교정선의 종류，결찰방법，타액의 유무에 따른 마찰력의 비꾜연구

한 정 숙 ${ }^{1)}$ ．이 진 우 ${ }^{2)}$ •차 경 석 ${ }^{3)}$

치아에 부착된 bracket이 교정선을 따라 이동할때 필연적으로 bracket과 교정선，결찰재 사이에 마찰력이 발생된다． 이에 저자는 동일한 bracket내에서 교정선의 종류，결찰방법，건조와 타액상태에 따른 마찰력 차이，타액의 윤활제로서 의 기능을 살펴보기 위해 본 연구를 시행하게 되었다．
본 실험에 사용된 bracket은 $.018^{\prime \prime} \times .025^{\prime \prime}$ slot의 상악 견치용 standard edgewise bracket（RMO．USA）이며，교정 선은 $.016^{\prime \prime}, .016^{\prime \prime} \times .022^{\prime \prime}$ 크기의 Cobalt－chromium（Elgiloy ：RMO．USA），Nickel－titanium（Ni－Ti）（ORTHOLLOY ：Goldstar Cable Co．KOREA），Beta－titanium（TMA ：ORMCO Co．，USA）의 2가지형태의 3종을 이용하여 활주할 때의 마찰력을 만능시험기（Instron，M 1000 EC ）를 사용하여 계측하여 다음과 같은 결론을 언었다．

1．가각의 동일조건하에서 교정선의 재질에 따른 마찰력은 $\mathrm{Co}-\mathrm{Cr}, \mathrm{Ni}-\mathrm{Ti}, \beta-\mathrm{Ti}$ 순으로 증가하였다．단，타액상태에서 elastomeric으로 결찰한 $.016^{\prime \prime}$ 군에서는 예외이다．
2．각 조건하（건조／타액상태， $.016^{\prime \prime} / .016^{\prime \prime} \times .022^{\prime \prime}$ ）에서 결찰방법에 따른 마찰력은 elastomeric보다 stainless steel 결찰에서 더 크게 나타났다 $(\mathrm{p}<0.05)$ ．
3．각각의 교정선과 결찰방법에서 타액 유무에 따른 마찰력은 stainless steel로 결찰한 ． $016^{\prime \prime} \mathrm{Co}-\mathrm{Cr}, \mathrm{Ni}-\mathrm{Ti}, \beta-\mathrm{Ti}$ 는 타액상태에서 감소하나，stainless steel로 결찰한 $.016^{\prime \prime} \times .022^{\prime \prime} \mathrm{Co}-\mathrm{Cr}, \mathrm{Ni}-\mathrm{Ti}, \beta-\mathrm{Ti}$ 는 타액상태에서 증가하였다 （ $\mathrm{p}<0.05$ ）．
4．각 조건하（건조／타액상태，elastomeric／stainless steel 결찰） $.016^{\prime \prime}$ 과 $.016^{\prime \prime} \times .022^{\prime \prime}$ 교정선 사이의 마찰력은 $.016^{\prime \prime}$ $\times .022^{\prime \prime}$ 교정선에서 증가하였다（ $\mathrm{p}<0.05$ ）．
（ 주요단어 ：마찰력，타액，교정선，결찰재 ）

I．서 론

치아에 부착된 bracket이 교정선을 따라 이동할 때 필연적으로 bracket과 교정선，결찰재 사이에 마찰력

[^0]이 발생된다．마찰력이란 접촉하고 있는 두 물체 중 하나가 상대적으로 움직이려고 할 때 발생되는 일종 의 저항하는 힘을 말한다．Bracket과 교정선 사이에 는 여러가지 변수가 영향을 끼칠 수 있는데 이러한 변수는 기계적인 것과 생물학적인 ${ }^{14)}$ 것이 있다．기계 적인 변수는 bracket의 재료，슬롯 크기，bracket의 폭 경과 각도，교정선의 형태와 크기，교정선의 재료，결 찰재와 결찰력이고 생물학적인 변수는 타액，치태，치 면막，부식 등이다．

교정력은 치아와 주위조직에 손상이나 환자의 불 편을 초래하지 않으면서 빠르고 정확하게 치아가 이

동될 수 있어야 하기 때문에 이러한 교정럭의 크기에 대한 많은 연구가 진행되었다. 그러나, Stoner ${ }^{2)}$ 는 치 아가 교정선을 따라 이동할 때 발생하는 마찰저항력 으로 인해 많은 교정력이 소실된다는 것을 인식했으 며, Drescher ${ }^{3)}$ 는 이에 의해 적어도 50% 의 anchorage 소실이 일어난다고 하였다. 이러한 문제를 극복 하기 위한 접근으로 frictionless mechanics와 sliding mechanic이 시도되었다.

