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THE DOMINATION NUMBER OF A TOURNAMENT

Changwoo Lee

Abstract. We find bounds for the domination number of a tour-

nament and investigate the sharpness of these bounds. We also find

the domination number of a random tournament.

1. Introduction

Let D be a digraph. A subset S of the vertex set V (D) is a domi-
nating set of D if for each vertex v not in S there exists a vertex u in
S such that uv is an arc of D. Note that V (D) itself is a dominating
set of D. A dominating set of D with the smallest cardinality is called
a minimum dominating set of D and its cardinality is the domination
number of D. We will reserve α(D) for the domination number of D.
For subsets S and T of V (D), we say that S dominates T if for every
v ∈ T there exists u ∈ S such that uv is an arc of D. For definitions
and notation not given here see [1] and [6].

A tournament is a digraph in which every pair of distinct vertices
has exactly one arc. A transitive tournament is a tournament such
that if uv and vw are arcs then uw is also an arc.

Let us consider the probability space Tn consisting of random tour-
naments on the vertex set V = {1, 2, . . . , n}. By a random tourna-
ment we mean here a tournament on V obtained by choosing, for each
1 ≤ i < j ≤ n, independently, either the arc ij or the arc ji, where
each of these two choices is equally likely. Observe that all the 2(n

2)

possible tournaments on V are equally likely.
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In section 2 we show that

1 ≤ α(T ) ≤ blg(n + 1)c

for any tournament T of order n. Here lg denotes the logarithm with
base 2. In section 3 we show that a random tournament T ∈ Tn has
domination number either

bk∗c+ 1 or bk∗c+ 2,

where k∗ = lg n− 2 lg lg n + lg lg e and investigate the sharpness of the
upper bound for the domination number of a tournament.

2. Tournaments

In this section we find bounds for the domination number of a tour-
nament.

First we introduce an algorithm which finds a dominating set of a
given tournament. This algorithm is greedy in the sense that it selects
a vertex that covers a maximum number of yet uncovered vertices in
each step.

Algorithm. Let T1 = T be a given tournament of order n and let
S0 = ∅. Put i = 1 and go to (1).

(1) Choose a vertex vi with largest outdegree in Ti and let Si =
Si−1 ∪ {vi}.

(2) Let Ti+1 be the subtournament of Ti induced by V (Ti)−N+
Ti

[vi].
(3) If Ti+1 is an empty tournament, then let S = Si and stop.

Otherwise, put i = i + 1 and return to (1). �

We note that the complexity of this algorithm is O(n2). But we will
see shortly that this estimate can be improved.

Let T be a tournament of order n. Then we know that there exists a
vertex v in T with od(v) ≥ (n−1)/2 since

∑
v∈V od(v) = n(n−1)/2 and

hence the average outdegree over all vertices is (n− 1)/2. In addition,
every subdigraph of a tournament induced by a subset of V (T ) is also
a tournament.

Using these simple observations, we prove the following theorem.
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Theorem 1. Let T be a tournament of order n. Then algorithm
above terminates in at most blg(n + 1)c steps and S is a dominating
set for T . Therefore we have

1 ≤ α(T ) ≤ blg(n + 1)c,

where lg denotes the logarithm with base 2.

Proof. Step 1: Let T1 = T and choose a vertex v1 of T1 having
maximum outdegree.

Step 2: Let T2 be the subtournament of T1 induced by V (T1) −
N+

T1
[v1]. Since

|N+
T1

[v1]| ≥
n− 1

2
+ 1 =

n + 1
2

,

we have
n2 := |V (T2)| = n− |N+

T1
[v1]| ≤

n− 1
2

.

Choose a vertex v2 of T2 having maximum outdegree.
Step 3: Let T3 be the subtournament of T2 induced by V (T2) −

N+
T2

[v2]. Since

|N+
T2

[v2]| ≥
n2 + 1

2
,

we have

n3 := |V (T3)| = n2 − |N+
T2

[v2]| ≤
n2 − 1

2
≤ n− (1 + 2)

22
.

Choose a vertex v3 of T3 having maximum outdegree. We continue this
process up to step k.

Step k: Let Tk be the subtournament of Tk−1 induced by V (Tk−1)−
N+

Tk−1
[vk−1]. Then

nk := |V (Tk)| = nk−1 − |N+
Tk−1

[vk−1]|

≤ nk−1 − 1
2

≤ n− (20 + 21 + · · ·+ 2k−2)
2k−1

.
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Choose a vertex vk of Tk having maximum outdegree.
After step k, the number of vertices in T that are not yet covered

by {v1, v2, . . . , vk} is

nk − |N+
Tk

[vk]| ≤ nk − 1
2

≤ n− (20 + 21 + · · ·+ 2k−1)
2k

.(1)

We want to find the minimum value k′ of k that makes (1) zero. It
is easy to see that k′ ≤ lg(n + 1). Clearly, S = {v1, v2, . . . , vk′} is a
dominating set of T . �

Now we can see from Theorem 1 that the complexity of the algorithm
is O(n log n).

We will discuss the sharpness of the upper bound in the above the-
orem later. The lower bound is sharp. Any transitive tournament will
do.

It is easily seen that every tournament is unilateral and that every
strong tournament has at least three vertices.

Corollary. Let T be a strong tournament of order n. Then we
have

2 ≤ α(T ) ≤ blg(n + 1)c.
Moreover, the lower bound is sharp.

