다채널 LAPS용 pH 변화량 검출을 위한 적분 방식의 알고리듬 제안

Algorithm for Integral Method for Photocurrent Measurement of pH Variations Using Multichannel LAPS

  • 배상곤 (경북대학교 전자전기공학부) ;
  • 이승하 (경북대학교 전자전기공학부) ;
  • 강신원 (경북대학교 전자전기공학부) ;
  • 조진호 (경북대학교 전자전기공학부)
  • Bae, Sang-Kon (School of Electronic & Electrical Eng., Kyungpook National University) ;
  • Lee, Sung-Ha (School of Electronic & Electrical Eng., Kyungpook National University) ;
  • Kang, Shin-Won (School of Electronic & Electrical Eng., Kyungpook National University) ;
  • Cho, Jin-Ho (School of Electronic & Electrical Eng., Kyungpook National University)
  • 발행 : 2001.12.31

초록

본 논문에서는 시간-농도 분해능을 필요로 하는 LAPS장치에 있어서, 광전류 특성 곡선의 변곡점을 찾아 이동량을 측정하는 대신에 특성 곡선의 적분값 변화를 이용하여 pH변화를 검출하는 방식을 제안하였다. 제안된 방식의 성능 확인을 위하여 시뮬레이션을 수행하였으며, 이로부터 약 80배의 감도 및 1000배의 분해능 증가를 확인하였다. 수행된 결과를 바탕으로 측정 시스템 및 2-0.03125 [mg/ml]농도의 효소가 묻은 스트립을 제작하여 측정한 결과, 동일한 샘플수에 대해 기존의 3.79-0.27[pH/min]보다 더 높은 3.76-0.08 [pH/min]의 pH변화감도를 측정할 수 있었다.

We proposed the detection method of pH variations by integrating a photocurrent characteristic curve, instead of finding an inflection point by differentiating it in LAPS system. By a simulation of the performance of the proposed method, we verified that it had 80 and 1000 times higher sensitivity and resolution than a conventional method. Then, with the implemented system based on the simulation results, we measured a pH variation which was given rise to a potential change on the LAPS surface exposed to 2-0.03125[mg/ml] enzyme solutions. As results, we observed that the proposed method has a higher sensitivity and resolution of 3.76-0.08[pH/min] pH variations than 3.79-0.27[pH/min] for conventional method with same samples.

키워드

참고문헌

  1. H. Merrick, G Hawlitschek, 'A Complete System for Quantitative Analysis of Total NA, Protin Impurities and Relevant Proteins', Biotech Forum Europe, pp. 398-403, 1992
  2. M. Flores, V. J. Moya, M. C. Aristoy, F. Toldra, 'Nitrogen compounds as potential biochemical markers of pork meat quality', Food Chemistry, vol. 69 (4), pp. 371 -377, June 2000 https://doi.org/10.1016/S0308-8146(00)00056-X
  3. E. Souteyrand, J. R. Martin, 'Direct detection of biomolecules by electrochemical impedance measurements', Sensors and Actuators, B, 20, pp. 63-69, 1994
  4. A. G. Gebring, 'Use of a Light-Addressable Potentiometric Sensor for the Detection of Escherichia coil O157: H7', Analytical biochemistry, vol. 25B, pp. 294-298, 1998
  5. L. Bousse, D. Hafeman, 'Time-dependence of the Chemical Response of Silicon Nitride Surfaces', Sensors and Actuators, B, 1, pp. 361 - 367, 1990
  6. Y. Sasaki, Y. Kanai, 'Highly sensitive taste sensor with a new differential LAPS method', Sensors and Actuators, B, 24-25, pp. 819-822, 1995 https://doi.org/10.1016/0925-4005(95)85182-8
  7. M. Adami, M. Sartore, 'New measuring principle for LAPS devices', Sensors and Actuators, B, 9, pp. 25-31, 1992
  8. H. Uchida, W. Y. Zhang, T. Katsube, 'High speed chemical image sensor with digital LAPS system', Sensors and actuators, pp. 446-449, 1996 https://doi.org/10.1016/S0925-4005(96)01939-9
  9. $Threshold^{TM}$ Application Note 10. 1991