Garner ${ }^{25)}$, Frank와 Nikolai ${ }^{16)}$, Echols ${ }^{7}$, Peterson등 ${ }^{8)}$, Riley ${ }^{9)}$, Angolkar등 ${ }^{26)}$ 은 round wire보다 rectangular wire에서 마찰력이 더 크다고 하였으며 Baker ${ }^{13)}$ 는 $.022^{\prime \prime}$ slot bracket에서 $.020^{\prime \prime}$ round wire가 .018 " round wire보다 마찰력이 작았다고 보고하였다. Tidy ${ }^{12)}$ 는 $.018^{\prime \prime}$ 과 $.022^{\prime \prime}$ slot bracket에 다양한 크기, 종류의 선재를 비교한 결과 stainless steel에 비해 Nitinol은 2배, TMA는 5배 정도 마찰력이 크다고 하 였다. Kapila등 ${ }^{14)}$, Angolkar등 ${ }^{26)}$ 은 선재의 굵기 및 재 료가 마찰력에 미치는 영향에 대해 보고하였다.
$\mathrm{Garner}^{25)}$ 는 견치이동시 stainless steel, TMA, $\mathrm{Ni}-\mathrm{Ti}$ 선재에서 생기는 마찰 저항력을 측정하였다. Kusy와 Whitley ${ }^{4)}$ 는 표면 거칠기가 $\mathrm{Ni}-\mathrm{Ti}, \beta-\mathrm{Ti}$, $\mathrm{Co}-\mathrm{Cr}$ 순으로 감소하였고 $\beta-\mathrm{Ti}$ 가 bracket재료나 slot 크기에 상관없이 가장 큰 마찰계수를 나타낸다 고 하였다. Peterson ${ }^{8)}$ 은 다른 학자들과는 달리 $\mathrm{Ni}-\mathrm{Ti}$ 가 마찰저항력이 크다고 하였다. Prososki ${ }^{10)}$ 는 다른 제조자에 의한 $\mathrm{Ni}-\mathrm{Ti}$ 는 표면 거칠기 뿐만 아니라 마 찰력에서까지 상이한 점을 보이고, 여러가지 $\mathrm{Ni}-\mathrm{Ti}$ 에 대해서 표면 거칠기와 마찰력 사이에는 유의한 상관 성이 없다고 하였다.

Baker ${ }^{13)}$ 는 동일 종류의 여러 교정선과 bracket사이 에서 생기는 마찰력의 크기를 건조상태, 인공타액, USP glycerin에서 비교한 결과 타액이 마찰력을 15 19% 감소시킨다고 하였다.

Stannard ${ }^{5)}$ 는 타액상태가 $\mathrm{Co}-\mathrm{Cr}$ 은 제외하고 건조 상테보다 마찰력이 크다고 하였다. Andreasen과 Quevedo ${ }^{11)}$ 는 타액이 bracket slot과 교정선면을 윤활 시키는데 중요한 역할을 하지 않는다고 하였으며 Kusy^{15} 는 처음으로 사람의 타액을 사용하였으며 Pratten ${ }^{6)}$ 은 이러한 차이는 하중력에 의한다고 하였 다. 국내에서는 고 ${ }^{18)}$, 황 ${ }^{19)}$ 이 인공타액에 미치는 연구 를 하였다.

Frank와 Nikolai ${ }^{16)}$ 는 elastomeric module과 stainless steel로 결찰할때 유의성이 없다고 하였으며, Thurow ${ }^{27)}$ 와 Riley 등 97 은 elastomeric보다 stainless
steel 결찰시에 큰 마찰력이 생긴다고 하였다. 반면에, Bednar ${ }^{17)}$ 는 elastomeric으로 결찰했을때 마찰력이 더 크다고 하였다. Baker ${ }^{13)}$ 는 elastomeric modules이 마 찰력 크기에 변화가 크다고 하였다. Angolkar ${ }^{26)}$ 와 Kapila등 ${ }^{14)}$ 은 elastomeric module로 결찰을 표준화하 며, 결찰력은 마찰력에 영향을 미치므로 결찰방법과 결찰력을 표준화하는 것이 매우 중요하다고 하였다.

이에 저자는 동일한 bracket내에서 교정선의 종류, 결찰방법, 건조와 타액상태에 따른 각각의 마찰력 크 기를 측정하였고, 교정선간의 마찰력 비교와 결찰 방 법에 따른 마찰력 차이, 타액의 윤활제로서의 기능을 살펴본 결과 다소의 지견을 얻었기에 이에 보고하는 바이다.

II. 연구재료 및 방법

1. 연구 대상

1) 연구 재료 및 시편제작

본 실험에 사용된 bracket은 $.018^{\prime \prime} \times .025^{\prime \prime}$ slot의 상악 견치용 standard edgewise bracket(RMO.USA) 이며, 교정선은 $.016^{\prime \prime}, .016^{\prime \prime} \times .022^{\prime \prime}$ 크기의 Cobalt -chromium alloy (Elgiloy : RMO. USA), Nickel titanium ($\mathrm{Ni}-\mathrm{Ti}$) alloy (ORTHOLLOY: Goldstar Cable Co. KOREA), Beta- titanium alloy (TMA : ORMCO Co., USA)의 2가지 형태의 3 종을 이용하였 다. 결찰재로는 $.010^{\prime \prime}$ stainless steel preformed ligature wire (RMO.USA)와 elastomeric ligature (RMO. USA)를 사용하였다. stainless steel 결찰은 ligature tucker \& tier (RMO.USA)를 사용하였다. elastomeric 결찰을 위해 Chlorozoin Therapy incubator(Knowell Therapeutic Technologies Inc., CANADA)를 사용하였다.

2) 시편제작

교정선이 부착될 상단 합성수지판을 가로 $24 \mathrm{~mm} \times$ 세로 $35 \mathrm{~mm} \times$ 두께 2 mm 로 제작하였으며 bracket이 부착될 하단 합성수지판은 가로 $24 \mathrm{~mm} \times$ 세로 80 mm \times 두께 2 mm 로 제작하였다. bracket은 bracket의 base의 변연과 하단 합성수지판의 상단이 일치된 상 태에서 bracket slot과 합성수지판의 장축이 평행하 도록 하여 자가중합레진(Ortho-one No-mix adhesive, Bisco Inc., USA)을 이용하여 부착하였다.
elastomeric 결찰에서는 elastomer를 실험전 배양

Table 1. Mean frictional force and standard deviation of each group
(gm).

