EXTREME POINTS RELATED TO MATRIX ALGEBRAS

Tae Keug Lee

Abstract

Let A denote the set $\left\{a \in M_{n} \mid a \geq 0, \operatorname{tr}(a)=1\right\}$, $S t\left(M_{n}\right)$ the set of all states on M_{n}, and $P S\left(M_{n}\right)$ the set of all pure states on M_{n}. We show that there are one-to-one correspondences between A and $S t\left(M_{n}\right)$, and between the set of all extreme points of A and $P S\left(M_{n}\right)$. We find a necessary and sufficient condition for a state on $M_{n_{1}} \oplus \cdots \oplus M_{n_{k}}$ to be extended to a pure state on $M_{n_{1}+\cdots+n_{k}}$.

1. Introduction and Preliminaries

The representation theory plays an important role in the operator algebra and it is closely related to states. Since pure states give irreducible representations by the GNS construction, it is natural that the study of pure states is our concern. Let \mathbb{C}^{n} be the n-dimensional vector space over the complex field \mathbb{C} and let $<,>$ denote the standard inner product on \mathbb{C}^{n}. Let M_{n} be the set of all $n \times n$ complex matrices and I_{n} the identity matrix of M_{n}. An $n \times n$ matrix a is called positive, denoted $a \geq 0$, if it is hermitian and $\langle a x, x\rangle$ is non-negative for all $x \in \mathbb{C}^{n}$. If $f: M_{n} \rightarrow M_{m}$ is a linear map, then f is called positive provided that it maps positive matrices of M_{n} to positive matrices of M_{m}. If a linear functional $f: M_{n} \rightarrow \mathbb{C}$ is positive and $f\left(I_{n}\right)=1$, then f is called a state on M_{n}. We denote the set of all states on M_{n} by $\operatorname{St}\left(M_{n}\right)$. Let K be a subset of a vector space X. An element $a \in K$ is called an extreme point of K provided that $x=y=a$ whenever $x, y \in K, 0<t<1$, and $a=t x+(1-t) y$. A state f on M_{n} is said to be pure if every positive linear functional on M_{n} that is dominated by f is of the form $\lambda f(0 \leq \lambda \leq 1)$. We denote by $P S\left(M_{n}\right)$ the set of all pure states on M_{n}. It is known that

Received November 30, 2000.
1991 Mathematics Subject Classification: Primary 46L05, secondary 46L30.
Key words and phrases: extreme point, state.
This research was supported by 1999 Research Fund from the University of Seoul.
the set of all extreme points of $S t\left(M_{n}\right)$ is the set of all pure states of M_{n}. The properties of positive linear maps were studied in $[1,2,3,4]$. In section 2 , we show that there are one-to-one correspondences between the set $\left\{a \in M_{n} \mid a \geq 0, \operatorname{tr}(a)=1\right\}$ and $S t\left(M_{n}\right)$ and between the set of all extreme points of $\left\{a \in M_{n} \mid a \geq 0, \operatorname{tr}(a)=1\right\}$ and $P S\left(M_{n}\right)$. In section 3, we find a necessary and sufficient condition for a state on $M_{n_{1}} \oplus \cdots \oplus M_{n_{k}}$ to be extended to a pure state on $M_{n_{1}+\cdots+n_{k}}$.

2. Relation between states and positive matrices

In this section, we study properties for states and pure states on matrix algebras. For $a=\left[a_{i j}\right] \in M_{n}$, put $\operatorname{tr}(a)=\sum_{i=1}^{n} a_{i i}$. In what follows, A denotes the set $\left\{a \in M_{n} \mid a \geq 0, \operatorname{tr}(a)=1\right\}$.

Theorem 2.1. The following are equivalent:
(1) $p \in M_{n}$ is a projection with rank 1 .
(2) $p \in A$ is an extreme point of A.

Proof. (1) $\Rightarrow(2)$; Let p be a projection with rank 1. Then there is a vector $v \in \mathbb{C}^{n}$ such that $p v=v$ and $\|v\|=1$. Note that $\|a\| \leq \operatorname{tr}(a)$ for $a \in A$. Suppose that $p=\lambda a+(1-\lambda) b$ for some $a, b \in A$ and $0<\lambda<1$. Since

$$
\begin{aligned}
1 & =<v, v>=<p v, v>=<(\lambda a+(1-\lambda) b) v, v> \\
& =\lambda<a v, v>+(1-\lambda)<b v, v>
\end{aligned}
$$

