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ON THE POSITIVITY OF MATRICES
RELATED TO THE LINEAR FUNCTIONAL

Haeng-Won Yoon and Jung-Rye Lee

Abstract. We study the properties of positivity of matrices and

construct useful positive matrices. As an application, we consider a

directed graph with matrices such that all the associated matrices
related to the positive linear functional are positive.

1. Introduction

In this paper, we deal with various positive matrices which come
from positive matrices and construct associated positive matrices re-
lated to the linear functional on a C∗- algebra. Although the proof of
the positivity of matrices related the linear functional may be a folklore
for specialists, the authors give direct proofs of the positivity of matri-
ces. In detail, the purpose of this paper is to introduce many positive
matrices and to give a construction of positive matrices related to the
linear functional on the C∗-algebras by using a graph.

Here we briefly review some definitions and notations which are
necessary for our discussions that follow.

As is known, graph theory is useful to the study of C∗-algebras (see
[4]) and we use here a directed graph.

A directed graph G consists of a nonempty set V of vertices, E of
edges, and the range, source maps r, s : E → V . So we denote a graph
G by G = (V,E, r, s). For convenience, we denote an edge e ∈ E with
s(e) = u and r(e) = v by uv. Recall that for any u ∈ V , s−1(u) is the
set {e ∈ E|s(e) = u} and a vertex u with s−1(u) = ∅ is called a sink.

Throughout this paper, Mk,l (resp. Mk) is the set of all k× l (resp.
k×k) matrices over C and Ok denotes zero matrix in Mk. For a matrix
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A ∈ Mk, sometimes we use the expression of A = (A1, A2, · · · , Ak),
where Ai is the i-th column of A. For any A ∈ Mk, A is said to
be positive if A = C∗C for some C ∈ Mk, where the adjoint matrix
C∗ = (dij) of C = (cij) is given by dij = cji. We denote a positive
matrix A by A ≥ 0. Furthermore, for a C∗-algebra B, Mk(B) denotes
the set of all k × k matrices (xij) whose elements (xij)’s are in B.

In addition, we recall that the inner product < ξ, η > of two vec-
tors ξ = (ξ1, ξ2, · · · , ξn) and η = (η1, η2, · · · , ηn) in Cn is given by
< ξ, η >=

∑
ξiηi and we get |ξ|2 =< ξ, ξ >.

2. Constructions of Positive matrices from Positive matri-
ces

In this section we construct various matrices from positive matrices
and give direct proofs that the constructed matrices are positive.

At first, we introduce a positive matrix from a positive matrix and
a complex number. For a matrix A = (aij) ∈ Mk and a scalar ξ ∈ C,
we define the matrix Aξ ∈Mk+1 as follow:

Aξ =


|ξ|2 ξa11 ξa12 · · · ξa1k

ξ̄a11 a11 a12 · · · a1k

ξ̄a21 a21 a22 · · · a2k
...

...
...

. . .
...

ξ̄ak1 ak1 ak2 · · · akk


Lemma 2.1. Let A be any matrix and ξ be any complex number.

If A is a positive matrix, then Aξ is a positive matrix.

Proof. Let A be a positive matrix inMk. Then there exists a matrix
B = (B1, B2, · · · , Bk) ∈Mk such that A = B∗B. For any ξ ∈ C, if we
let C be (ξ̄B1, B1, B2, · · · , Bk) ∈Mk,k+1, then by simple calculations
we get C∗C = Aξ which implies that Aξ is positive. �

The Hadamad product A ◦ B of two matrices A = ( aij ) and
B = (bij) in Mk is defined to be just their elementwise product A◦B =
(aijbij) ∈Mk.

For A = (aij) ∈ Mk, B = (bij) ∈ Ml, we define the direct sum
A⊕B ∈Mk+l as follow:



On the positivity of matrices 55

A⊕B =
(

A O
O B

)
Furthermore, for A = (aij) ∈ Mk, B = (bij) ∈ Ml, we define a

matrix A �B ∈Mk+l−1 as follow:

A �B =



a11 + b11 a12 · · · a1k b12 · · · b1l

a21 a22 · · · a2k 0 · · · 0
...

