Exact Dynamic Stiffness Matrix of Nonsymmetric Thin-walled Beams Subjected to Eccentrically Axial Forces

편심축하중을 받는 비대칭 박벽보의 엄밀한 동적강도행렬

  • Received : 2001.04.13
  • Published : 2001.12.27

Abstract

Derivation procedures of exact dynamic stiffness matrices of thin-walled straight beams subjected to eccentrically axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of nonsymmetric thin-walled straight beams are evaluated and compared with analytical solutions or results by thin-walled beam element using the cubic Hermitian polynomials and ABAQU's shell elements in order to demonstrate the validity of this study.

비대칭단면을 갖는 박벽 직선보의 3차원 자유진동해석을 수행하기 위하여 엄밀한 요소강도행렬을 유도한다. 단면이 균일한 비대칭 박벽 탄성보에 대하여 운동방정식, 힘-변위 관계식을 유도하고 엄밀한 동적강도행렬을 수치적으로 산정하는 방법을 제시한다. 14개의 변위파라미터를 도입하여 고차의 연립미분방정식을 1차 연립미분방정식으로 바꾸고, 비대칭행렬을 갖는 선형 고유치문제의 해를 복소수영역에서 구한다. 이를 이용하여 절점변위에 대한 처짐함수을 엄밀히 구하고, 재단력-변위 관계식을 이용하여 엄밀한 동적요소강도행렬을 산정한다. 본 방법의 타당성을 보이기 위하여 비대칭 박벽보의 고유진동수를 계산하고, 해석해, 혹은 3차 Hermitian 다항식을 사용한 보요소 및 ABAQUS를 사용한 유한요소 해석결과와 비교한다.

Keywords

References

  1. Thin Walled Elastic Beams (2nd ed.) Islael Program for Scientific Transactions Vlasov, V. Z.
  2. Theory of Elastic Stability (2nd ed.) Timoshenko, S. P.;Gere, J. M.
  3. Comp. Meth. Appl. Mech. Engng. v.20 On the geometrical stiffness of a beam in space - a consistent v. w. approach Argyris, J. H.;Hilpert, O.;Malejannakis, G. A.;Scharpf, D. W.
  4. Int. J. Num. Meth. Engng. v.2 Finite element analysis of torsional and torsional-flexural stability problems Barsoum, R. W.;Gallagher;R. H.
  5. J. Struct. Eng. v.114 no.5 Elastic buckling of tapered monosymmetric I-beams Bradford, M. A.;Cuk, P. E.
  6. J. Eng. Mech. v.112 no.9 Stability of shear deformable thinwalled space frames and circular arches Chang, S. P.;Kim, S. B.;Kim, M. Y.
  7. Engineering Structures v.22 no.5 Improved formulation for spatial stability and free vibration of thin-walled tapered beams and space frames Kim, S. B.;Kim, M. Y.
  8. Int. J. Num. Meth. Engng. v.28 Coupled bendingtorsional dynamic stiffness matrix for beam elements Banerjee, J. R.
  9. Int. J. Solids Structures v.31 no.6 Coupled bending-torsional dynamic stiffness matrix of an axially loaded Timoshenko beam element Banerjee, J. R.;Williams, F. W.
  10. Computers and Structures v.59 no.4 Exact dynamic stiffness matrix of a bending-torsion coupled beam including warping Banerjee, J. R.;Guo, S.;Howson, W. P.
  11. ABAQUS, User's Manual Vol.Ⅰand Vol.Ⅱ (Ver. 5.2)
  12. Theory of beam-columns, Vol. 2, Space behavior and design Chen, W. F.;Atsuta, T.
  13. Fortran PowerStation Programmer's Guide Microsoft
  14. int J Num Meth Engng v.39 Spatial stability analysis of thin-walled space frames Kim MY;Chang SP;Kim SB