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Sampling Based Approach for Combining Results from
Binomial Experiments
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Abstract
In this paper, the problem of information related to I binomial experiments,
each having a distinct probability of success 6;, i = 1,2,---, I, is considered.
Instead of using a standard exchangeable prior for 8 = (6;,6,,---,6;), we con-

sider a partition of the experiments and take the 6;’s belonging to the same
partition subset to be exchangeable and the 8;’s belonging to distinct subsets
to be independent. And we perform Gibbs sampler approach for Bayesian in-
ference on @ conditional on a partition. Also we illustrate the methodology with
a real data.

Key Words and Phrases: Beta-binomial, Hierarchical prior, Partial exchange-
ability, Gibbs sampler, Adaptive rejection sampling, Borrowing strength;

1. Introduction

Consider a collection of I independent binomial experiments, with experiment i
having size n; and success provbability 8;,7 = 1,2,---,I. A typical Bayesian hier-
archical approach would assume the 6;’s to be ezchangeability. Exchangeability at
times may appear to be too strong an assumption. So this approach leads shrinkaged
estimate for 6. Hence, more generally, when one suspects that the experiments may
have various degrees of similarity in some respect, one may wish to adopt a more
flexible approach, involving entertaining several partial exchangeability structures
for the 6;’s and then combining the corresponding inferences.

O’Hagan(1988) proposed a Bayesian procedure based on long-tailed prior distri-
butions that may be useful in solving problems of the type for normal data. Malec
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and Sedransk(1992) suggested that Bayesian hierarchical approach would assume the
0;’s to be partial exchangeability and that implemented with normal data. Also
Consonni and Veronese(1995) considered combining inference on € under the 6;’s to
be partial exchangeability for binomial data. But the weakness of their approach is
to use approximating the beta-binomial likelihood to lead Bayesian inference on 6.

In this paper, to overcome the problem for approximating the beta-binomial
likelihood, we obtain the inference on 6 by Gibbs sampler approach for combining
the conditional inferences according to the posterior distribution of each partition.
Also we illustrate the mothodology with a real data, showing in particular how
classifying factors might help choose the collection of partitions. It also presents an
empirical comparison with alternative methodologies, such as parametric empirical
Bayes and standard logistic regression.

2. Notations and Preliminaries

Densities are denoted generically by brackets, so joint, conditional, and marginal
forms, for example, appear as [X,Y],[X|Y], and [X]. Let g be a partition of
{1,2,---,I} comprising d(g) subsets Si(g), £ = 1,2,---,d(g9) and let G be the
total number of partitions of the set {1,2,---,I}. For example, if I = 5, then two
possible partitions are g; = {{1,3},{2,4,5}} and g2 = {{1,3}, {2}, {4,5}}. Clearly,
d(g1) = 2 with S1(g1) = {1,3} and S2(91) = {2,4,5}. Similarly, d(g2) = 3 with
S1(g2) = {1,3}, S5(g2) = {2} and Ss(gs) = {4, 5}.

Let X; given 0; be independently distributed as binomial (n;, 6;), i =1,2,---,1I.
Typically, there will be several partitions g whose relative plausibility is described by
a prior probability mass function p(g). We consider a partition of the experimental
set {1,2,---,I}, whose subsets are S;(g), S2(g), - -, Sa(g)-

The basic assumption is to regard as exchangeable only the 6;’s associated with
experiments belonging to the same partition subset Si(g), whereas the 6;’s relative
to experiments in distinct subsets are taken to be independent. We wish our prior
distribution for 6 to reflect the beliefs that (a) there are subsets of 6 such that the ;
within each subset are ’similar’, and (b) there is uncertainty about the composition
of such subsets of 8.