...
. . .

...
...

. . .
...

ak1 ak2 · · · akk 0 · · · 0
b21 0 · · · 0 b22 · · · b2l
...

...
. . .

...
...

. . .
...

bl1 0 · · · 0 bl2 · · · bll


Simple calculations give us some properties of the above operation

�. In the following, we present these properties without proofs.

Lemma 2.2. For any A ∈Mk, B ∈Ml, and C ∈Ms, we have the
followings:

(1) Ok �Ol = Ok+l−1

(2) A �B = A �Ol + Ok �B
(3) (A �B) � C = A � (B � C).

With the notations as above, we obtain the following lemma.

Lemma 2.3. Let A and B be positive matrices. Then A◦B, A⊕B,
and A �B are positive matrices.

Proof. By elementary calculations, the proofs are immediate and we
omit them. �

Corollary 2.4. For any positive matrix A ∈ Ms, the matrix Ok �
A �Ol is positive.

Proof. From Lemma 2.3, for any positive matrix A ∈ Ms, Ok�A ≥ 0
holds. The fact of Ol ≥ 0 and Lemma 2.3 give Ok �A �Ol ≥ 0. �

For A = (aij) ∈Mk, we now define the matrix A11 ∈Mk as follow:
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A11 =


1 a12 · · · a1k

a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk


Theorem 2.5. Let Ai, i = 1, 2, · · · , k be positive matrices. For

any ξi ∈ C, i = 1, 2, · · · , k with
∑k

i=1 |ξi|2 ≤ 1, we have

(Aξ1
1 �Aξ2

2 � · · · �Aξk

k )11 ≥ 0.

Proof. By definitions, we get that Aξ1
1 � Aξ2

2 � · · · � Aξk

k is a matrix
whose (1, 1)-component is

∑k
i=1 |ξi|2.

For any ξi and positive matrix Ai, i = 1, 2, · · · , k, Lemma 2.1 gives
that Aξi

i is positive. On the other hand, by Lemma 2.3,

Aξ1
1 �Aξ2

2 � · · · �Aξk

k

is also a positive matrix.
Here we note that for a matrix A = (aij) ∈Mk, we have

A11 = A + (1− a11)E11,

where E11 is a matrix whose (1, 1)-component is 1 and the others are
0. Thus, if A is a positive matrix with a11 ≤ 1, then we get A11 ≥ 0.

Therefore, the fact
∑k

i=1 |ξi|2 ≤ 1 gives that (Aξ1
1 �Aξ2

2 � · · · �Aξk

k )11

is positive. �

3. Positivity of the associated matrices related to the linear
functional

In this section, we determine a graph with positive matrices related
to positive linear functional on a C∗-algebra. In detail, we consider the
Cuntz algebra together with the Cuntz state. We construct a graph
with positive matrices attached to each vertices and each edges which
is related to the positive linear functional on the Cuntz algebra. In
other words, for a given set of monomials in the Cuntz algebra, we
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define matrices related to the Cuntz state and we use graph theory to
show that these matrices are positive.

For n = 2, 3, · · · , let B be a simple infinite C∗-algebra generated by
n isometries (see [2]). We note that an element X in B which consists
of k isometries is called a monomial with length k. For two monomials
X and Y in B, we denote X < Y if Y = XZ for some non-identity
monomial Z in B.

As is known, a positive linear functional on a C∗-algebra is com-
pletely positive. So when ρ is a positive linear functional on the Cuntz
algebra B, for any k ∈ N and a positive matrix (xij) ∈Mk(B), the lin-
ear functional ρk on Mk(B) which is defined by ρk((xij)) = (ρ(xij)) ∈
Mk is also positive.

At first, for a given set of monomials in B, we define a matrix over
C related to such a linear functional ρ.

