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Asymptotic Distribution of a Nonparametric
Multivariate Test Statistic for Independence

Yonghwan Um !

Abstract

A multivariate statistic based on interdirection is proposed for detecting
dependence among many vectors. The asymptotic distribution of the proposed
statistic is derived under the null hypothesis of independence. Also we find the
asymptotic distribution under the alternatives contiguous to the null hypothesis,
which is needed for later use of computing relative efficiencies.
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1. Introduction

The nonparametric sign statistic based on interdirection, called the interdirec-
tion quadrant statistic, was introduced by Geiser and Randles(1997) for testing
whether the two vectors are independent. In this paper, we extend the case of
two vectors to the case of many vectors. Let X,..., X, be independent and iden-
tically distributed vectors with X; = (X;(, X;®, . X;©@'). Here X;® is a
YaX1 vector, so X; is a (y = > g_; %) vector. We assume X has a continuous
distribution with density function f X(a:(l),z@),...,m(c)). The vector X;(® has a
marginal density fo(z(®), @ = 1,2,...,c. Here fo(z(®) represents the density
of an elliptically symmetric distribution centered at the v,x1 vector 8,. The
objective is to test Hy : fx(z(V,2®,.. 29 = f1(zD)fo(z?)f.(z(9)) against
Hy : fx(zW, 23, 20y £ £ (21) fo(2®) f.(2(¢)). We propose the test statis-
tic QnT = in,z + Qn1’3 + ...+ an—l’c , where %P is the interdirection quadrant,
proposed by Gieser and Randles (1997), computed between X (@ and X®) | for
each 1 < a € 8 < c¢. That is, the proposed statistic is the sum of E_Tllc— interdi-
rection quadrant statistics. Let f, be an affine equivariant estimator of 6, based

! Assistant professor Division of Computer Science, Sungkyul University, Anyang, 430-742, Korea



136 Yonghwan Um

on X;(, ..., X,,(®) that satisfies (6 — 0s) = Op(n~1/2). Then our extension of the
1nterd1rect10n quadrant statistic is given by
Qn (01a 02) C) _
T[T S cos(rpa (X, X))
cos(mps (XD, X (ﬂ) ); 6)]
where

(o) n o )
p“tx(-}(i1 (a),Xiz(a);G;) = ((Ctlazz +dn)/ (p _ 1) if 4 # 22) ’

if 6 =i
=35 00) - (520

and the interdirection count C,l,,z( ), first defined by Randles (1989), denotes the
number of hyperplanes defined by the origin and 7, — 1 observations X;{® — 4, (
excluding X1 (@ -6, and X; 2("‘) G, ) such that X,l( o) 6, and X; 2(® —d, are on op-
posite of the hyperplane. The interdirection counts are used to measure the angular
distance between the centered vectors X;;(® — 0 and X;o® — 0 relative to the ori-
gin and the positions of the other observations. The term pﬂ(X”(ﬂ) X;,®); O(ﬁ))
is similarly defined among the X;) — Oﬂ vectors. We note that QT is affine
invariant since the interdirection count is affine invariant under the group G =
g((D,b) | g(D,b)(X) = DX + b), where D is the direct sum of Dy, Dy, ..., D, ( Dy
nonsingular 7, X 7,) and b is a real number with dimension v, as described by
Muirhead(1982). In the next section, we will find asymptotic null distribution of
Q?; when the underlying marginal distributions are elliptically symmetric.

2. Asymptotic Null Distribution of QT

We shall define the class of elliptically symmetric distribution before deriving
the asymptotic null distribution of QT.