To specify the prior distribution for , first condition on g, we may represent
the desired similarity of the #; within a subset by assuming the following prior
distribution: (a) there is independence from one subset another, and (b) within
Sk(g), and conditional on ui(g), the ; are independent with

[6:1k(g)] ~ Beta (gkux(9), ak (1 — 1x(g))) (1)

where ¢ is a known positive constant, and

[ux(9)] ~ Beta (rgmy, re (1 — mg)), (2)
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where 0 < my < 1 and r; > 0 both known.
Finally, our prior beliefs about the set of specifications in (1) and (2) for g =
1,2,---,G are denoted by p(g) with %, p(g) = 1; that is,

P(the elements of y are arranged according to partition g). (3)

In practice, many of the p(g) would be assigned equal mass, p(g) = 1/G.

To compute the posterior distribution of § given the data x = (z1,-- -, z1), p(6}x),
one typically first derives p(@|u,x), where u = (u1,---,uqg), and then integrates it
with respect to p(u(x). It is immediate to verify that for i € Si(g)

[0, p(g)] ~ Beta(grpe(g) + =i, qr(l — px(9)) +ni — ;). (4)

On the other hand, computation of p(u|x) becomes analytically intractable, because
the marginal distribution of X given u is a product of beta-binomials, with generzl
term

ni\ B(si + qepn(9), ni — si +gu(1 — px(g)))

2 = 5
Pl=iin(9)) ( i) Blasus(a), al - m(@) ©
where B(a, ) = [y z~1(1 — z)#~!dz. Several approximations of the beta-binomial
distribution have been suggested by some authors. But they do not lead to closed-
form posteriors for u. So Consonni and Veronese (1995) obtained the approximated
the likelihood function for u;(g)(See Consonni and Veronese(1995)).

3. Sampling Based Approach

In section 2, the weakness of Consonni and Veronese(1995)’s approach is to use
approximating beta-binomial likelihood. To overcome the problems for approxi-
mating, we use Gibbs sampling by Gelfand and Smith(1990, 1991). Also Gelman
and Rubin(1992) introduced iterative simulation using multiple sequences. In this
section, we use Gelman and Rubin’s method.

For convenience, we let ur(g) = pgr. The Gibbs sampling analysis is based on
the following posterior distributions:

(I) [6:]x, ur,g] ~ Beta (z; + gk, ni — z; + g (1 — px)) , for i € Sk(g).

(II) For each k =1,2,---,d(g), [1k|x, 8, g] has pdf:

B7kHk (1-0;)9k =) k™R N (1 yrp (1-mi )1
pluklx,6,9) o« Hiesk(g) F(qwk)f'(%(l—#k))
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(IIX) [g|x,0, u] has pdf:

p(glxa Ha ﬂ) X
(ﬁ) I T(gs)T(ri )07 (1 — 6;)9 (1 —#e) g1 (1 — 'u,k)"'k(l—mk)—llﬁ)
k=11i€Sk(9) I (gemie)T{(ge (1 — pr))T(reme) T (re (1 — my)) {

To estimate the posterior moments, we use Rao-Blackwellized estimates as in Gelfand
and Smith(1991). Using above step (I), the posterior mean and the posterior vari-
ance are given by

] = ELE(R _ [Tt o
EI0ix,9) = BLE(lug, 9, 0lx) = B [T, 7

Var[05|x, g] = E'[Var(@i[x, Kk, g)|X] + VaT[E(eiIX,Mka g)lx]
_E [(-’Bi + qeie) (i — i + qe(l — px))
= 5 |x
(ni +q)?(ni +qr + 1)

Ti + Qi
+Va'r[——'—— x]. 8
mtar | (8)

Thus we can calculate the E(0;|x) and Var(6;|x), respectively as follow,

E(6i|x) = ) P(glx)E(6i]x, 9), (9)
g

V(bilx) = %[V(Hilx, Be(9))] + V[Eéﬁilx, Br(9))]