and

$$
<a v, v>\leq 1,<b v, v>\leq 1,
$$

we have

$$
<a v, v>=1,<b v, v>=1 .
$$

Since $\|a v\| \leq 1$ and $\|v\|=1$, we have $a v=b v=v$. Since $p w=$ $\lambda a w+(1-\lambda) b w=0$ for any $w \in\{v\}^{\perp}$, we have

$$
\lambda<a w, w>+(1-\lambda)<b w, w>=0 .
$$

Since $a \geq 0$ and $b \geq 0$, we have $\langle a w, w>\geq 0$ and $<b w, w\rangle \geq 0$. Hence we have $\langle a w, w\rangle=0$ and $\langle b w, w\rangle=0$. Therefore $a=b=p$ and p is an extreme point of A.
$(2) \Rightarrow(1)$; Let $p \in A$ be an extreme point of A. Since p is positive, there are real numbers $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$ and orthogonal projections $p_{1}, p_{2}, \cdots, p_{n}$ with rank 1 such that $p=\lambda_{1} p_{1}+$
$\lambda_{2} p_{2}+\cdots+\lambda_{n} p_{n}$. Since $p_{i} \in A$ for all i and $1=\operatorname{tr}(p)=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}$, we have $\lambda_{1}=1$ and $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0$. Therefore p is a projection with rank 1.

Let $E_{i j}$ denote the matrix with 1 in the (i, j)-entry and 0 elsewhere.
Theorem 2.2. Let $f: M_{n} \rightarrow \mathbb{C}$ be a linear functional. Then the following are equivalent:
(1) f is a state on M_{n}.
(2) $\left[f\left(E_{i j}\right)\right] \geq 0$ and $\sum_{i=1}^{n} f\left(E_{i i}\right)=1$.

Proof. (1) $\Rightarrow(2)$; For $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{C}^{n}$, let

$$
a=\left(\begin{array}{c}
\overline{x_{1}} \\
\vdots \\
\overline{x_{n}}
\end{array}\right)\left(\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right)=\left(\begin{array}{ccc}
\overline{x_{1}} x_{1} & \cdots & \overline{x_{1}} x_{n} \\
\vdots & \cdots & \vdots \\
\overline{x_{n}} x_{1} & \cdots & \overline{x_{n}} x_{n}
\end{array}\right) .
$$

Since a is positive and f is a state, $f(a) \geq 0$ and

$$
f(a)=\sum_{i, j=1}^{n} f\left(E_{i j}\right) \overline{x_{i}} x_{j}=<\left[f\left(E_{i j}\right)\right] x, x>.
$$

Hence $\left[f\left(E_{i j}\right)\right]$ is positive and $1=f\left(I_{n}\right)=\sum_{i=1}^{n} f\left(E_{i i}\right)$.
$(2) \Rightarrow(1)$; First, we have $f\left(I_{n}\right)=\sum_{i=1}^{n} f\left(E_{i i}\right)=1$. Let p be a projection with rank 1 . Then there is a vector $x \in \mathbb{C}^{n}$ with

$$
p=\left(\begin{array}{c}
\overline{x_{1}} \\
\vdots \\
\overline{x_{n}}
\end{array}\right)\left(\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right) .
$$

Hence

$$
f(p)=\sum_{i j=1}^{n} f\left(E_{i j}\right) \overline{x_{i}} x_{j}=<\left[f\left(E_{i j}\right)\right] x, x>\geq 0 .
$$

Note that for a positive matrix $a \in M_{n}$, there are non-negative real numbers $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ and projections $p_{1}, p_{2}, \cdots, p_{n}$ with rank 1 such that $a=\lambda_{1} p_{1}+\cdots+\lambda_{n} p_{n}$. Therefore for any positive matrix $a \in M_{n}$

$$
f(a)=f\left(\sum_{i=1}^{n} \lambda_{i} p_{i}\right)=\sum_{i=1}^{n} \lambda_{i} f\left(p_{i}\right) \geq 0
$$

and thus f is a state on M_{n}.

If we define a function $\Phi: S t\left(M_{n}\right) \rightarrow A$ by $\Phi(f)=\left[f\left(E_{i j}\right)\right], \Phi$ is well-defined by Theorem 2.2.

Theorem 2.3. The function Φ above satisfies the following:
(1) Φ is a one-to-one correspondence between $\operatorname{St}\left(M_{n}\right)$ and A.
(2) For $0 \leq \lambda \leq 1$, and $f, g \in \operatorname{St}\left(M_{n}\right)$, we have

$$
\Phi(\lambda f+(1-\lambda) g)=\lambda \Phi(f)+(1-\lambda) \Phi(g)
$$

(3) f is an extreme point of $S t\left(M_{n}\right)$ if and only if $\left[f\left(E_{i j}\right)\right]$ is an extreme point of A.