Definition. The 7, x 1 random vector X is said to have an elliptically symmetric
distribution with parameters 0,(7, %X 1) and 3", (va X 7o) if the density function of
X is of the form fo(X(®)) = K|35, |72 ga[(X® — 6,) 0 H(X @ - 6a)), (1)

where g, is a nonnegative, real-valued, differentiable function, -, is positive definite
and symmetric and K, is a positive scalar such that (1) represents a density func-
tion. An elliptically symmetric distribution with dispersion parameter o2 I, is called
a spherically symmetric distribution. Since QT is affine invariant and an elliptically
symmetric distribution is transformable into a spherically symmetric distribution
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through a nonsingular linear transformation, we assume without loss of generality
that fo(z(®) is a spherically symmetric distribution centered at the origin.

In order to find the asymptotic distribution of QE under Hy, we construct an ap-
proximating quantity which has the same aymptotic distribution. We first consider
the case where 6,, 0, ...,0, are known. Under the assumed underlying distribution,
we define

QnT(ala 02, ..., 0c) =

oot Thmat1[52 That Xhor cos(npa(X(D, X))

cos(nps(X;), X))

This QT (01,62, ...,0.) is the same as the statistic Cj’,{' (61,65, ...,0;) except the esti-
mated proportion is replaced with p, (X;, (@), Xi, (“)) =
Ep, e (X:, @), X;, (@) | X;, @ X;,®] = (radian measure of the angle between
X;, @ and X;,®) /r. Now let X;@ = R, where R = [X;(@' x;@]1/2,
Note that U(® is distributed uniformly on the v, dimensional unit hypersphere and
is independent of positive quantity R(®). The estimated proportion of hyperplanes,
Pa, and pq only require the directions of U; @ and U;,@), not their lengths so
that cos(mpe(X;, @, X;,(®)) = cos(angle between U;,(® and U, ) = Uil(“')’ and
U;,(®. Thus have
QnT(01a021"-’06) ,

=y 3y +1[’Lﬂ’£ o Zzg _ U, (@ Ui, @y, (ﬂ)'Uig Q)

= Yot Lo art[E Toct X0 mt Sy vATBUJUEN?),

where Us(:J) (Us(g J)) is the s, th (sg th) component of U}a) (U}ﬂ )). The following

theorem results from this approximation.

Theorem 1 . Under Hy, QT(6,,6,, ...,0.) X2 a1+ oo 17e
where the notation -% means the convergence in distribution.

Proof Let B=B12 @ B13 --- @ Bc_1,. Where

BI,Z = (bslsz)71x72a31,3 = (bslsz)fylx'ys,"' ch—l,c = (b8c~18c)’7c-1><’7c are arbi-
trary nonzero but fixed matrices. Define Z = Z,,P 213D --- @ 2.1 where

Zyp = (Z;‘l=1 \/'YI'Y2U§11])'U§2')71 Xy 41,3 = (Z;‘l=1 \/'71’)’3U3(113'U§3)71 X733 ey Le—1,6 =

-1 ‘
5121:?21 V-1 5:—1])'Ua(3')7c-1xvc .
en

'vec(B)' vec(Z) = vec(Bl,g)' vec(Zy 2) + 'uec(Bl,a)' vec(Z13) + ... + vec(Bc_l,c)'vec(Z —1,¢)



138 Yonghwan Um

c—1 c Ya VB
= Z Z Z zbswa Zsasg

a—l ﬂ—a+1 sa=1 .95._1

n Ya
- Z Z Iy Z VB bsasgUeUS)

a=1f=a+l j=1 sa=135=1

c—1 c n ,
= > > YU (AapBep)U;P
c'=—113—04+11 1

= ZZ > U (AU

j=la=1lB=a+l

where vec(A) = (a1, ..., ar); ax is a column vector. The summands in the last formula

are the sum of iid random variables with mean zero and variance vec(Bq,g) vec(Ba,g),

and the covariance between any two terms are zero. Thus by the usual central limit

theorem, n=1/2yec(B)'vec(Z) ~ AN (0, vec(B) vec(B)). It follows that n~lvec(Z) vec(Z) 4
2

XN tmag+etre=1re:

Since n~!vec(Z)' vec(Z)
=0t 0o Taae1 Z12(s1,82)+ 01 Loy Z25(s1,83)+. + se-1=1 ge=1 Zi-1,6(Sc-15c)
=Q17;(01102a' 0 )

where Z,, o, (sa, sp) is the element in the s, th row and sg th column of z, 4 , the

result is proved.

