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EXTREME POINTS RELATED TO MATRIX ALGEBRAS

Tae Keug Lee

Abstract. Let A denote the set {a ∈ Mn

∣∣a ≥ 0, tr(a) = 1},
St(Mn) the set of all states on Mn, and PS(Mn) the set of all
pure states on Mn. We show that there are one-to-one correspon-
dences between A and St(Mn), and between the set of all extreme
points of A and PS(Mn). We find a necessary and sufficient condi-
tion for a state on Mn1 ⊕ · · · ⊕Mnk

to be extended to a pure state
on Mn1+···+nk

.

1. Introduction and Preliminaries

The representation theory plays an important role in the operator
algebra and it is closely related to states. Since pure states give irre-
ducible representations by the GNS construction, it is natural that the
study of pure states is our concern. Let Cn be the n−dimensional vector
space over the complex field C and let < , > denote the standard inner
product on Cn. Let Mn be the set of all n× n complex matrices and In
the identity matrix of Mn. An n× n matrix a is called positive, denoted
a ≥ 0, if it is hermitian and < ax, x > is non-negative for all x ∈ Cn.
If f : Mn → Mm is a linear map, then f is called positive provided that
it maps positive matrices of Mn to positive matrices of Mm. If a linear
functional f : Mn → C is positive and f(In) = 1, then f is called a
state on Mn. We denote the set of all states on Mn by St(Mn). Let K
be a subset of a vector space X. An element a ∈ K is called an extreme
point of K provided that x = y = a whenever x, y ∈ K, 0 < t < 1, and
a = tx+(1−t)y. A state f onMn is said to be pure if every positive linear
functional on Mn that is dominated by f is of the form λf (0 ≤ λ ≤ 1).
We denote by PS(Mn) the set of all pure states on Mn. It is known that
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the set of all extreme points of St(Mn) is the set of all pure states of
Mn. The properties of positive linear maps were studied in [1,2,3,4]. In
section 2, we show that there are one-to-one correspondences between
the set {a ∈Mn

∣∣a ≥ 0, tr(a) = 1} and St(Mn) and between the set of all

extreme points of {a ∈Mn

∣∣a ≥ 0, tr(a) = 1} and PS(Mn). In section 3,
we find a necessary and sufficient condition for a state on Mn1⊕· · ·⊕Mnk

to be extended to a pure state on Mn1+···+nk
.

2. Relation between states and positive matrices

In this section, we study properties for states and pure states on
matrix algebras. For a = [aij] ∈ Mn, put tr(a) =

∑n
i=1 aii. In what

follows, A denotes the set {a ∈Mn | a ≥ 0, tr(a) = 1}.

Theorem 2.1. The following are equivalent:
(1) p ∈Mn is a projection with rank 1.
(2) p ∈ A is an extreme point of A.

Proof. (1)⇒(2); Let p be a projection with rank 1. Then there is a
vector v ∈ Cn such that pv = v and ‖v‖ = 1. Note that ‖a‖ ≤ tr(a) for
a ∈ A. Suppose that p = λa+ (1− λ)b for some a, b ∈ A and 0 < λ < 1.
Since

1 = < v, v >=< pv, v >=< (λa+ (1− λ)b)v, v >

= λ < av, v > +(1− λ) < bv, v >

and
< av, v >≤ 1, < bv, v >≤ 1,

we have
< av, v >= 1, < bv, v >= 1.

Since ‖av‖ ≤ 1 and ‖v‖ = 1, we have av = bv = v. Since pw =
λaw + (1− λ)bw = 0 for any w ∈ {v}⊥ , we have

λ < aw,w > +(1− λ) < bw,w >= 0.

Since a ≥ 0 and b ≥ 0, we have < aw,w >≥ 0 and < bw,w >≥ 0. Hence
we have < aw,w >= 0 and < bw,w >= 0. Therefore a = b = p and p is
an extreme point of A.

(2)⇒(1); Let p ∈ A be an extreme point of A. Since p is positive,
there are real numbers λ1, λ2, · · · , λn with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 and
orthogonal projections p1, p2, · · · , pn with rank 1 such that p = λ1p1 +
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λ2p2+ · · ·+λnpn. Since pi ∈ A for all i and 1 = tr(p) = λ1+λ2+ · · ·+λn,
we have λ1 = 1 and λ1 = λ2 = · · · = λn = 0. Therefore p is a projection
with rank 1.

Let Eij denote the matrix with 1 in the (i, j)-entry and 0 elsewhere.

Theorem 2.2. Let f : Mn → C be a linear functional. Then the
following are equivalent:
(1) f is a state on Mn.
(2) [f(Eij)] ≥ 0 and

∑n
i=1 f(Eii) = 1.

Proof. (1)⇒(2); For x =

x1
...
xn

 ∈ Cn, let

a =

x1
...
xn

 (x1 · · · xn) =

x1x1 · · · x1xn
... · · · ...

xnx1 · · · xnxn

 .