Wire	Condition	Ligature material	.016"	. $016^{\prime \prime} \times .022^{\prime \prime}$
			Mean \pm SD	Mean \pm SD
$\mathrm{Co}-\mathrm{Cr}$	Dry	Elastomeric	114 ± 21.5	149 ± 27.7
		S.S.	169 ± 37.8	175 ± 24.6
	Saliva	Elastomeric	141 ± 12.0	182 ± 21.0
		S.S.	157 ± 37.5	197 ± 40.6
Ni - Ti	Dry	Elastomeric	130 ± 10.2	188 ± 13.3
		S.S.	188 ± 14.0	328 ± 10.5
	Saliva	Elastomeric	127 ± 23.7	197 ± 12.1
		S.S.	161 ± 34.5	343 ± 40.3
$\beta-\mathrm{Ti}$	Dry	Elastomeric	212 ± 29.2	267 ± 13.0
		S.S.	372 ± 28.0	379 ± 27.2
	Saliva	Elastomeric	193 ± 21.0	202 ± 18.2
		S.S.	344 ± 48.7	400 ± 42.6

기를 사용하여 $37^{\circ} \mathrm{C} 24$ 시간동안 술자의 타액에 보관 하여 사용하였다. 실험군은 24 개군이며, 시편은 실험 으로 인한 교정선과 bracket 마모, 결찰재의 변성 등 을 고려하여 각 실험군에서는 각기 새로운 bracket과 교정선, 결찰재를 사용하여 각 군당 13 개씩 총 312 개 의 시편을 제작하였다.

2. 연구방법

bracket과 교정선 사이의 마찰을 측정하기 위해 $.018^{\prime \prime} \times .025^{\prime \prime}$ standard edgewise bracket을 사용하 고 6 가지의 교정선을 각각 stainless steel과 elastomer를 사용하여 결찰하였으며 이것을 다시 건조 상태와 타액상태로 나누어 실험하였다. 교정선이 bracket을 활주할 때의 마찰력은 최대하중 1000 gm 의 만능시험기(M1000EC : MeCmesin corp., U.K.)로 측 정하였다. 제작된 시편은 교정선이 부착된 합성 수지 판을 만능 시험기 상단에 고정하고 bracket이 부착된 합성수지 판은 하단에 고정한다. 이때 bracket과 교정 선은 결찰재로 결찰되어 있어야 한다. 만능시험기의 crosshead speed는 $5 \mathrm{~mm} / \mathrm{min}$ 으로 하여 bracket이 교 정선을 따라 활주이동할때 생기는 마찰력을 축정, 기 록하였다. 한번 측정 후에는 타액을 교환하였다.
stainless steel 결찰에서는 결찰력을 일정하게 하 기 위한 간단한 실험을 하였다. 우선 연구에 사용되는 6 가지 교정선을 결찰재와 ligature tucker를 사용하여 결찰할 때 결찰재가 끊어질 때의 결찰횟수를 각 10 회 측정하여 8회라는 평균을 구하였다. 실제 연구에서는 교정선의 활주를 위해 3회를 reverse turn한 5 회를 시 행하였다.
실험군은 교정선의 재질과 형태, 결찰재의 종류, 타 액유무에 따라 각 24 개군으로 나누었다. 실험은 각 군 당 13 회씩 총 312 회 시행하였고, 얻어진 실험 계측치 를 SPSS-X RELEASE (version 3.02)를 이용하여 통 계 처리하였다. 각 교정선에 대해 주사전자현미경 (JSM-5200, JEOL corp, Japan)을 사용하여 사진을 촬영하고 표면 거칠기를 관찰하였다.

III. 연구성적

교정선의 종류, 결찰방법, 타액의 유무 등의 다양한 조건에서 마찰력의 평균치와 표준편차를 구하였다 (표 1). 각각의 동일조건하에서 $\mathrm{Co}-\mathrm{Cr}, \mathrm{Ni}-\mathrm{Ti}, \beta-\mathrm{Ti}$ 를 3개 군으로 나누어 One way ANOVA(일원배치분 사법)를 이용하여 95% 유의수준을 두고 통계 처리하 였고, 같은 조건하에서 결찰방법, 타액유무, $.016^{\prime \prime}$ 과

Table 2. One-way ANOVA test of frictional forces in each group.

Condition	Ligation	Wire	Alloy	$\mathrm{Co}-\mathrm{Cr}$	$\mathrm{Ni}-\mathrm{Ti}$	$\beta-\mathrm{Ti}$
Dry	Elastomeric	. $016{ }^{\prime \prime}$	$\mathrm{Co}-\mathrm{Cr}$			
			$\mathrm{Ni}-\mathrm{Ti}$			
			$\beta-\mathrm{Ti}$	*	*	
		. $016^{\prime \prime} \times .022^{\prime \prime}$	$\mathrm{Co}-\mathrm{Cr}$		*	
			$\mathrm{Ni}-\mathrm{Ti}$			
			$\beta-\mathrm{Ti}$	*		
	S. S.	. 016 "	$\mathrm{Co}_{0} \mathrm{Cr}$		*	
			$\mathrm{Ni}-\mathrm{Ti}$			
			$\beta-\mathrm{Ti}$	*		
		. $016^{\prime \prime} \times .022^{\prime \prime}$	$\mathrm{Co}^{-} \mathrm{Cr}$		*	
			$\mathrm{Ni}-\mathrm{Ti}$	*		
			$\beta-\mathrm{Ti}$	*		
Saliva	Elastomeric	. $016{ }^{\prime \prime}$	$\mathrm{Co}_{0} \mathrm{Cr}$		*	
			$\mathrm{Ni}-\mathrm{Ti}$			
			$\beta-\mathrm{Ti}$	*		
		$.016^{\prime \prime} \times .022^{\prime \prime}$	$\mathrm{Co}_{0} \mathrm{Cr}$			
			$\mathrm{Ni}-\mathrm{Ti}$	*		
			$\beta-\mathrm{Ti}$	*		
	S. S.	. 016 "	$\mathrm{Co}_{0} \mathrm{Cr}$			
			$\mathrm{Ni}-\mathrm{Ti}$			
			$\beta-\mathrm{Ti}$	*	*	
		.016 ${ }^{\prime \prime} \times .022^{\prime \prime}$	$\mathrm{Co}_{0} \mathrm{Cr}$			
			$\mathrm{Ni}-\mathrm{Ti}$			
			$\beta-\mathrm{Ti}$			

$.016^{\prime \prime} \times .022^{\prime \prime}$ 교정선의 비교는 unpaired t-test를 시 행하였다.

