이동로보트의 주행특성을 고려한 최적설계

Optimal Design of a Mobile Robot Based upon Mobility

  • 발행 : 2001.12.31

초록

본 논문에서는 유동적인 두 바퀴간격을 갖는 이동로보트의 주행 효율 및 회전특성을 정의하고, 그에 따라 이동로보트의 바퀴의 반경이 정해져 있는 상황 속에서 두 바퀴의 간격을 동적으로 변화시켜, 원하는 주행 효율과 회전특성을 얻을 수 있음을 제안하여 보여준다. 기존의 이동 로보트의 두 바퀴의 간격이 고정되어 있으면, 그 회전 및 주행특성이 고정되어지며 이로 인하여 순간적인 장애물을 회피할 수 없다. 본 연구에서는 시뮬레이션을 통하여, 기존의 고정된 바퀴간격을 탈피하여 두 바퀴의 거리를 동적으로 변화시켜 높은 회전 특성을 순간적으로 얻을 수 있고, 또한 안정된 가운데 높은 주행특성을 가질 수 있음을 보였다. 본 연구에서 정의된 주행특성(mobility) 및 회전특성(rotatability)은 이동로보트의 설계에 적용되어 도로의 설계조건 및 로보트의 상태가 정해진 상황에서 이동로보트의 최적 설계를 위한 이론적 근거를 제공할 것이다. 실험적 데이터를 사용하여 정의된 주행 및 회전특성의 타당성을 보여 준다.

This paper defines the mobility and rotatability, and a desired mobility and rotatability that can be achieved by adjusting the distance between two wheels of a mobile robot dynamically. The radii of wheels are assumed to be constant in this paper. If a mobile robot has a fixed axis connecting the two wheels, it may not be able to avoid a sudden obstacle because of the constraint of mobility and rotatability. The focus of this paper is on the instant rotatability with high and stable mobility. That is, by dynamically changing the distance between the two wheels, the mobile robot could get the high rotatability instantly and high mobility with high stability. Supposed that the mobility and rotatability that are defined in this paper are supplied to the design of a mobile robot, it will suggest a theoretical basis on the optimal design of the mobile robot with a given route condition and its states. The experimental data support the validity of the aforementioned mobility and rotatability.

키워드

참고문헌

  1. S. Sundar and Z. Shiller, 'Optimal Obstacle Avoidance Based on the Hamilton-Jacobi-Bellman Equation,' IEEE Trans. on Robotics & Automat, vol. 13, no. 2, pp. 305-310. 1997 https://doi.org/10.1109/70.563653
  2. Tsuneo Yoshikawa, 'Manipulability of Robotic Mechanisms,' The International Journal of Robotics Research, vol. 4, No.2, pp. 3-9, 1985 https://doi.org/10.1177/027836498500400201
  3. Stephen L. Chiu, 'Task Cornpatibility of Manipulator Postures,' The International Journal of Robotics Research, vol. 7, No.5, pp. 13 - 21, 1988
  4. Mark W. Spong, Robot Dynamics and Control, John Wiley & Sons, 1989
  5. J. C. Alexander and J. H. Maddocks, 'On the kinematics of wheeled mobile robots,' The International Journal of Robotics Research, vol. 8, no. 5, pp. 15 - 27, 1989 https://doi.org/10.1177/027836498900800502
  6. Reprinted in Autonormus Robot Vehicles, I. J. Cox & G. T. Wilfong, Eds. New York: Springer- Verlag, 1990, pp. 5-24
  7. J. C. Alexander, J. H. Maddocks and B. A. Michalowski, 'Shortest Distance Paths for Vlheeled Mobile Robots,' IEEE Trans. Robotics and Automation, vol. 14, NO. 5, October 1998 https://doi.org/10.1109/70.720342
  8. W. F. Carriker, P. K. Khosla and B. H. Krogh 'An Approach for Coordinating Mobility and Manipulation,' Proceedings of the IEEE International Conference on Systems Engineering, Dayton, Ohio, August 1989, pp. 40-44
  9. L. Dubins, 'On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents,' Amer. J. Mathemat., Vol. 79, pp. 497 -516, 1957 https://doi.org/10.2307/2372560
  10. J. P. Laurmnd and T. Simeon, 'Motion planning for a two degrees of freedom mobile robot with towing,' in Proc. IEEE Int. Conf Control Applicat., 1989
  11. B. d'Andrea-Novel, G. Campion, G. Bastin 'Control of Nonholonomic Wheeled Mobile Robots by State Feedback linearization,' The International Journal of Robotics Research, vol. 14, No.6, pp. 543-559, 1995 https://doi.org/10.1177/027836499501400602
  12. Z. Shiller and Y.R. Gwo, 'Dynamic Motion Planning of Autonomous Vehicles,' IEEE Trans. Robotcs and Automation, 1991
  13. B.d. Novel, G. Bastin and G. Campion, 'Modelling and Control of Nonholonomic Vlheeled Mobile Robots,' IEEE Int. Conf. on Robotics and Automation, 1991
  14. S. lida and S. Yuta, 'Control of Vehicle with Power Wheeled Steerings using Feedforward Dynamics Compensation,' IECON, 1991 https://doi.org/10.1109/IECON.1991.238991
  15. S. lida and S. Yuta, 'Feedforward Current Control Method using 2-Dimensional Table for DC Motor Software Servo System,' IECON, 1988
  16. X. Yun and Y. Yamamoto, 'Internal Dynamics of a Wheeled Mobile Robot,' IROS, 1993. https://doi.org/10.1109/IROS.1993.583753
  17. B.d. Novel, G. Bastin and G. Campion, 'Dynamic Feedback Linearization of Nonholonomic Wheeled Mobile Robots,' IEEE Int. Conf. on Robotics and Automation, 1992 https://doi.org/10.1109/ROBOT.1992.220061
  18. 주 진 화, 이 장 명, '이동용 로봇의 메카니즘 설계 및 해석', 대한 전자공학회 추계 종합학술대회 논문집, Vol. 15, 1992
  19. 주 진 화, 명 지 태, 박 의 열, 이 장 명, '마크로-마이크로 로봇의 제어에 관한 연구', 대한전자공학회 논문집, Vol. 31-B, No. 9, 1994
  20. J. J. Craig, Introduction to Robotics- Mechatronics and Control, 2nd edition. Addison-Wesley Publishing Co., 1986
  21. M. Tounsi, G. Lebert and M. Gautier, 'Dynamic identification and control of nonholonomic mobile robots,' The 34th IEEE Conf. on Decision and Control, Pre-Print, 1995 https://doi.org/10.1109/CCA.1995.555777
  22. S. lida and S. Yuta, 'Control of Vehicle with Power Wheeled Steerings using Feedforward Dynamics Compensation', IECON, 1991 https://doi.org/10.1109/IECON.1991.238991