=3 V(0ilx,9)P(g|x) + 3 E(6ilx,9)* P(g]x)
g=1 9=1

G 2
—.(Z E(Hilx,g)P(QIX)) : (10)
g9=1
Using (7) and (8), E(6;|x,g) and Var(6;|x, g) are approximated by
m 2n
E(0ilx,g) ~ (nm)™' Y > [(tvi + it D) (ni + Qk)_l] , (11)
j=1 I=n+1

m 2n
m+%M)mrm+%u-%>)
Var(8i|x,9) ~ (nm)~!
a"'( zlx g) ( ]Z”_:n-;l ( ’n +Qk)2(nz +qr + 1)
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2
m)_li %‘: ($i+.Qk/J'lcj(l))

j=li=n+1 ni + gk
2
m  2n . (1)
z; +
— | m)t Y $ (_'M) , (12)
j=ll=n+1 ni + gk

where ,uk(g)g-l) denotes the generated value in [th iteration of jth chain.
In (6), p(g]x) is approximated by p(g|x)/ £5_, p(g|x), where

~ AT D@ (o (1 - )esti-?)
plgl) ~mn22§2 I D (rim) L (re(L = ma))

j=1ll=n+1 \ k=1i€S;(g)

(d(g) (l)r"m" 1(1 _ uk§))rk(l—mk)—1)

(13)

I 1T -

i=lics(o) m%mumﬁu—mwn

where A is the norming constant. Therefore, E(6;|x) and Var(6;/x) are approxi-
mated by (9)-(11).

In implementing the Gibbs sampler, one should be able to draw samples from
the conditional densities given in (I)-(III). Simulation from the conditional densities
(I) which is beta density can be done by standard methods. However, the posterior
pdf of ui given x,0 and ¢ is known only up to a multiplicative constant. In order
to simulate from this density, one general approach is to use the Metropolis-Hasting
accept-reject algorithm. Fortunately, the task becomes simpler for us because of the
following result.

Lemma For each k =1,2,---,d(g), logp(u|x,0, g) is a concave function of uy.

Proof Let |S;(g)| denotes the number of elements in S(g) and consider p(uk|x, 6, g) o

-1 . _ _
H' egk“k(l—oi)qk(l_“k)ﬂ;kmk (1_#k)rk(l mk) 1
1€Sk(g) T{grepn)T(gr(1-nr))

. Then

logp(ui|x, 6, 9)
=C+ Y [qeprlog(6;) + ax(l — px)log(l — 6;)]

i€Sk(9)
+154(9)] - [(remi — Dlog(ue) + (re(L — mg) — 1)log(1 — )]
—|Sk(g)| - [log(T (grper)) + log(T(gr(1 — pi)))] (14)

where C' is the norming constant. Hence,

ad
—lo x,0,
B gp(1kx, 0, g)
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- 1 () (st

i€Sk(9) ME 1~ HE
I e % 2% bk gilog(2)dz 1
—S . - =
15(0)] ( Dgkpx + 1) m
Jo© =2z % ~#) (—qylog(z)) 1
—|S . + . 15
15+(0) ( Dlge(l — pe) +1 ) 1~ p (15)
Therefore,

32
&Elogp(uklx, 0,9)

remy | (1l —my)

= —|Sk(9)| - ( 2 + (1= pg)?
—|Sk(g)| - (Varr(gklog(z)) + Varri(—qilog(z))) <0, (16)

where Vary and Varyy are the variances for Gamma(l, gy ux+1) and Gamma(l, ;. (1—
pr) + 1). The proof is completed.

Because of the log-concavity of this posterior density, we can use the adaptive re-
jection sampling algorithm of Gilks and Wild(1992) to simulate from this density(See
Gilds and Wild(1992)).
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4. An Example

In this section, we illustrate the results of section 3 by providing a complete
Bayesian hierarchical analysis of the mortality of pine seedlings data previously
analyzed by Fienberg(1980). For more details on this experiment and analysis of
the data using a logistic regression model, see Fienberg(1980). Our object is to
compare and contrast the present hierarchical Bayes method with Fienberg’s logistic
regression method and parametric empirical Bayes method.