1. 각각의 동일조건하에서 교정선의 재질에 따른 비교

재질 차에 따른 마찰력의 영향은 0.05 유의수준에 서 통계적으로 표시하였다(표 2). 마찰력은 $\mathrm{Co}-\mathrm{Cr}$, $\mathrm{Ni}-\mathrm{Ti}, \beta-\mathrm{Ti}$ 순으로 증가하였다(단, 타액상태의 elastomeric으로 결찰한 $.016^{\prime \prime}$ 군에서는 예외)(그림 1,2). 이들 교정선의 재질에 따른 마찰력의 차이는 교 정선의 표면의 거칠기에 의해 형성되는 것으로 알려 져 있다. 각 교정선 표면의 주사전자현미경 소견을 보

면 $\beta-\mathrm{Ti}$ 의 표면이 다른 교정선에 비해 거침을 알 수 있는데 이러한 차이는 마찰력에 큰 영향을 미치는 것 으로 보인다(그림 13-15).
2. 각 조건하 (건조/타액상태, . $016^{\prime \prime} / .016^{\prime \prime} \times$.022") 에서 결찰방법에 따른 비교

마찰력이 stainless steel로 결찰한 경우가 elastomeric으로 결찰한 경우보다 더 큰 것으로 나타났 다. 건조상태에서 결찰재료의 차이가 마찰력에 미치 는 영향은 $\mathrm{p}<0.05$ 수준에서 통계적으로 유의한 것으 로 나타났다(그림 3). 타액상태에서 결찰재료간의 평.

Fig 1. Comparison of mean frictional forces in $.016{ }^{\prime \prime}$ wires (gm).
Dry-Elast : Dry-elastomeric ligation
Dry-SS : Dry-stainless steel ligation
Wet-Elast : Saliva-elastomeric ligation
Wet-SS : Saliva-stainless steel ligation

Fig 3. Comparison of mean frictional forces in dry condition (gm). *: p<0.05

Fig 5. Comparison of mean frictional forces in $.016^{n}$ wires (gm). *: $\mathrm{p}<0.05$

균 마찰력의 비교는 그림 4 에 제시하였다

3. 각각의 교정선과 결찰방법에서 타액 유무에 따른 비뇨

stainless steel로 결찰한 $.016^{\prime \prime} \mathrm{Co}-\mathrm{Cr}, \mathrm{Ni}-\mathrm{Ti}, \beta-$

Fig 2. Comparison of mean frictional forces in $.016^{\prime \prime}$ $\times .022^{\prime \prime}$ wires (gm).

Fig 4. Comparison of mean frictional forces in wet condition (gm). *: p<0.05

Fig 6. Comparison of mean frictional forces in $.016^{\prime \prime} \times$ $.022^{*}$ wires (gm). *: p<0.05

Ti 는 타액상태에서 마찰력이 감소하나(그림 5), stainless steel로 결찰한 $.016^{\prime \prime} \times .022^{\prime \prime} \mathrm{Co}-\mathrm{Cr}$, $\mathrm{Ni}-\mathrm{Ti}, \beta-\mathrm{Ti}$ 는 타액상태에서 마찰력이 증가하였다 (그림 6).

Fig 7. Comparison of mean frictional forces in dry condition (gm). *: p<0.05
4. 각 조건하(건조/타액상태, elastomeric/ S.S.결 찰) $.016^{\prime \prime}$ 과 $.016^{\prime \prime} \times .022^{\prime \prime}$ 의 비교

각 조건하 $.016^{\prime \prime}$ 과 $.016^{\prime \prime} \times .022^{\prime \prime}$ 사이의 마찰력 은 $.016^{\prime \prime} \times .022^{\prime \prime}$ 교정선에서 유의성있게 증가하였 다(단, 건조상태의 S.S. 결찰한 $\mathrm{Co}-\mathrm{Cr}, \beta-\mathrm{Ti}$ 와 타액 상태의 elastomeric 결찰한 $\beta-\mathrm{Ti}$ 는 예외). 건조상태 에서 $.016^{\prime \prime}$ 과 $.016^{\prime \prime} \times .022^{\prime \prime}$ 교정선간의 평균마찰력 의 비교는 그림 7 에 제시하였고 타액상태에서 .016 과 $.016^{\prime \prime} \times .022^{\prime \prime}$ 교정선간의 평균마찰력의 비교는 그 림 8 에 제시하였다.

IV. 총괄 및 고안

이동하는 물체가 다른 것과 접촉되면 이동하는 방 향에 저항하도록 접촉면간의 마찰력이 발생된다. 마 찰력은 접촉하는 두 표면에 대해 수직으로 작용하는 법선력 (N) 및 접촉하는 두 표면의 성질에 의해 결정 된다 $(\mathrm{F}=\mu \mathrm{N})^{3}$. 교정에서는 활주이동 동안에 적당한 조직 반응과 충분한 치아 이동을 이루기 위해서는 마 찰력의 크기에 대한 이해가 필요하다. 1500 년 Leonardo da Vinci 이래로 마찰력에 대한 연구가 꾸 준히 있어 왔으며 1699년 Amenton과 1785년 Coulomb에 의해 정립되었는데 일반적인 원칙은 접촉 면적과 활주 속도와는 무관하나 법선력의 크기에 비 례한다 ${ }^{12), ~ 25) ~}$

본 실험결과 교정선 합금의 마찰력은 cobalt-chromium, nickel-titanium, beta-titanium순으로 증가하 였다. 이 결과는 Frank와 Nikolai ${ }^{16)}$, Peterson 등 ${ }^{8)}$ 의 결과와 일치한다. 또한 각 교정선 표면의 주사전자현 미경 소견을 보면 $\mathrm{Co}-\mathrm{Cr}$ 의 표면은 활택한 반면 $\mathrm{Ni}-\mathrm{Ti}$ 는 비교적 거친 표면을 보여주었으며 $\beta-\mathrm{Ti}$ 에

Fig 8. Comparison of mean frictional forces in wet condition (gm). *: p<0.05

Fig 9. Universal Instron(M1000EC:MeCmesin corp.. U.K.)

