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GAUSS SUMS OVER GALOIS
RINGS OF CHARACTERISTIC 4

Yunchang Oh and Heung-Joon Oh

Abstract. In this paper, we define and study Gauss sums over

Galois rings of characteristic 4. In particular, we give the absolute
value of Gauss sum over Galois rings of characteristic 4.

1. Introduction

Let GF (2) be the prime field of characteristic 2 and GF (2r) an
extension field of degree r. Then GF (2r) is a simple algebraic extension
over GF (2). That is, if Θ is a primitive element of GF (2r), then

(1.1) GF (2r) = GF (2)[Θ] ∼= GF (2)[x]/(F (x))

where F (x) is a monic irreducible polynomial in GF (2)[x] of degree r
having Θ as a root.

Let Z/4Z denote the ring of integers modulo 4. It is a finite local
commutative ring with the unique maximal ideal m = 2(Z/4Z) ∼=
Z/2Z. Let µ1 : Z/4Z → (Z/4Z)/m ∼= GF (2) denote reduction modulo
2. We can extend µ1 to (Z/4Z)[x] in the natural way.

In (1.1), since Θ is a simple zero of F (x), if f ∈ (Z/4Z)[x] is a pre-
image of F under the homomorphism µ1, then by Theorem 1.1 below,
there is precisely one element θ such that µ1(θ) = Θ and f(θ) = 0.

Theorem 1.1 [3, Lemma (XV.1)]. Let f ∈ (Z/4Z)[x] be a regular
polynomial (i.e., µ1(f) 6= 0) and suppose that µ1(f) has a simple zero
a in GF (2r). Then f has one and only one zero α such that µ1(α) = a.

The Galois rings R of characteristic 4 is defined to be the ring
(Z/4Z)[θ]. Many papers have been studied concerning Gauss sums
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over finite fields (see [1]). In this paper, we define and study Gauss
sums over Galois rings R. In particular, we give the absolute value of
Gauss sum over R.

2. Characters on the Galois rings R

It is well-known in [cf. 3] that
(GR1) R is a finitely generated free Z/4Z-module and |R| = 4r.
(GR2)R is a finite local commutative ring with the unique maximal

ideal M = 2R and the residue field K = R/M ∼= GF (2r).
(GR3) Gal(R/(Z/4Z)) ∼= Gal(GF (2r)/GF (2)) and the Frobenius

automorphism σ ofR given by θ 7→ θ2 is a generator ofGal(R/(Z/4Z)).
(GR4) Let R∗ and K∗ denote the unit group of R and K, respec-

tively. Then

(2.1) R∗ ∼= K∗ × (1 +M) (direct product of groups)

where K∗ is a cyclic group of order 2r − 1 and 1 + M is a group of
order 2r such that 1 +M is a direct product of r cyclic groups each of
order 2.

From (2.1), R∗ contains a cyclic subgroup T ∗r of order 2r − 1. Let
θ be a generator of T ∗r (such θ is called a primitive element of R) and

Tr = T ∗r ∪ {0} =
{
θi | 0 ≤ i ≤ 2r − 2

}
∪ {0} ,

which is called the Teichmüller set for K(= R/M) in R. Then Tr is
isomorphic to GF (2r) under the homomorphism obtained by reduction
modulo 2. It can be shown that every element s ∈ R has the 2-adic
expansion s = α+ 2β (α, β ∈ Tr). Thus M = 2Tr, M2 = 0 and every
element of R∗ has a unique representation in the form

(2.2) α(1 + 2β) (α ∈ T ∗r , β ∈ Tr).

Also, from (GR3) the Frobenius automorphism σ on R is given by
σ(s) = σ(α + 2β) = α2 + 2β2. In analogy with finite fields, the trace
function Tr : R → Z/4Z is defined by

(2.3) Tr(s) =
∑

τ∈Gal(R/(Z/4Z))

τ(s) =
r−1∑
i=0

σi(s).
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Also, the additive characters λt (t ∈ R) on R are defined by

(2.4) λt(s) =
√
−1

Tr(ts)
for s ∈ R.