Since a is positive and f is a state, f(a) ≥ 0 and

f(a) =
n∑

i,j=1

f(Eij)xixj =< [f(Eij)]x, x > .

Hence [f(Eij)] is positive and 1 = f(In) =
∑n

i=1 f(Eii).
(2)⇒(1); First, we have f(In) =

∑n
i=1 f(Eii) = 1. Let p be a projec-

tion with rank 1. Then there is a vector x ∈ Cn with

p =

x1
...
xn

 (x1 · · · xn).

Hence

f(p) =
n∑

ij=1

f(Eij)xixj =< [f(Eij)]x, x >≥ 0.

Note that for a positive matrix a ∈ Mn, there are non-negative real
numbers λ1, λ2, · · · , λn and projections p1, p2, · · · , pn with rank 1 such
that a = λ1p1 + · · ·+ λnpn. Therefore for any positive matrix a ∈Mn

f(a) = f

(
n∑

i=1

λipi

)
=

n∑
i=1

λif(pi) ≥ 0

and thus f is a state on Mn.
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If we define a function Φ : St(Mn) → A by Φ(f) = [f(Eij)], Φ is
well-defined by Theorem 2.2.

Theorem 2.3. The function Φ above satisfies the following:
(1) Φ is a one-to-one correspondence between St(Mn) and A.
(2) For 0 ≤ λ ≤ 1, and f, g ∈ St(Mn), we have

Φ(λf + (1− λ)g) = λΦ(f) + (1− λ)Φ(g).

(3) f is an extreme point of St(Mn) if and only if [f(Eij)] is an extreme
point of A.

Proof. (1) If Φ(f) = Φ(g) for f, g ∈ St(Mn), then f(Eij) = g(Eij) for
1 ≤ i, j ≤ n. Hence f = g, i.e., Φ is injective. For a = [aij] ∈ A, we
associate a linear functional fa on Mn with a as follows:

fa([xij]) =
n∑

i,j=1

aijxij.

Then fa ∈ St(Mn) and Φ(fa) = a. Hence Φ is a one-to-one correspon-
dence.
(2) Since Φ(λf + (1− λ)g) = λ[f(Eij)] + (1− λ)[g(Eij)], we have

Φ(λf + (1− λ)g) = λΦ(f) + (1− λ)Φ(g).

(3) It follow directly from (1) and (2).

Corollary 2.4. Let f : Mn → C be a linear functional. Then the
following are equivalent:
(1) f is a pure state.
(2) [f(Eij)] is a projection with rank 1.
(3) There is a unit vector v ∈ Cn such that , for a ∈Mn,

f(a) =< av, v > .

Proof. (1) ⇔ (2): It follows from Theorem 2.1 and Theorem 2.3.
(2) ⇒ (3): Let [f(Eij)] be a projection with rank 1. Then there is a unit
vector v ∈ Cn such that vv∗ = [f(Eij)] and f(a) =< av, v > .
(3) ⇒ (2): By elementary calculation, [f(Eij)] = vv∗ and vv∗ is a pro-
jection with rank 1.
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3. The Extension of States on Mn ⊕Mm

For linear functionals f : Mn → C and g : Mm → C, define

f ⊕ g : Mn ⊕Mm → C

by

(f ⊕ g)(a⊕ b) = f(a) + g(b).

Then f ⊕ 0 and 0⊕ g are obviously states if so are f and g.

Lemma 3.1. If f and g are pure states, then f ⊕ 0 and 0⊕ g are pure
states.

Proof. Let 0 < λ < 1 and f ⊕ 0 = λφ + (1 − λ)ψ for some states
φ, ψ on Mn ⊕ Mm. Define φ1, ψ1 : Mn −→ C by φ1(a) = φ(a ⊕ 0),
ψ1(a) = ψ(a ⊕ 0) and define φ2, ψ2 : Mm −→ C by φ2(b) = φ(0 ⊕ b),
ψ2(b) = ψ(0⊕ b). Then φ1, φ2, ψ1, ψ2 are positive and

f = λφ1 + (1− λ)ψ1, 0 = λφ2 + (1− λ)ψ2.

Hence φ1 = ψ1 = f and φ2 = ψ2 = 0. Thus f ⊕ 0 is a pure state.
Similarly, 0⊕ g is a pure state.

Let PS(Mn) be the set of all pure states on Mn, and PS(Mn ⊕Mm)
be the set of pure states on Mn ⊕Mm.

Theorem 3.2.

(PS(Mn)⊕ 0) ∪ (0⊕ PS(Mm)) = PS(Mn ⊕Mm).