서는 매우 거칠고 불규칙한 요철면을 볼 수 있었다 (그림 14-16).
이전의 많은 연구에서는 $\beta-\mathrm{Ti}$ 의 표면이 거칠기 때 문에 마찰력이 크다고 하였으며 Drescher 등ㄹ), Garner 등 ${ }^{25)}$, Stannard 등 $^{5)}$, Pratten 등 ${ }^{6)}$, Baker $ㄷ ㅡ ㅇ ~^{13)}$, $\mathrm{Tidy}^{12)}$ 는 마찰력의 크기가 주로 표면 거칠기에 의해 결정된다고 하였으며 이는 본 연구와도 일치된다. 그 러나 Frank와 Nikolai ${ }^{16)}$, Kusy 등ㅎ) 은 $\mathrm{Co}-\mathrm{Cr}, \beta-\mathrm{Ti}$, $\mathrm{Ni}-\mathrm{Ti}$ 순으로 표면의 거칠기가 증가한다고 하였으며 Peterson 등 ${ }^{8}$ 은 다른 선학들과는 달리 $\mathrm{Ni}-\mathrm{Ti}$ 가 가장 마찰력이 크다고 하였다. 이와 같은 결론에 대해 Prososki 등 ${ }^{10)}$ 은 마찰력과 표면 거칠기는 상관성이 없다고 하였으며 $\mathrm{Pratten}^{6}$)은 표면 거칠기보다 산화막

Fig 10. Scanning Electron Microscope (JSM-5200. JEOL corp. Japan)

Fig12. Scanning Electron Micrograph of $.018^{\prime \prime} \times .025^{\prime \prime}$ slot standard bracket ($\times 2000$)

Fig14. Scanning Electron Micrograph nickel-titanium (\times 1000)

Fig 11. Chlorozoin Therapy Incubator

Fig 13. Scanning Electron Micrograph of cobalt-chromium ($\times 1000$)

Fig15. Scanning Electron Micrograph of β-titanium (x 1000)
(oxide layer) 또는 내적 윤활제(intrinsic lubrication) 가 마찰력에 영향을 끼칠 수 있다고 하였다. 교정선에 서는 $\mathrm{Ni}-\mathrm{Ti}$ 가 더 큰 표면 거칠기를 보인다고 할지라 도 $\beta-\mathrm{Ti}$ 이 더 큰 마찰저항을 나타낸다. 이는 합금의 티타늄 함량이 증가함에 따라 표면 반응성은 증가하 고 표면 화학성이 마찰양태의 주된 영향요소임이 밝 혀졌기 때문이다. 따라서 80% 의 $\beta-\mathrm{Ti}$ 이 50% 의 $\mathrm{Ni}-\mathrm{Ti}$ 보다 더 큰 마찰계수를 가지는 것으로 알려져 있다.
Stannard 등 ${ }^{5}$ 은 교정선재간의 표면차이를 활주이 동 전후로 주사전자현미경으로 관찰하였는데 $\mathrm{Co}-\mathrm{Cr}$ 과 $\mathrm{Ni}-\mathrm{Ti}$ 는 섬유구조(fibrous structure)를 보이고 활 주이동 동안 마모나 연마된 양상이 관찰되지 않았다. β-Ti는 뚜렷한 입자구조(grain structure)를 갖고 있 으나 활주이동 후에는 마모된다고 하였다.
β-Titanium 교정선은 Dr. Burstone ${ }^{317}$ 에 의해 소 개되었는데 LDR (하중변형률)이 낮고 강도와 탄성이 우수한 장점이 있으나 본 실험결과에서 보듯이 마찰 력으로 소실되는 힘의 양이 커서 활주 이동이 일어나 는 continuous arch보다는 segmented 또는 sectional arch wire의 사용이 효율적일 것으로 보인다. LDR이 낮으면 치아의 이동기간동안에 지속적으로 일정한 힘을 부여할 수 있고 치아에 부여되는 힘의 크기를 정밀하게 예측하기가 용이하게 된다.
같은 종류의 교정선이라도 단면의 크기와 형태에 따라 마찰력에 차이가 있다. 본 연구에서는 .016" round wire보다 $.016^{\prime \prime} \times .022^{\prime \prime}$ rectangular wire에 서 마찰력이 더 크게 나타났는데 이는 round wire는 bracket과 교정선 사이 공간의 두면에서 접촉하지만 rectangular wire는 세면에서 접촉하므로 접촉면적이 증가하기 때문이라고 여겨진다. 또한 round wire는 torque를 일으키는 마찰력을 감소시키며 유연성이 있 기 때문에 bracket내에 교정선을 삽입 또는 철거시 마찰력이 적게 발생한다. 이런 관점에서 보면 rectangular wire는 활주 이동을 시작하기 전에 한달 동안 위치시키는 것이 일반적이라 생각된다.
Baker ${ }^{13)}$ 는 $.022^{\prime \prime}$ slot의 bracket에서 $.020^{\prime \prime}$ round wire가 $.018^{\prime \prime}$ round wire나 $.018^{\prime \prime} \times .025^{\prime \prime}$ rectangular wire보다 마찰력이 작았다고 하였으며 이는 bracket slot 크기와 교정선 굵기가 근접할수록 bracket과 교정선 사이 play가 감소하여 마찰력이 감 소하였다고 하였다.
마찰력에 대한 결찰방법의 영향에서 stainless steel 결찰이 elastomeric module보다 마찰력이 크게 나타