Because the number of plants for each combination of Seedling Type ( LS = Lon-
gleaf Seedling, SS = Slash Seedling ) and Depth of Planting(DH = Depth too High,
DL = Depth too Low) was fixed by design, we have four binomial experiments each
of size n; = 100, i = 1,---,4, corresponding to the four combinations(LS,DH),(LS,
DL), (SS, DH), and (SS, DL). The data are reported in the first three columns of
Table 1.

Performing Gibbs sampling approach, we choose the parameters of prior and
hyperprior distributions as follows: In Bayesian hierarchical modeling it is customary
to assign a noninformative prior to the last stage parameters (uy in our case). So we
take into consideration is the uniform distribution on ug. This amounts to setting
mr = 2 and mg = 1/2 in (2). For the values of gx(g),9 = 1,2,---,6, we choose
any value on the interval [1, 5]. In deriving the hierarchical Bayes estimates of the
present section, we have considered Gibbs sampler with m = 5 and 2n = 10000.
A sample of size 10,000 is taken to obtain the Monte-Carlo estimates, as stability
seems to be achieved with this sample size.

In Table 1, z; denotes count of alive seedlings out of 100 in experiment i, §; is
observed survival rate(MLE), that is, §; = ;/n;, 5% denotes hierarchical Bayes
estimates using Gibbs sampler approach, 8 denotes estimate of 6; based on the
logistic regression model by Fienberg(1980), and 87 FP denotes parametric empirical
Bayes estimate by Consonni and Veronese(1995).

Table 2 reports possible partitions and the posterior probability of a selected
collection of partitions that are most supported by the data, besides those relative
to g; for the independent model and gg for the exchangeable model.

It is immediately recognizable that experiment 1 is isolated, indicating a lack
of exchageability relative to the other experiments. So partition {1,2,3,4} has the
lowest posterior probability in Table 2. On the other hand, partition {{1},{2,3,4}}
has the highest posterior probability, showing a substantial degree of similarity for
experiments 2, 3, and 4. This is clearly reflected in the posterior expectation of 6,
which is only very mildly affected by the results of experiments 2, 3, and 4. 6] and
6FEF lead shrinkaged estimate towards the results of experiments 2, 3, and 4. But
6Fibs tyrn out to be fairly close to the MLE, 8,. On the other hand, the estimates
of 84 are more strongly influenced by the data of experiments 2 and 3 due to a
substantial borrowing strength effect, which does lower 8, as 6§ and 7FB. Byt
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Table 1: Data, Estimates of §;, and (Standard Errors)
[Experiment [ i [ | 6 | 6,58 | 67 | 6PFP
LSDH 1|59 0.59 | 0.589(0.048) | 0.606 | 0.610(0.047)
LSDL 289 0.89 | 0.885(0.031) | 0.874 | 0.885(0.030)
- SSDH 3| 88| 0.88 | 0.876(0.033) | 0.864 | 0.875(0.031)
SSDL | 4 | 95 | 0.95 | 0.945(0.022) | 0.966 | 0.940(0.022)

Table 2: Posterior Probabilities for a Selected Collection of Partitions g
l g | Partition | P(gx |

L[ {1}, (2, (35, (4} } | 0.180
({1}, 23, (41y_| 0114
{11, 24, (3} }_| 0001
({1}, (21, (3.4)} |o114
{1}, 2341 | 0482
{1,234} 0.106

| O ] WO N

03 based on the logistic model is higher than 64 due to the a.ddltlve positive effects
related to Slash Seedling and Depth too Low.

In conclusion, our analysis clarifies that experiment 1 is clearly distinct from the
other experiments, which can be regarded as essentially similar. In other words, the
effect of planting is appreciable only in Depth too High in conjunction with Longleaf
Seedlings.
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