Proof. By Lemma 3.1, (PS(Mn)⊕0)∪(0⊕PS(Mm)) ⊂ PS(Mn⊕Mm).
For a pure state f on Mn⊕Mm, define f1 : Mn → C by f1(a) = f(a⊕0)
and define f2 : Mm → C by f2(b) = f(0⊕b). Then f = (f1⊕0)+(0⊕f2).
If f1(In) 6= 0 6= f2(Im), then 1 = f(In ⊕ Im) = f1(In) + f2(Im) and

f = f1(In)

(
1

f1(In)
(f1 ⊕ 0)

)
+ f2(Im)

(
1

f2(Im)
(0⊕ f2)

)
.

Since f is a pure state on Mn⊕Mm, f1 ≡ 0 or f2 ≡ 0. If f2 ≡ 0, then f1

is a pure state. If f1 ≡ 0, then f2 is a pure state. Therefore

PS(Mn ⊕Mm) ⊂ (PS(Mn)⊕ 0) ∪ (0⊕ PS(Mm)).
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For linear functionals f : Mn → C and g : Mm → C, define f ⊗ g :
Mn ⊗Mm → C by

(f ⊗ g)(a⊗ b) = f(a)g(b).

Then f ⊗ g is obviously a state on Mn ⊗Mm if so are f and g .

Theorem 3.3. Let f : Mn → C and g : Mm → C be states. Then
the following are equivalent:
(1) f and g are pure states.
(2) f ⊗ g is a pure state.

Proof. (1)⇒(2): Let f and g be pure states. By Corollary 2.4, there
are unit vectors x ∈ Cn and y ∈ Cm such that f(a) =< ax, x > and
g(b) =< by, y > . Hence for a ∈Mn, b ∈Mm,

(f ⊗ g)(a⊗ b) =< ax, x >< by, y >=< (a⊗ b)(x⊗ y), x⊗ y > .

Thus f ⊗ g is a pure state by Corollary 2.4 .
(2)⇒(1): Note that (f1 + f2)⊗ g = f1 ⊗ g + f2 ⊗ g. Hence if f is not a
pure state, then f ⊗ g is not a pure state. Similarly, if g is not a pure
state, then f ⊗ g is not a pure state.

Let (a, b), (c, d) ∈ C2. Then (a, b) ⊗ (c, d) = (ac, ad, bc, bd) ∈ C4 =
C2 ⊗C2. For v = (α, β, γ, δ) ∈ C4 with αδ − βγ 6= 0, define a pure state
h on M2 ⊗ M2 = M4 by h(a) =< av, v > . Since v 6= x ⊗ y for any
x, y ∈ C2, h 6= f ⊗ g for any pure states f, g : M2 → C. In general, if
m 6= 1 and n 6= 1, then PS(Mn)⊗ PS(Mm) $ PS(Mn ⊗Mm).

Theorem 3.4. For a state f : Mn1 ⊕ · · · ⊕Mnk
→ C, define

f1 : Mn1 → C, · · · , fk : Mnk
→ C

by

f1(a) = f(a⊕ 0⊕ · · · ⊕ 0), · · · , fk(a) = f(0⊕ 0⊕ · · · ⊕ 0⊕ a).

Then the following are equivalent:
(1) For each i, rank[fi(Est)] ≤ 1.
(2) There is a pure state g : Mn1+···+nk

→ C such that

g(a1 ⊕ · · · ⊕ ak) = f(a1 ⊕ · · · ⊕ ak).

Proof. (1)⇒(2); Since f is positive, fi is positive and so [fi(Est)]
is positive. Moreover, since rank([fi(Est)]) ≤ 1, there exists a vector
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vi ∈ Cni such that viv
∗
i = [fi(Est)] and fi(a) = < avi, vi > .

Put v =

v1
...
vk

 ∈ Cn1+···+nk . Then we have

f(a1 ⊕ · · · ⊕ ak) = f1(a1) + · · ·+ fk(ak)

= < a1v1, v1 > + · · ·+ < akvk, vk >

= < (a1 ⊕ 0⊕ · · · ⊕ 0)v, v > + · · ·
+ < (0⊕ · · · ⊕ 0⊕ ak)v, v >

= < (a1 ⊕ 0⊕ · · · ⊕ 0 + · · ·+ 0⊕ · · · ⊕ 0⊕ ak)v, v >

= < (a1 ⊕ a2 ⊕ · · · ⊕ ak)v, v > .

Define g : Mn1+n2+···+nk
→ C by g(a) =< av, v > . Then g(a1⊕· · ·⊕ak) =

f(a1 ⊕ · · · ⊕ ak) and g is a pure state by Corollary 2.4.
(1)⇒(2); By Corollary 2.4, there is a unit vector v ∈ Cn1+···+nk such that
g(a) =< av, v > for all a ∈Mn1+n2+···+nk

. Put

v1 = (In1 ⊕ 0⊕ · · · ⊕ 0)v, · · · , vk = (0⊕ 0⊕ 0⊕ · · · ⊕ Ink
)v.

Then fi(a) =< avi, vi > for a ∈ Mni
and [fi(Est)] = viv

∗
i . Hence

rank[fi(Est)] ≤ 1.
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