Proof. (1) If $\Phi(f)=\Phi(g)$ for $f, g \in S t\left(M_{n}\right)$, then $f\left(E_{i j}\right)=g\left(E_{i j}\right)$ for $1 \leq i, j \leq n$. Hence $f=g$, i.e., Φ is injective. For $a=\left[a_{i j}\right] \in A$, we associate a linear functional f_{a} on M_{n} with a as follows:

$$
f_{a}\left(\left[x_{i j}\right]\right)=\sum_{i, j=1}^{n} a_{i j} x_{i j}
$$

Then $f_{a} \in S t\left(M_{n}\right)$ and $\Phi\left(f_{a}\right)=a$. Hence Φ is a one-to-one correspondence.
(2) Since $\Phi(\lambda f+(1-\lambda) g)=\lambda\left[f\left(E_{i j}\right)\right]+(1-\lambda)\left[g\left(E_{i j}\right)\right]$, we have

$$
\Phi(\lambda f+(1-\lambda) g)=\lambda \Phi(f)+(1-\lambda) \Phi(g)
$$

(3) It follow directly from (1) and (2).

Corollary 2.4. Let $f: M_{n} \rightarrow \mathbb{C}$ be a linear functional. Then the following are equivalent:
(1) f is a pure state.
(2) $\left[f\left(E_{i j}\right)\right]$ is a projection with rank 1.
(3) There is a unit vector $v \in \mathbb{C}^{n}$ such that, for $a \in M_{n}$,

$$
f(a)=<a v, v>.
$$

Proof. (1) $\Leftrightarrow(2)$: It follows from Theorem 2.1 and Theorem 2.3.
$(2) \Rightarrow(3)$: Let $\left[f\left(E_{i j}\right)\right]$ be a projection with rank 1 . Then there is a unit vector $v \in \mathbb{C}^{n}$ such that $v v^{*}=\left[f\left(E_{i j}\right)\right]$ and $f(a)=\langle a v, v\rangle$. $(3) \Rightarrow(2)$: By elementary calculation, $\left[f\left(E_{i j}\right)\right]=v v^{*}$ and $v v^{*}$ is a projection with rank 1.

3. The Extension of States on $M_{n} \oplus M_{m}$

For linear functionals $f: M_{n} \rightarrow \mathbb{C}$ and $g: M_{m} \rightarrow \mathbb{C}$, define

$$
f \oplus g: M_{n} \oplus M_{m} \rightarrow \mathbb{C}
$$

by

$$
(f \oplus g)(a \oplus b)=f(a)+g(b)
$$

Then $f \oplus 0$ and $0 \oplus g$ are obviously states if so are f and g.
Lemma 3.1. If f and g are pure states, then $f \oplus 0$ and $0 \oplus g$ are pure states.

Proof. Let $0<\lambda<1$ and $f \oplus 0=\lambda \phi+(1-\lambda) \psi$ for some states ϕ, ψ on $M_{n} \oplus M_{m}$. Define $\phi_{1}, \psi_{1}: M_{n} \longrightarrow \mathbb{C}$ by $\phi_{1}(a)=\phi(a \oplus 0)$, $\psi_{1}(a)=\psi(a \oplus 0)$ and define $\phi_{2}, \psi_{2}: M_{m} \longrightarrow \mathbb{C}$ by $\phi_{2}(b)=\phi(0 \oplus b)$, $\psi_{2}(b)=\psi(0 \oplus b)$. Then $\phi_{1}, \phi_{2}, \psi_{1}, \psi_{2}$ are positive and

$$
f=\lambda \phi_{1}+(1-\lambda) \psi_{1}, 0=\lambda \phi_{2}+(1-\lambda) \psi_{2} .
$$

Hence $\phi_{1}=\psi_{1}=f$ and $\phi_{2}=\psi_{2}=0$. Thus $f \oplus 0$ is a pure state. Similarly, $0 \oplus g$ is a pure state.

Let $P S\left(M_{n}\right)$ be the set of all pure states on M_{n}, and $P S\left(M_{n} \oplus M_{m}\right)$ be the set of pure states on $M_{n} \oplus M_{m}$.