났다. 이러한 결과는 Riley ${ }^{91}$ 와 Thurow등 ${ }^{27)}$, Schumacher의 결과와 일치하지만 Bednar 등 ${ }^{17}$ 과 Echols ${ }^{77}$ 의 결과와는 상반되는 것이다. Baker ${ }^{13)}$ 는 실험 결과 elastomeric modules이 발생하는 마찰력 크기에 변화 가 크다고 하였으며, Angolkar ${ }^{26)}$ 와 Kapila등 ${ }^{(4)}$ 은 elastomeric module을 사용하여 결찰을 표준화하며, 결찰력은 마찰력에 영향을 미치므로 결찰방법과 결 찰력을 표준화하는 것이 매우 중요하다고 하였다. 그 러나 elastomeric module은 크기가 일정하게 규격화 되어 있으므로 술자에 의한 결찰력의 가변성이 적을 것으로 보인다.
polyurethane elastomers가 수액환경(aqueous environment)에서 분해(Huget et al., 1990; Hepburn, 1992)되어 스트레스 이완의 속도를 가속화한다(Andreasen \& Bischara, 1970). 이러한 스트레스 이완의 대부분은 처음 24 시간동안 이루어지므로(Killiany and Duplessis, 1985) 본 실험에서는 결찰 후 급격히 탄성력이 감소되는 처음 24 시간동안의 변화를 배제 하기 위하여 elastomeric module을 $37^{\circ} \mathrm{C}$ 에서 24 시간 동안 타액에 보관시켰다.
Andreasen과 Quevedo ${ }^{11)}$ 는 stainless steel 결찰재 에 대해 건조와 타액상태간 마찰력에 차이가 없었다 고 하였다.
타액이 마찰력에 미치는 영향에 대해서 여러 선학 들의 논란이 있어왔다. Baker^{133} 는 인공타액에서 마찰 력이 감소하였으나 인공타액보다 점도가 높은 USP glycerin에서는 마찰력을 증가시켜 윤활제로는 부적 당하다고 하였다. Pratten 등 ${ }^{6}$ 은 타액이 마찰력을 증 가시킨다고 하였으며, 이러한 차이를 bracket과 교정 선 사이의 하중력(loading force)으로써 설명하였는 데, 낮은 하중에서는 결찰력으로만 유지되므로 타액 이 윤활제로서 작용하지만 높은 하중에서는 타액이 활주이동을 할 때 전단저항(shear resistance)을 발생 시켜 마찰력을 증가시킨다고 하였다. Stannard 등ㄱ)은 마찰력을 점착력 이론(adhesion theory)으로 설명하 였는데 물과 다른 극성액체는 극성물체 사이에서 점 착력(adhesion)이나 인력(attraction)을 증가시키므로 타엑 존재시의 bracket과 교정선에서도 관찰된다고 하였다. Kusy 등 ${ }^{(5)}$ 은 인간의 타액의 역할은 불확실하 나 타액은 titanium 합금 교정선에 대해서는 마찰력 을 감소시킨다고 하였으며 bracket-wire 조합에 따라 마찰력을 증가 또는 감소시킬 수 있다고 하였다.

본 연구에서는 stainless steel로 결찰한 .016" $\mathrm{Co}-\mathrm{Cr}, \mathrm{Ni}-\mathrm{Ti}, \beta-\mathrm{Ti}$ 는 타액상태에서 마찰력이 감소

하였으나, stainless steel로 결찰한 $.016^{\prime \prime} \times .022^{\prime \prime}$ $\mathrm{Co}-\mathrm{Cr}, \mathrm{Ni}-\mathrm{Ti}, \beta-\mathrm{Ti}$ 는 타액상태에서 증가하였다. 이 와 같은 결론은 타액의 영향보다는 교정선의 단면 형 태에 의한 마찰력이 더 크게 작용한 것으로 생각된다.
한편 타액은 bracket과 교정선면들에서 화학적으 로 분해될 수 있고, 표면 장력 효과(surface tension effect)때문에 접착제(adhesive)로 작용할 수 있다. Titanium - rich oxide layer는 분해, 반응, 접착과 탈 락을 한 결과 stick-slip 현상을 일으킬 것이다. 타액 상태의 β - Ti 에서 full-film lubrication은 solid-tosolid contact을 방지한다. $\beta-\mathrm{Ti}$ 는 구강 내에서 효과 적인 장치이지만, bracket과 교정선 사이의 높은 압력 은 경계윤활(boundary lubrication)을 일으킬 것이다. 그리고 경계윤활이 더 일어날수록 solid-solid contact이 solid-liquid contact과 함께 일어난다. 그럼으로 써 활주이동을 방해하는 stick-slip 현상을 더 일으킬 것이다 ${ }^{15)}$.
마찰력의 임상적 중요성은 spring, loop나 elastic같 은 active component에 의해 치아에 전달되는 힘을 감소시키는 역할이다. 그러므로 구치부의 절대 고정 (anchorage)이 필요한 경우에는 마찰력을 감소시키 는 bracket과 교정선을 조합해서 사용해야 한다. Frank와 Nikolai ${ }^{16}$ 는 마찰력을 감소시키려면 bracket 슬롯에 닿는 교정선의 면적을 증가시키거나 교정선 의 굴곡 경화(bending stiffness)를 최대화하거나 bracket 폭경을 최소화해야 한다고 하였으며 canine retraction을 효율적으로 하기 위해서는 경화(stiffness)가 높고 폭경이 좁은 bracket을 추천하였다.
활주이동시에 적용된 교정력의 일부는 마찰력에 의해 소실되고 그 일부가 치아의 주위조직에 전달되 게 된다. 그러므로 교정장치를 사용할 때 교정력의 크 기에 대한 정확한 이해와 지식이 필요하다. 오늘날 많 은 임상가들은 치료의 여러 단계에서 선택적으로 $\mathrm{Co}-\mathrm{Cr}, \mathrm{Ni}-\mathrm{Ti}, \beta-\mathrm{Ti}$ 와 그 외 교정선을 사용하고 있 으므로 효율적이고 예견 가능한 치아이동을 위한 적 당한 힘을 전달하기 위해서 여러 bracket과 교정선의 종류, 크기 사이의 마찰력에 대한 계속적인 연구가 필 요하다고 사료된다.