Proof. We know that a tournament is strong if and only if there
exists a spanning cycle of the tournament [4, p. 306]. Therefore any
strong tournament T of order n has no vertices of outdegree n − 1
and so α(T ) ≥ 2. For the sharpness of the lower bound, we construct
a tournament T as follows. Take an n-cycle Cn and let v be a fixed
vertex of Cn. Join v to all possible vertices of Cn and choose the other
arcs arbitrarily. Then the resulting tournament T is strong since it has
a spanning cycle, and α(T ) = 2. �

3. Random Tournaments and Paley Tournament

In this section we find the domination number of a random tourna-
ment and investigate the sharpness of the upper bound for the domi-
nation number of a tournament found in section 1.
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Theorem 2. A random tournament T ∈ Tn has domination num-
ber either

bk∗c+ 1 or bk∗c+ 2,

where k∗ = lg n − 2 lg lg n + lg lg e and lg denotes the logarithm with
base 2.

Proof. Let X be a nonnegative random variable such that X(T ) is
the number of dominating k-sets of T for each T ∈ Tn. If K is a fixed
k-set of vertices, then the probability that K does not dominate a fixed
vertex in V −K is

Prob(K does not dominate a fixed vertex in V −K) = 2−k.

Hence, the probability that K dominates a fixed vertex in V −K is

Prob(K dominates a fixed vertex in V −K) = 1− 2−k

and the probability that K dominates all vertices in V −K is

Prob(K dominates all vertices in V −K) = (1− 2−k)n−k.

Therefore, the expectation E[X] of the random variable X is

E[X] =
(

n

k

)
(1− 2−k)n−k.

The rest of this proof is exactly the same as the proof in [5] or [7] once
we take r = 2. �

Remark. Now let us consider the sharpness of the upper bound in
Theorem 1. Theorem 2 says that not only do tournaments of order n
having domination number (1+o(1)) lg n exist, but when n is large, the
overwhelming majority of tournaments will have a domination number
near lg n. Can we construct such a tournament?

The proof of Theorem 1 strongly suggests that a quasi-random
tournament has a large domination number (see [2]). Then do quasi-
random tournaments really have domination number very close to the
upper bound blg(n + 1)c for n sufficiently large? A well-known ex-
ample of a quasi-random tournament is so-called Paley tournament
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Qp(Zp, E). For a prime p ≡ 3 (mod 4), the vertices of Qp consist of
integers modulo p. An ordered pair (i, j) ∈ E if and only if i−j is a non-
zero quadratic residue modulo p, i.e., if and only if ( i−j

p ) = 1, where we
use the familiar Legendre symbol. Then Qp is a well-defined (p−1)/2-
regular quasi-random tournament (see [2]). It is easily checked that
α(Qp) = blg(p + 1)c for p = 3, 7, 11, 19. But α(Q31) ≤ 4 < blg(31 + 1)c
since {1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28} is the set of all non-
zero quadratic residues modulo 31 and hence {0, 27, 29, 30} is a dom-
inating set for Q31. This shows that α(Qp) = blg(p + 1)c does not
hold for some p. What if p is large enough? Now we consider Schütte
property. We say that a tournament has (Schütte) property Sk if for
every set of k vertices there is one vertex that dominates them all. For
example, a directed 3-cycle has property S1.

The following lemma appears in [3], but it was used to find a lower
bound of p for Qp to have property Sk.

Lemma. If k satisfies the inequality

p− {(k − 2)2k−1 + 1}√p− 2k−1 > 0,

then Paley tournament Qp has property Sk. �

Now we are ready to state the following theorem.

Theorem 3. The domination number of Paley tournament Qp sat-
isfies

α(Qp) > (1 + o(1))
1
2

lg p.

Proof. Suppose that Paley tournament Qp satisfies property Sk.
Then for every set S of k vertices, there exists a vertex not in S that is
dominated by S and hence every dominating set must have more than
k vertices. Consequently, α(Qp) > k if Qp satisfies property Sk.

Now we know that Qp satisfies Sk if

(2) {(k − 2)2k−1 + 1}√p + 2k−1 < p.

Hence we want to find the maximum value k′ of k satisfying (2) when
p is large. But it is easy to check k′ < lg(p + 1) and so we let

k = c lg p− d lg lg p + 1, c > 0 and d ≥ 0.
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Then the left side of (2) becomes

(3) p

{
pc−1/2

(lg p)d
lg

(
pc

2(lg p)d

)
+

1
√

p
+

pc−1

(lg p)d

}
.

To make the second factor of (3) smaller than 1 when p →∞, we must
have c ≤ 1/2. But the maximum value k′ of k can be obtained when
c = 1/2 and d > 0. Therefore

k′ =
1
2

lg p− d lg lg p + 1, d > 0

and so
α(Qp) > k′ = (1 + o(1))

1
2

lg p.

�

We do not know yet whether our upper bound in Theorem 1 is sharp
and hence two natural questions now arise.

Open Questions. (1) We have shown that a tournament T of order
n has domination number

α(T ) ≤ blg(n + 1)c

in Theorem 1. Can we either sharpen this upper bound or construct a
tournament of order n whose domination number is this upper bound?

(2) Can we find the domination number of Paley tournament Qp

as a function of p? What about the asymptotics for the domination
number of Qp?
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