Theorem 3.2.

$$
\left(P S\left(M_{n}\right) \oplus 0\right) \cup\left(0 \oplus P S\left(M_{m}\right)\right)=P S\left(M_{n} \oplus M_{m}\right)
$$

Proof. By Lemma 3.1, $\left(P S\left(M_{n}\right) \oplus 0\right) \cup\left(0 \oplus P S\left(M_{m}\right)\right) \subset P S\left(M_{n} \oplus M_{m}\right)$. For a pure state f on $M_{n} \oplus M_{m}$, define $f_{1}: M_{n} \rightarrow \mathbb{C}$ by $f_{1}(a)=f(a \oplus 0)$ and define $f_{2}: M_{m} \rightarrow \mathbb{C}$ by $f_{2}(b)=f(0 \oplus b)$. Then $f=\left(f_{1} \oplus 0\right)+\left(0 \oplus f_{2}\right)$. If $f_{1}\left(I_{n}\right) \neq 0 \neq f_{2}\left(I_{m}\right)$, then $1=f\left(I_{n} \oplus I_{m}\right)=f_{1}\left(I_{n}\right)+f_{2}\left(I_{m}\right)$ and

$$
f=f_{1}\left(I_{n}\right)\left(\frac{1}{f_{1}\left(I_{n}\right)}\left(f_{1} \oplus 0\right)\right)+f_{2}\left(I_{m}\right)\left(\frac{1}{f_{2}\left(I_{m}\right)}\left(0 \oplus f_{2}\right)\right) .
$$

Since f is a pure state on $M_{n} \oplus M_{m}, f_{1} \equiv 0$ or $f_{2} \equiv 0$. If $f_{2} \equiv 0$, then f_{1} is a pure state. If $f_{1} \equiv 0$, then f_{2} is a pure state. Therefore

$$
P S\left(M_{n} \oplus M_{m}\right) \subset\left(P S\left(M_{n}\right) \oplus 0\right) \cup\left(0 \oplus P S\left(M_{m}\right)\right)
$$

For linear functionals $f: M_{n} \rightarrow \mathbb{C}$ and $g: M_{m} \rightarrow \mathbb{C}$, define $f \otimes g$: $M_{n} \otimes M_{m} \rightarrow \mathbb{C}$ by

$$
(f \otimes g)(a \otimes b)=f(a) g(b)
$$

Then $f \otimes g$ is obviously a state on $M_{n} \otimes M_{m}$ if so are f and g.
Theorem 3.3. Let $f: M_{n} \rightarrow \mathbb{C}$ and $g: M_{m} \rightarrow \mathbb{C}$ be states. Then the following are equivalent:
(1) f and g are pure states.
(2) $f \otimes g$ is a pure state.

Proof. (1) $\Rightarrow(2)$: Let f and g be pure states. By Corollary 2.4, there are unit vectors $x \in \mathbb{C}^{n}$ and $y \in \mathbb{C}^{m}$ such that $f(a)=<a x, x>$ and $g(b)=<b y, y>$. Hence for $a \in M_{n}, b \in M_{m}$,

$$
(f \otimes g)(a \otimes b)=<a x, x><b y, y>=<(a \otimes b)(x \otimes y), x \otimes y>.
$$

Thus $f \otimes g$ is a pure state by Corollary 2.4 .
$(2) \Rightarrow(1)$: Note that $\left(f_{1}+f_{2}\right) \otimes g=f_{1} \otimes g+f_{2} \otimes g$. Hence if f is not a pure state, then $f \otimes g$ is not a pure state. Similarly, if g is not a pure state, then $f \otimes g$ is not a pure state.

Let $(a, b),(c, d) \in \mathbb{C}^{2}$. Then $(a, b) \otimes(c, d)=(a c, a d, b c, b d) \in \mathbb{C}^{4}=$ $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$. For $v=(\alpha, \beta, \gamma, \delta) \in \mathbb{C}^{4}$ with $\alpha \delta-\beta \gamma \neq 0$, define a pure state h on $M_{2} \otimes M_{2}=M_{4}$ by $h(a)=<a v, v>$. Since $v \neq x \otimes y$ for any $x, y \in \mathbb{C}^{2}, h \neq f \otimes g$ for any pure states $f, g: M_{2} \rightarrow \mathbb{C}$. In general, if $m \neq 1$ and $n \neq 1$, then $P S\left(M_{n}\right) \otimes P S\left(M_{m}\right) \varsubsetneqq P S\left(M_{n} \otimes M_{m}\right)$.

