는 상반된 결과를 보이고 있는데, 이는 안면 형태 결 정 방법에 있어서 측방 두부계측방사선사진을 통한 측정과 연조직까지 개재된 사진에서의 측정 사이에서 발생할 수 있는 여러 가지 변수에 의한 것으로 사료된 다. 또한 근육강화훈련 동안에 클렌칭이 잦아서 연구 결과에 영향을 미쳤다는 그의 주장은 아직 문헌상에 보고된 바가 없으므로 무리한 해석으로 생각된다.

Bakke ${ }^{17)}$ 등도 13 명의 여자 성인을 대상으로 초음파 검사와 측방 두부계측방사선사진을 이용한 연구에서 최대 교합시의 교근의 두께는 전안면 고경, 하악평면 각과 음의 관계가 있다고 보고하였다. 안면 형태를 결 정하는 방법이 동일하였음에도 불구하고 본 연구에 서는 이들의 연구와는 달리 여성의 경우 교근의 두께 와 악안면 형태 사이의 특정한 상관관계를 확인할 수 없었던 것은, 여성 연구 대상자 수의 부족이나 인종적 차이가 개재된 것으로 추정되나 이에 대해서는 추가 적인 연구가 이루어져야 할 것으로 생각된다.

이와 같이 초음파 진단장치는 교근의 관찰을 통한 연구뿐만 아니라 치과영역에서 다양한 이용이 가능 할 것으로 사료된다. 특히 $\mathrm{Heri}^{36)}$, Rasheed ${ }^{37)}, \mathrm{McAl}^{-}$ ister ${ }^{38)}$, Rüdiger ${ }^{39)}$, 차 ${ }^{40}$ 등은 교근 외에도 측두근, 악 이복근, 입술 올림근, 상순 및 하순 근육의 두께를 초 음파검사로 측정하는 방법론을 제시한 바 있으나 아 직까지 구체적인 연구는 미흡하다고 생각된다. 따라 서 향후 다양한 근육에 대한 추가적인 연구와 더불어 나아가 다양한 악안면 골격 형태 부조화와 근육 사이 의 상관성에 대한 연구가 이루어질 수 있을 것이다.

V. 결 론

초음파진단장치를 이용하여 강릉대학교 치과대학 남학생 35 명과 여학생 15 명의 교근 두께를 측정하고, 두부계측방사선사진 분석을 통하여 악안면 골격 형태 와의 연관성을 평가하여 얻은 결과는 다음과 같았다.

1. 남자에서 교근의 평균 두께는 안정 상태에서는 13.8 $\pm 1.71 \mathrm{~mm}$, 최대 교합 상태에서 $14.8 \pm 1.77 \mathrm{~mm}$ 였으 며 여자에서는 안정 상태에서 $11.6 \pm 1.58 \mathrm{~mm}$, 최대 교합 상태에서 $12.4 \pm 1.47 \mathrm{~mm}$ 로 나타났다. 더불어 선학들의 연구와의 비교를 통해, 교근의 평균 두께 와 안면 골격 형태는 인종적인 차이가 있음을 확인 할 수 있었다.
2. 교근의 두께는 남녀모두 안정 상태보다 최대 교합 상 태에서 유의하게 증가하는 결과를 보였다 $(\mathrm{P}<0.05)$.
3. 교근의 두께는 안정 상태와 최대 교합 상태 모두에 서 남자가 여자보다 유의하게 두꺼웠다 $(\mathrm{P}<0.05)$.
4. 교근의 두께는 남자에서 안정 상태와 최대 교합 상 태 모두 하악평면각과는 음의 상관 관계가 있고 하 악지 고경, 전두개저 길이와는 양의 상관 관계가 있음을 알 수 있었다 $(\mathrm{P}<0.05)$.
5. 여자에서는 교근의 두께와 유의한 상관 관계가 있

는 두부계측방사선사진 분석 항목을 찾을 수 없었 다 ($\mathrm{P}<0.05$).

이로써 초음파검사는 악골 근육의 기능을 평가하 는 전통적인 방법에 대해 추가적인 정보를 제공해 줄 수 있다는 것을 알 수 있었다. 향후 치과 교정학 분야 에서 초음파검사는 성장 발육적 측면이나 부정교합 형태와 관련된 진단학적 측면 및 교정 치료전후의 근 두께의 변화 등 다각적 방면에서의 여러가지 연구에 유용하게 이용될 수 있을 것으로 사료된다.