Now using the result Qna’ﬂ(ﬁa,ﬂﬁ) = Q;‘{’ﬂ(ﬂa,Bg) + 0p(1), in Gieser and Randles

(1997), we are able to find the asymptotic null distribution of

Qr(6,,6,,...,6,).
Theorem 2. Under Hy, Q?;(Ol,Bg, ey Bc) 4 x?7172+7173+___+%_1%

proof

- T < 1,2 <13 s =1, _
Qn - QnT = Q? . 2+ Qn +.. -thr; - Qn1’2 - in‘:sc'_'l--c- - Qxn° Le
(@' = Q)+ (Fn™ = Q) o+ (@™ = Queh)
= op(1).

Next we consider the case in which 6;,0,,...,6, are unknown and hence estimated.
The a.symptotlc null dlstrlbutlon is easily obtamed using the result,

(Oa,Og) = @n” (0a,0ﬂ) + 0p(1), by Gieser and Randles and following the
same procedure as in Theorem 2 above. Thus the agsymptotic null distribution of
QnT remains the same whether the symmetric center is known or not, provided the
center is estimated using §, with the stated properties.
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3. Asymptotic Distribution of QAZ under Contiguous Alternatives

We will find the asymptotic distribution of QA?," under a sequence of alternatives
approaching the null hypothesis. In doing so, we first will propose a model that
shows a dependence among the components of the observations. In this model we
express the dependence as a function of a non-negative real-valued parameter A .
The sequence of alternatives defined by the model converges to the null hypothesis as
A—0 in such a way that the alternatives are contiguous to the null hypothesis. We
will use the model obtained by generalizing the one which Konijin (1956) studied.
The general multivariate version of this model is given by (2) Yy, y®, y@©
where are independent random vectors with dimensions of respectively and

M2, M, 3,..., M., are fixed non-zero matrices of dimensions
YL X ¥2,Y1 X Y354 Ye X Ve — 1, respectively, and 0 < A < 1/c. Assmume Ap
is nonsingular for nonsingular for A in a neighborhood of 0. Note that A = 0
corresponds to the null hypothesis of independence. We assume that each Y(® is
elliptically symmetric with zero mean vector and variance covariance matrix 3, =
1,...,c . In other words,
fa@®) = K, go (31 —0,) S0~ (y(®) — 0,)) where go() does not depend on 6, or
¥k . With these underlying distributions, we will apply LeCam’s three lemmas as
described in Hajek and Sidak (1967, pp. 201-214) to find the asymptotic distribution.
The sequence of alternatives H; : A, =n"/2A, , where g > 0, can be shown to
be contiguous to the null hypothesis by following the same arguments as in Gieser
and Randles (1997). This contiguity helps us find the asymptotic distribution

(X(l)
x(2
X = :
\X.(C)
((1 —(c-1)A)Y® +AM; Y ?) +--- +AM,; Y(©) \
AM,, Y1) +(1=(c-1)A)YD ... +AM, Y c)
\  AM, YD) +AM Y ® Feor +(1=(c—1)A)Y® )
((1 — (C - I)A)I»ﬂ AMl’z R AMI’Q Y(l)\
AMQ’l (1 - (C - I)A)Ifﬂ cee AMQ’C Y(z)
\ (Al)Mc,l AM 2 o 1=(c-1A)L, /) \Y© )
Y
(2)
= 4aa| " | = Ay,

y.(C)
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using the log-likelihood function. Finding the asymptotic distribution under
the contiguous alternatives involves establishing the asymptotic bivariate normal-
ity of the appropriately defined statistic and the log-likelihood function A, under
Hy where A, = Y0 logL(X;;An), and L(z; ) = fo(z; An)/fe(z;0). Under
Hy the log-hkehhood function is approximated by T, = A, > ; L*(X;;0) where
L*(z;0) = mlogL(:v 0) |]a= 0. LeCam’s third lemma states that if, under Hy,