V. 결 론

마찰력에 영향을 미치는 여러 요인들 중 교정선의 종류, 결찰방법, 타액의 유무 등의 영향에 대해 살펴 보고 마찰력에 어떠한 영향을 미치는가를 조사하기

위해 $.018^{\prime \prime} \times .025^{\prime \prime}$ standard edgewise bracket과 여 섯 가지 교정선 $\left(.016^{\prime \prime} \mathrm{Co}-\mathrm{Cr}, .016^{\prime \prime} \times .022^{\prime \prime} \mathrm{Co}^{-}\right.$ $\mathrm{Cr}, .016^{\prime \prime} \mathrm{Ni}-\mathrm{Ti}, .016^{\prime \prime} \times .022^{\prime \prime} \mathrm{Ni}-\mathrm{Ti}, .016^{\prime \prime} \beta-\mathrm{Ti}$, $.016^{\prime \prime} \times .022^{\prime \prime} \beta-\mathrm{Ti}$), 두 가지 결찰양식(stainless steel ligation, elastomeric ligation), 타액 유무 등을 서로 조합한 상태에서 만능시험기를 이용하여 마찰 력을 측정하여 다음과 같은 결론을 얻었다.

1. 각각의 동일조건하에서 교정선의 재질에 따른 마찰 력은 $\mathrm{Co}-\mathrm{Cr}, \mathrm{Ni}-\mathrm{Ti}, \beta-\mathrm{Ti}$ 순으로 증가하였다. 단, 타액상태에서 elastomeric으로 결찰한 $.016^{\prime \prime}$ 군에 서는 예외이다.
2. 각 조건하(건조/타액상태, $.016^{\prime \prime} / .016^{\prime \prime} \times .022^{\prime \prime}$) 에서 결찰방법에 따른 마찰력은 elastomeric보다 stainless steel 결찰에서 더 크게 나타났다($\mathrm{p}<0.05$).
3. 각각의 교정선과 결찰방법예서 타액 유무에 따른 마찰력은 stainless steel로 결찰한 $016^{\prime \prime} \mathrm{Co}-\mathrm{Cr}$, $\mathrm{Ni}-\mathrm{Ti}, \beta-\mathrm{Ti}$ 는 타액상태에서 감소하나, stainless steel로 결찰한 $.016^{\prime \prime} \times .022^{\prime \prime} \mathrm{Co}-\mathrm{Cr}, \mathrm{Ni}-\mathrm{Ti}, \beta-\mathrm{Ti}$ 는 타액상태에서 증가하였다 $(\mathrm{p}<0.05)$.
4. 각 조건하(건조/E타액상태, elastomeric / stainless steel 결찰) $.016^{\prime \prime}$ 과 $.016^{\prime \prime} \times .022^{\prime \prime}$ 교정선 사이의 마찰력은 $.016^{\prime \prime} \times .022^{\prime \prime}$ 교정선에서 증가하였다 ($\mathrm{p}<0.05$).