참 고 문 헌

1. Wolff J. Über die innere Architectur der Knochen und ihre Bedeutung für die Frage vom Knochenwachsthm, Virchow's Archiv 1870: 389-450.
2. ML Moss, L Salentijn. The primary role of functional mattress in facial growth, Am J Orthod 1969:55:566-77.
3. K Choi, SA Goldstein. A comparison of the fatigue behavior of human trabecular and cortical bone tissue, J Biomechanics 1992:25: 1371-81.
4. Robert M Beecher, Robert S Corruccini. Effects of dietary consistency on craniofacial and occlusal development in the rat, Angle Orthod 1981 : 51:61-9.
5. Kazuto Kuroe, Gakuji Ito. Age changes of mandibular condyles and glenoid fossae in mice fed a liquid diet, Dent J Japan $1990: 27: 91-6$.
6. James F Durkin. Secondary cartilage : A misnomer ?, Am J Orthod 1972:62:15-41.
7. B Ingervall, B Thilander. Relation between facial morphology and activity of the masticatory muscles, J Oral Rehabil $1974: 1: 131-46$.
8. B Ingervall, E Helkimo. Masticatory muscle force and facial morphology in man, Arch Oral Biol 1978:23:203-6.
9. Vignon C, Pellissier JF, Serratrice G. Further histochemical studies on masticatory muscles, J Neurol Sci 1980: 45: 157-76.
10. WA Weijs, B Hillen. Relationships between masticatory muscle cross -section and skull shape, J Dent Res 1984:63:1154-7.
11. WA Weijs, B Hillen. Correlations between the cross-sectional area of the jaw muscles and craniofacial size and shape, J Dent Res 1986:70 : 423-31.
12. N Gionhaku, AA Lowe. Relationship between jaw muscle volume and craniofacial form, J Dent Res 1989:68:805-9.
13. PH van Spronsen, WA Weijs, J Valk et al. Comparison of jaw-muscle bite-force cross-sections obtained by means of magnetic resonance imaging and high-resolution CT scanning, J Dent Res 1989: 68: 1765-70.
14. WR Hedrick, DL Hykes, DE Starchman. Ultrasound physics and instrumentation 3rd ed, St Louis: CV Mosby, 1995.
15. CM Rumack, SR Wilson, JW Charboneau. Diagnostic ultrasound 2nd ed, St Louis : CV Mosby, 1998.
16. S Kiliaridis, P Kälebo. Masseter muscle thickness measured by ultrasonography and its relation to facial morphology, J Dent Res 1991: 70 : 1262-5.
17. Bakke M, Tuxen A, Vilmann P et al. Ultrasound image of human masseter muscle related to bite force, electromyography, facial morphology, and occlusal factors, Scand J Dent Res 1992:100:164-71.
18. MC Raadsheer, TMGJ van Eijden, PH van Spronsen et al. A comparison of human masseter muscle thickness measured by ultrasonography and magnetic resonance imaging, Archs oral Biol 1994:39: 1079-84.
19. Munetsugu Kubota, Hirokazu Nakano, Isao Sanjo et al. Maxillofacial morphology and masseter muscle thickness in adults, Eur J Orthod 1998: 20 : 535-42.
20. 태기출, 김상철. 장안모군에서 악관절 장애와 악안면 골격형태에 대한 연 구, 대치교정지 1999:29:37-49.
21. Williamson EH, Hall JT, Zwemer JD. Swallowing pattems in patients with and without TM dysfunction, Am J Orthod Dentofacial Orthop 1990: 98:507-11.
22. SE Bishara, PS Burkey, JG Kharouf. Dental and facial asymmetries: a review, Angle Orthod 1994:2:89-99.
23. Walker FO, Donofrio PD, Harpold GJ, Ferrell WG. Sonographic imaging of muscle contraction and fasciculations : a correlation with electromyography, Muscle Nerve 1990:13:33-9.
24. T Fukunaga, A Matsuo, K Yamamoto, T Asami. Mechanical efficiency rowing, Eur J Appl Physiol 1986:55:471-5.
25. EB Cady, JE Gardener, RHT Edwards. Ultrasonic tissue characterization of skeletal muscle, Eur J Clin Inves 1983:13: 469-73.
26. 오용덕, 윤영주, 김광원. 한국인과 스칸디나비아계 백인의 두부자셰와 두 개안면구조의 형태에 관한 비교 연구, 대치교정지 1999:29:707-20.
27. Brekhus PH et al. Stimulation of the muscles of mastication, J Dent Res 1941: $20: 87$.
28. Kawamura Y. Frontiers of oral physiology : volume 1 Physiology of mastication, S Karger Basel, 1974.
29. MC Raadsheer, TM van Eijden, FC van Ginkel et al. Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude, J Dent Res 1999:78:31-42.
30. JH Hovell. Variations in mandibular form, Ann R Coll Surg Engl 1965 : 37: 1-18.
31. MH Becker, PJ Coccaro, JM Converse. Antegonial notching of the mandible : An often overlooked mandibular deformity in congenital and acquired disorders, Radiology 1976:121:149-51.
32. RP Hendricksen, JA McNamara, DS Carlson. Changes on the gonial region induced by alteration of muscle length, J Oral and Maxillofac Surg 1982: 40:570-7.
33. VA Sassouni. A classsification of skeletal facial type, Am J Orthod 1969:55:109-23.
34. JR Jarabak, JA Fizzell. Technique and treatment with light-wire edgewise appliances 2nd edition, St Louis : CV Mosby, 1972 : 128-66.
35. MC Raadsheer, S Kiliaridis, TMGJ van Eijden et al. Masseter muscle thickness in growing individuals and its relation to facial morphology, Archs Oral Biol 1996: 41:323-32.
36. HV Puhakka, MR Kean, SW Heap. Ultrasonographic investigation of the circumoral musculature, J Ant $1989: 166: 121-33$.
37. Sayeeda A Rasheed, AK Munshi. Electromyographic and ultrasonographic evaluation of the circumoral musculature in children, J Clin Pediat Dent 1996 : $20: 305-11$.
38. RW McAlister, EM harkness, JJ Nicoll. An ultrasound investigation of the lip levator musculature, Eur J Orthod 1998: 20:713-20.
39. Rüdiger E, Stefan B, Heinrich S. Ultrasonographic cross-sectional characteristics of muscles of the head and neck, Oral Sur Oral Med Oral Patho 1999: 87:93-106.
40. 차봉근, 이연희, 김성수. 치파 교정학 분야에서의 초음파진단장치의 이용 (poster), 대한치과교정학회 제 33회 학술대회, 2000:71-2.