Sn 1] o o1 2
( A, ) AN (( —o2/2 ) , ( o1z 02 , then Sy, ~ AN (1 + 012,0%) under

a continuous sequence of alternatives. Thus, obtaining the asymptotic bivariate
normality of (Sp,Ty) under Hy yields the asymptotic normality of S, under the
contiguous alternatives. Now we use the reation X(® — 6, = R@U(®) and make
a transformation by multiplying by a nonsingular matrix Dy, where 3°, = D.D,
in order to get the representation of the elliptically symmetric distribution from the
spherically symmetric distribution. Using the same assumption and arguments as
in Gieser and Randles (1997), the asymptotic distribution of QT and A,, is derived.
Since ng is affine invariant, we put >, = I, without loss of generality.

v d
Theorem 3. Under An, QF = Xyim+mims+.+re-17 (A1),
where the noncentrahty paramater(denoted by A;) is given by

A= a_l Zﬂ.—a+1 T3 UGC(EHO [Ha’ﬂ])vec(EHo[Ha’ﬂ]
H®? = R@R®) Do(fa(R®)?) T3 Mas + ¢((RO))) Mp o 551)Dp and
br(t) = gi(t)/gr ().

proof. Let a = (aj,az) be an arbitrary vector of constants none of which are
Z€ro.
Let Sy, = f,;ll Y h—at1 52 where

838 = n 1250, U7 Bap) UL

Then
2 n
a T

-1 c
Y 3 Y 2800 (B4R + 1) + an( (RO a((RO)) + 2
a=1 f=a+1 i=1
+Ui(a)'(a2Hi°"ﬂ+a ";Aa’y Bag )U(ﬂ)]

Since Ep, [Sg’ﬂ] =0 and Ey, [Tg:ﬂ] = 0, it follows that Eg,[d(Sn, Ta)] = 0
Also
VHoG(Sn, Tn) = VHoa1(.S'1 2 4 Sl S+ S 1,6) +asTy
= a2 T TS s Vitg (S36) + a3V (Tr)
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+ 2a;a2 a'—l Zﬁ’*a+1 COUHO[S P ]
= al('uec(Bl 2)vec( By 2)vec(B, 3)'vec(31 3) + .. + vec(Beo1,c)vec(Beo1,c))
+ a30?

+2a1a2 Y574 Eﬂ—a+1 200/ YaBEn, [U(a)Ha,ﬂU(ﬂ)U(a)B AU

where gy = V(T;,). The second equality follows from the fact that
Covg,[SS#] = 0 when one or more of the superscripts is unique. Also since

En[U®HSUOy@ B, ;u#)] — 71_[3 En[U® H*8 By 4U@)]

- 'Ya{)’ﬂ vec(Ba,ﬂ)"Uec(EHo[(Ha,ﬂ)])’

we have 02 = vec(B)vec(B),02 = o2, and

209
'UBC(.Bl’g) ,/ggy Ty VeC EHO [H ]
vec(By,3) ﬁvec(EHo [H]
g1z = .
vec(Be-1,c) —m-‘:—'uec EH [HE~ l,c]
j-—vél_g—vec(EHo [H"?))

] -Q—QQ—vec(EH [H3)
= wvec(B) v °

e B~

Then the asymptotic normality of 4(S,T;) follows by applying the usual central

.. S 0 g % g12
limit theorem , and hence, under Hy T ~ AN 0 '\ & o2 . Thus
n 12 2

under A,,, S, ~ AN(02, vecA(B)'uec(B)), and Q7 — xng_,_,n,.,ﬁ_.__i_%_m (A1)-
We note also that QZ: and QT have the same asymptotic distribution under A, as

well as under Hy because |Q,T — QnT| = 0p(1) under A,. Therefore the result
follows.
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