Theorem 3.4. For a state $f: M_{n_{1}} \oplus \cdots \oplus M_{n_{k}} \rightarrow \mathbb{C}$, define

$$
f_{1}: M_{n_{1}} \rightarrow \mathbb{C}, \cdots, f_{k}: M_{n_{k}} \rightarrow \mathbb{C}
$$

by

$$
f_{1}(a)=f(a \oplus 0 \oplus \cdots \oplus 0), \cdots, f_{k}(a)=f(0 \oplus 0 \oplus \cdots \oplus 0 \oplus a) .
$$

Then the following are equivalent:
(1) For each $i, \operatorname{rank}\left[f_{i}\left(E_{s t}\right)\right] \leq 1$.
(2) There is a pure state $g: M_{n_{1}+\cdots+n_{k}} \rightarrow \mathbb{C}$ such that

$$
g\left(a_{1} \oplus \cdots \oplus a_{k}\right)=f\left(a_{1} \oplus \cdots \oplus a_{k}\right) .
$$

Proof. (1) $\Rightarrow(2)$; Since f is positive, f_{i} is positive and so $\left[f_{i}\left(E_{s t}\right)\right]$ is positive. Moreover, $\operatorname{since} \operatorname{rank}\left(\left[f_{i}\left(E_{s t}\right)\right]\right) \leq 1$, there exists a vector
$v_{i} \in \mathbb{C}^{n_{i}}$ such that $v_{i} v_{i}^{*}=\left[f_{i}\left(E_{s t}\right)\right]$ and $f_{i}(a)=\left\langle a v_{i}, v_{i}\right\rangle$.
Put $v=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{k}\end{array}\right) \in \mathbb{C}^{n_{1}+\cdots+n_{k}}$. Then we have

$$
\begin{aligned}
f\left(a_{1} \oplus \cdots \oplus a_{k}\right)= & f_{1}\left(a_{1}\right)+\cdots+f_{k}\left(a_{k}\right) \\
= & <a_{1} v_{1}, v_{1}>+\cdots+<a_{k} v_{k}, v_{k}> \\
= & <\left(a_{1} \oplus 0 \oplus \cdots \oplus 0\right) v, v>+\cdots \\
& +<\left(0 \oplus \cdots \oplus 0 \oplus a_{k}\right) v, v> \\
= & <\left(a_{1} \oplus 0 \oplus \cdots \oplus 0+\cdots+0 \oplus \cdots \oplus 0 \oplus a_{k}\right) v, v> \\
= & <\left(a_{1} \oplus a_{2} \oplus \cdots \oplus a_{k}\right) v, v>.
\end{aligned}
$$

Define $g: M_{n_{1}+n_{2}+\cdots+n_{k}} \rightarrow \mathbb{C}$ by $g(a)=<a v, v>$. Then $g\left(a_{1} \oplus \cdots \oplus a_{k}\right)=$ $f\left(a_{1} \oplus \cdots \oplus a_{k}\right)$ and g is a pure state by Corollary 2.4.
$(1) \Rightarrow(2)$; By Corollary 2.4, there is a unit vector $v \in \mathbb{C}^{n_{1}+\cdots+n_{k}}$ such that $g(a)=<a v, v>$ for all $a \in M_{n_{1}+n_{2}+\cdots+n_{k}}$. Put

$$
v_{1}=\left(I_{n_{1}} \oplus 0 \oplus \cdots \oplus 0\right) v, \cdots, v_{k}=\left(0 \oplus 0 \oplus 0 \oplus \cdots \oplus I_{n_{k}}\right) v .
$$

Then $f_{i}(a)=<a v_{i}, v_{i}>$ for $a \in M_{n_{i}}$ and $\left[f_{i}\left(E_{s t}\right)\right]=v_{i} v_{i}^{*}$. Hence $\operatorname{rank}\left[f_{i}\left(E_{s t}\right)\right] \leq 1$.

References

[1] M. D. Choi, Positive linear maps on C^{*}-algebras, Canad. J Math. 24 (1972), 520-529.
[2] M. D. Choi, Completely positive linear maps on complex matrices, Linear Algebra and Appl. 10 (1975), 285-290.
[3] S. H. Kye, Facial structure of positive linear maps between matrix algebras, Canad. Math. Bull. 39 (1996), 74-82.
[4] D. E. Evans, Positive linear maps on operator algebras, Commun. Math. Phys. 48 (1976), 15-22.
[5] V. I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Math., Longman, London, 1986.
[6] E. T. Kim and S. A. Park, Linear algebra, 4th ed., Kyungmoon, 1999 (in Korean).

Department of Mathematics
University of Seoul
Seoul 130-743, Korea
E-mail: tklee@uoscc.uos.ac.kr