We see that λ0 is the trivial character on R, λt(s) = λ1(ts) and λt(s) =
λt(−s). Also, if t1 6= t2 (t1, t2 ∈ R), then λt1 6= λt2 .

Since 1 +M has the structure of a multiplicative group of order 2r,
1 +M is isomorphic to the additive group of GF (2r) via the map

(2.5) 1 + 2β 7→ y (β ∈ Tr with β ≡ y (mod M), y ∈ GF (2r)).

Hence there is a one-to-one correspondence between the set of all mul-
tiplicative characters on 1+M and the set of all additive characters on
GF (2r). Thus, each multiplicative character χ on R∗ can be written
as

(2.6) χ(s) = η(α)ψx(y)

for all s = α(1 + 2β) (α ∈ T ∗r , β ∈ Tr with β ≡ y (mod M), y ∈
GF (2r)), where η is a character on T ∗r and ψx is an additive character
on GF (2r)+ (x ∈ GF (2r)) which is given by

(2.7) ψx(y) = (−1)tr(xy) for y ∈ GF (2r)

where tr(x) is the trace of x from GF (2r) to GF (2) given by tr(x) =∑r−1
j=0 x

2j

.

3. Gauss sums over Galois rings R and its absolute value

Let C[R] denote the space of all C-valued functions on R. Then the
set of characteristic functions {δt | t ∈ R}, where

δt(s) =
{

1 if s = t

0 if s 6= t,

is a basis of C[R]. Hence C[R] is a 4r-dimensional C-vector space. We
define an inner product on C[R] by

〈f, g〉 =
1
|R|

∑
s∈R

f(s)g(s) =
1
4r

∑
s∈R

f(s)g(s).
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Then {δt | t ∈ R} is an orthonormal basis of C[R] and the set of
all additive characters on R+ is an orthonormal basis of C[R] by the
character orthogonality condition [2, Theorem 4.4]

(3.1)
∑
s∈R

λt(s) =
{

4r if λt is trivial
0 if λt is nontrivial.

It is convenient to extend the domain of definition of a character χ
from R∗ to R by setting

(3.2) χ(M) =
{

1 if χ is trivial
0 if χ is nontrivial.

With above definition we have

(3.3)
∑
s∈R

χ(s) =
{

4r if χ is trivial
0 if χ is nontrivial,

and χ ∈ C[R]. Thus

(3.4) χ =
∑
λt

〈χ, λt〉λt =
∑
t∈R

〈χ, λt〉λt =
1
4r

∑
t∈R

g(χ, λt)λt

where

(3.5) g(χ, λt) =
∑
s∈R

χ(s)λt(s).

We call each g(χ, λt) the Gauss sum over R. From (3.2), (3.3) and
(3.5) we have

g(χ, λt) =
{

4r if χ and λt are both trivial
0 if χ is nontrivial and λt is trivial.

Also, we have the following theorem.

Theorem 3.1. Let χ be a nontrivial character on R∗. Then (a)
If t ∈ R∗, then g(χ, λt) = χ(t−1)g(χ, λ1). In particular, g(χ, λ1) =
χ(−1)g(χ, λ1). (b) If t ∈ M and χ is nontrivial on 1 + M , then
g(χ, λt) = 0.



Gauss sums over Galois rings of characteristic 4 5

Proof. For (a). If t ∈ R∗, then

g(χ, λt) =
∑

s∈R∗
χ(s)λ1(ts) = χ(t−1)

∑
s∈R∗

χ(ts)λ1(ts) (setting u = ts)

= χ(t−1)
∑

u∈R∗
χ(u)λ1(u) = χ(t−1)g(χ, λ1).

Also, we have

g(χ, λ1) =
∑

s∈R∗
χ(s−1)λ1(−s) = χ(−1)

∑
s∈R∗

χ((−s)−1)λ1(−s)

= χ(−1)
∑

s∈R∗
χ(s−1)λ1(s) = χ(−1)g(χ, λ1).