Ultrasonographic study on the masseter muscle thickness of adult Korean

Yeun-Hee Lee ${ }^{1)}$, Bong-Kuen Cha ${ }^{1)}$, In-Woo Park ${ }^{2)}$
${ }^{1)}$ Department of Orthodontics, College of Dentistry, Kangnung National University
${ }^{2)}$ Department of Oromaxillofacial radiology, College of Dentistry, Kangnung National University

It is widely accepted that the shape and structure of bone are closely related to the activity of attached muscle. Numerous clinical and animal experimental studies indicated the significant effects of masticatory muscle function on maxillofacial morphology.

Recently, the development of ultrasonography has spread throughout different fields of medicine. In the clinical examinations, ultrasonography is a convenient, inexpensive technique to apply with accurate and reliable results.
The aim of this study is to assess the thickness of the masseter muscle and its correlation to maxillofacial skeleton by examining 35 male and 15 female dental students at Kangnung National University. The masseter muscle thickness of the subjects were measured by ultrasonographic scanning with a 7.5 MHz linear probe, and their maxillofacial mor phology were investigated by lateral cephalometric radiographs.

The relationship between the masseter muscle thickness and maxillofacial morphology of normal adult was statistically analyzed, and the following results were obtained.

1. The average thickness of male masseter muscle was $13.8 \pm 1.71 \mathrm{~mm}$ in the relaxed state and $14.8 \pm 1.77 \mathrm{~mm}$ at maximal clenching state, while that of female was $11.6 \pm 1.58 \mathrm{~mm}$ and $12.4 \pm 1.47 \mathrm{~mm}$, respectively. Ethnic difference in thickness of the masseter muscle and maxillofacial skeleton was found when the results of many researchers were compared with those of this study.
2. The thickness of the masseter muscle in both sexes increased significantly at maximal clenching state than in relaxed state($\mathrm{P}<0.05$).
3. The masseter muscle thickness of male was greater than that of female both in the relaxed state and maximal clenching states $(\mathrm{P}<0.05)$.
4. In males, the thickness of the masseter muscle was negatively correlated with the mandibular plane angle and positively correlated with the mandibular ramus height and anterior cranial base length $(\mathrm{P}<0.05)$. It may suggest that the male with thicker masseter muscle has smaller facial divergence.
5. No significant correlation was found between the masseter muscle thickness and maxillofacial morphology in females $(\mathrm{P}<0.05)$.

Therefore, these data suggest that ultrasonography can add valuable information to the conventional examinations of masseter muscle function.

KOREA. J. ORTHOD. 2001:31(2):225-36

[^1]
[^0]: ${ }^{1)}$ 강릉대학교 치퐈대학 교정학 교실, 전공의.
 2) 강릉대학교 치과대학 교정학 교실, 조교수
 ${ }^{3)}$ 강룡대학꾜 치과대학 구강악안면방사선학 교실, 조교수. 표신저자 : 이연희
 강원도 강릉시 지번동 123.
 강릉대학꾜 치과병원 표정과
 orthoyh@hanmail.net

[^1]: \% Key words: Masseter muscle, Lateral cephalometric radiographs, Maxillofacial morphology, Ultrasonography