잠 고 문 헌

1. Tselepsis M, Brockhurst P. The dynamic frictional resistance between orthocontic brackets and archwire. Am J Orthod Dentofac Orthop 1994: 106: 131-8.
2. Stoner MM. Force control in clinical practice. Am J Orthod $1960: 46$: 163-8.
3. Drescher D, Bourauel C, Schimacher HA. Frictional forces between bracket and archwire. Am J Orthod Dentofac Orthop 1989:96: 397-404.
4. Kusy RP, Whitley JQ. Coefficients of friction for arch wires in stainless steel and polycrystalline alumina bracket slots. Am J Orthod Dentofac Orthop : $1990: 98: 300-312$.
5. Stannard JG, Gau JM, Hanna MA. Comparative friction of orthodontic wires under dry and wet conditions. Am J Orthod Dentofac Orthop: 1986 : 89 : 485- 91.
6. Pratten DH, Popli K, Germane N, Gunsolley JC. Frictional resistance of ceramic and stainless steel orthodontic brackets. Am J Orthod Dentofac Otthop : $1990: 98: 398-403$.
7. Echols M. Elastic ligatures, binding forces, and anchorage taxation. Am J Orthod : $1975: 67: 219$.
8. Peterson L, Spencer R, Andresen G. A comparison of frictional resistance for nitinol and stainless steel wire in edgewise brackets. Quintessence International: 1982:5:563-71.
9. Riley J, Garrett SG, Moon PC. Frictional forces of ligated plastic and
metal edgewise brackets. J Dent Res : $1979: 58: 98$.
10. Prososki RR, Bagby MD, Eeickson K. Static frictional force and surface roughness of nickel-titanium arch wires. Am J Orthod Dentofac Orthop 1991: 100:341-8.
11. Andreasen GF, Quevedo FR. Evaluation of frictional forces in the $0.022^{\prime \prime} \times 0.028^{\prime \prime}$ edgewise bracket in vitro. J of Biomech : 1970:3: 151-60.
12. Tidy DC. Frictional forces in fixed appliances. Am J Orthod Dentofac Orthop: 1989:96:249-54.
13. Baker LL. Frictional changes in force values caused by saliva substitution. Am J Orthod Dentofac Orthop : $1987: 91$: 316-20.
14. Kapila A, Angolkar PV, Duncanson MG, Nanda RS. Evaluation of friction between edgewise stainless steel brackets and orthodontic wires of four alloys. Am J Orthod Dentofac Orthop: 1990:98: 117-26.
15. Kusy RP, Whitley JQ, Prewitt MJ. Comparison of the frictional coefficients for selected archwire-bracket slot combination in the dry and wet states. Angle Orthod : 1991:61:293-302.
16. Frank CA, Nikolai RJ. A comparative study of frictional resistances between orthodontic bracket and arch wire. Am J Orthod : 1980:78: 593-609.
17. Bednar JR, Gruendeman GW, Sandrik JL. A comparative study of frictional forces beween orthodontic brackets and arch wires. Am J Orthod Dentofac Orthop : 1991:100:513-22.
18. 고정석, 양규호. 인공타액하에서 교정선과 bracket간의 마찰력에 대한 연 구, 대치교정지 $1988: 18: 55-63$.
19. 황현식, 박영철. 인공타액하에서 수종 교정선의 마찰력에 대한 실험적 연 구, 대치교정지 1989:19:245-55.
20. Dowling A, McCabe J, Gordon P. A study of frictional forces between orthodontic brackets and archwires. Br J Otthod :1994: $21: 349-57$.
21. Christopher MR, Joseph HZ. Reduced resistance to sliding in ceramic brackets. J Clin Orthod : 1996 : February.
22. Edwards GD, Davies EH, Jones SP. The Ex Vivo effect of ligation technique on the static frictional resistance of stainless steel brackets and archwires. Br J Orthod: $1995: 22: 145-55$.
23. Kazuto K, Takako T. Frictional forces with the Friction-Free edgewise bracket. J Clin Orthod : 1994 : June.
24. Shivapuja PK, Berger J. A comparative study of conventional ligation and self-ligation bracket systems. Am J Orthod Dentofac Orthop : 1994: 106:472-80.
25. Garner LD, Allai WW, Moore BK. A comparison of frictional forces during simulated canine retraction of a continuous edgewise arch wire. Am J Orthod Dentofac Orthop : $1986: 90: 199-203$.
26. Angolkar PV. Evaluation of friction between ceramic brackets and orthodontic wires of four alloys. Am J Orthod Dentofac Orthop: 1990 : 98: 499-506.
27. Thurow RC. Elastic ligatures binding forces, and anchorage taxation. Am J Orthod : 1975: 67:694.
28. 성현미. 교정용 bracket과 archwire사이의 마찰저항에 대한 비교 연구, 대치교정지 : 1991:21:543-59.
29. 민정미, 서정훈. 치아의 활주이동시 교정용 bracket과 archwire 사이에서 발생하는 마찰저항력에 관한 비교연구, 대치교정지: $1988: 18: 155-62$.
30. 장시호. TiN 피막 처리된 교정 장치물의 마찰 저항력에 관한 비교 연구, 대치교정지 1993:23:671-91.
31. 곽춘, 시간경과에 따른 교정용 bracket과 교정선 사이의 마찰력 변화에 관한 연구, 대치교정지 $1993: 23: 283-94$.
32. Kazuto Kuroe, Takata Tajiri. Frictional Forces with the friction - free edgewise brackets. J Clin Orthod : 1994 : JUNE.
33. Burstone CJ, Goldberg AJ. Beta titanium : A new orthodontic alloy. Am J Orthod: 1980:77:121-32.

A comparative study of frictional forces according to orthodontic wires and ligation method under dry and wet conditions

Jung- Suk Han, Jin-Woo Lee, Kyung-Suk Cha
Department of Orthodontics, College of Dentistry, Dankook University

The purpose of this study was fourfold - to evaluate the general laws of friction applied to orthodontic conditions, to compare archwire materials under these controlled conditions, to compare ligation method, and to measure the effect of the artificial saliva on friction with these materials

Three wire alloys (Cobalt-chromium, Nickel-titanium, Beta-titanium) in two size wires (. $016^{\prime \prime}, .016^{\prime \prime} \times .022^{\prime \prime}$) were examined respect to the bracket ($.018^{\prime \prime} \times .025^{\prime \prime}$ standard), and two ligature material (stainless steel, elastomeric) in dry and wet conditions

The results were as follows,

1. The order of frictional force against alloy materials was $\mathrm{Co}-\mathrm{Cr}$ (lowest), $\mathrm{Ni}-\mathrm{Ti}$, and β-Ti(highest) - with the exception of elastomeric ligation under wet conditions.
2. S.S. ligation gave rise to significantly greater friction than elastomeric ligation did.
3. Testing in the presence of saliva, rather than in dry conditions, decreased the frictional force for S.S. ligation with $.016^{\prime \prime} \mathrm{Co}-\mathrm{Cr}, \mathrm{Ni}-\mathrm{Ti}, \beta-\mathrm{Ti}$. but, increased the frictional force for S.S. ligation with $.016^{\prime \prime} \times .022^{\prime \prime} \mathrm{Co}-\mathrm{Cr}, \mathrm{Ni}-\mathrm{Ti}, \beta$ -Ti.
4. $.016^{\prime \prime} \times .022$ " wire generated more friction than $.016^{\prime \prime}$ wire.

KOREA. J. ORTHOD. 2001 : 31(2): 271-81
Key words : Frictional force, Saliva, archwire. Ligation material.

[^0]: ${ }^{1)}$ 단국대학교 치과대학 교정학卫ㅛ실，대학원생．
 ${ }^{2)}$ 단국대학교 치뫄대학 교정학교실，조꾜수．
 ${ }^{3)}$ 단국대학교 치과대학 교정학교실，꾜수．
 표신저자：한정숙
 충남 천안시 신부동 산 7－1
 단국대학표 치마대학 표정학꾜실／041－550－1941
 www．anseo．dankook．ac．kr／dankor／