To prove (b), let t ∈M . If χ is nontrivial on 1 +M , then by (2.6) we
have χ = η · ψx, where η is a character on T ∗r and ψx is a nontrivial
character on GF (2r)+. Thus

g(χ, λt) =
∑

s∈R∗
χ(s)λt(s)

(s = α(1+2β), α ∈ T ∗r , β ∈ Tr with β ≡ y (mod M), y ∈ GF (2r))

=
∑

α∈T ∗r

∑
y∈GF (2r)

η(α)ψx(y)λt(α(1 + 2y))

=
∑

α∈T ∗r

∑
y∈GF (2r)

η(α)(−1)tr(xy)
√
−1

Tr(tα(1+2y))

(by (2.4) and (2.7))

=
∑

α∈T ∗r

η(α)
√
−1

Tr(tα) ∑
y∈GF (2r)

(−1)tr(xy)
√
−1

Tr(2tαy)
.

Since tα ∈M , i.e., tα ≡ 0 (mod M), we get

2tαy ≡ 0 (mod 4).

Hence
g(χ, λt) =

∑
α∈T ∗r

η(α)λt(α)
∑

y∈GF (2r)

ψx(y) = 0

since
∑

y∈GF (2r) ψx(y) = 0 for a nontrivial character ψx. �
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Corollary 3.2. Let χ be a nontrivial character on R∗. If χ is
nontrivial on 1 +M , then

χ = 4−rg(χ, λ1)
∑

t∈R∗
χ(t−1)λt.

Proof.

χ = 4−r
∑
t∈R

g(χ, λt)λt (see (3.4))

= 4−r
∑

t∈R∗
g(χ, λt)λt + 4−r

∑
t∈M

g(χ, λt)λt

= 4−rg(χ, λ1)
∑

t∈R∗
χ(t−1)λt (by Theorem 3.1 (a) and (b)).

�

Theorem 3.3. Let χ be a nontrivial character on R∗. If χ is non-
trivial on 1 +M , then

(3.6) g(χ, λ1)g(χ, λ1) = 4rχ(−1) and

(3.7) |g(χ, λt)| =
{

2r if t ∈ R∗

0 if t ∈M.

Proof. For (3.6). Theorem 3.1 (a) and (b) imply∑
t∈R

g(χ, λt)g(χ, λt) =
∑

t∈R∗
g(χ, λt)g(χ, λt) +

∑
t∈M

g(χ, λt)g(χ, λt)

= g(χ, λ1)g(χ, λ1)
∑

t∈R∗
1,

and so

(3.8)
∑
t∈R

g(χ, λt)g(χ, λt) = (4r − 2r)g(χ, λ1)g(χ, λ1).
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On the other hand, (3.5) yields that∑
t∈R

g(χ, λt)g(χ, λt) =
∑
t∈R

∑
s∈R∗

∑
u∈R∗

χ(su−1)λs+u(t)

= χ(−1)
∑
t∈R

∑
u∈R∗

1 +
∑

u∈R∗

∑
s∈R∗

s+u 6=0

χ(su−1)
∑
t∈R

λs+u(t).

Since
∑

t∈R λs+u(t) = 0 for s, u ∈ R∗ with s+ u 6= 0, we have

(3.9)
∑
t∈R

g(χ, λt)g(χ, λt) = (4r − 2r)4rχ(−1).

By comparing (3.8) and (3.9) we have (3.6). Next, for (3.7). If t ∈M ,
it follows from Theorem 3.1 (b). Let t ∈ R∗. Then

|g(χ, λt)|2 = g(χ, λt)g(χ, λt) = g(χ, λ1)g(χ, λ1)(by Theorem 3.1 (a))

= χ(−1)g(χ, λ1)g(χ, λ1) (by Theorem 3.1 (a))

= 4r (by (3.6)).

�
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