Let ρ be a linear functional on the Cuntz algebra B. For any
k ∈ N and any monomials X1, X2, · · · , Xk ∈ B , consider the matrix
(ρ(X∗

i Xj)) ∈Mk.
In the following proposition, we show that the positive linear func-

tional ρ on B gives a matrix which is positive.

Proposition 3.1. If ρ is the positive linear functional on the Cuntz
algebra B. Then for any k ∈ N and monomials X1, X2, · · · , Xk in B,
the matrix (ρ(X∗

i Xj)) ∈Mk is positive.

Proof. Let ρ be a linear functional on the Cuntz algebra B.
For any k ∈ N and monomials X1, X2, · · · , Xk in B, the fact of

(X∗
i Xj) = (X1, · · · , Xk)∗(X1, · · · , Xk) ∈Mk(B),

gives that the matrix (X∗
i Xj) is positive. If ρ is a positive linear func-

tional and so it is completely positive, then we have that ρk((X∗
i Xj))

is a positive matrix. Thus the matrix (ρ(X∗
i Xj)) = ρk((X∗

i Xj)) is also
positive. �

From now on, we consider the positive linear functional ρ on the
C∗-algebra B (see [1], [3]).

Now, we construct a graph whose vertex set is a set of monomials in
B. Furthermore, we assign matrices to each vertices and to each edges
such that all matrices are positive.



58 Haeng-Won Yoon and Jung-Rye Lee

For any set {X1, X2, · · · , Xk} of monomials in B, We determine a
directed graph G = (V,E, r, s) with V = {X1, X2, · · · , Xk} and E =
{XiXj |Xi < Xj , i, j = 1, · · · , k}.

Now for this directed graph G = (V,E, r, s), we construct matrices
associated to each vertex in V and each edge in E.

We define matrices M(Xi) and N(XiXj) in ∪k∈NMk associated to
each vertex Xi ∈ V and each edge XiXj ∈ E, respectively, as follows:

(1) When Xi is a sink, the matrix M(Xi) associated to Xi is (1).
(2) When Xj is a sink and ξ = ρ(X∗

i Xj), the matrix N(XiXj)

associated to XiXj is
(
|ξ|2 ξ
ξ̄ 1

)
. Generally,

N(XiXj) = M(Xj)ξ,

where M(Xj) is the matrix associated to Xj ∈ V and ξ =
ρ(X∗

i Xj).
(3) When s−1(Xi) = {XiXj1 , XiXj2 , · · · , XiXjk

},

M(Xi) = (N(XiXj1) �N(XiXj2) � · · · �N(XiXjk
))11.

Since G is a directed graph, by repeating above three steps, we can
associate a matrix to each vertex and each edges.

Theorem 3.2. With the notations as above, for any vertex Xi ∈ V
and edge XiXj ∈ E, the matrices M(Xi) and N(XiXj) are positive.

Proof. Trivially, (1) ≥ 0 and (1)ξ ≥ 0 hold.
For any Xi ∈ V with s−1(Xi) 6= ∅, we have∑

XiXj∈s−1(Xi)

|ρ(X∗
i Xj)|2 ≤ 1.

Thus, by Lemma 2.1, Lemma 2.3, and Lemma 2.5, we conclude that
the matrices M(Xi) and N(XiXj) associated to each vertex Xi ∈ V
and edge XiXj ∈ E are positive. �

As an example, now we construct a graph which comes from a set
of monomials of a C∗- algebra with a positive linear functional.
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Example 3.3. Let {X1, X2, X3, X4} be the set of monomials in
the Cuntz algebra B with Cuntz state ρ satisfying X1 < X2 < X3,
X1 < X2 < X4, and X∗

3X4 = 0. First we construct a directed
graph G = (V,E, r, s) which is defined by the set {X1, X2, X3, X4}.
Let V be the set {X1, X2, X3, X4} and for two monomials Xi and
Xj with Xi < Xj , there exists an edge XiXj ∈ E. Thus we have
E = {X1X2, X2X3, X2X4} and complex numbers ρ(X∗

1X2), ρ(X∗
2X3),

and ρ(X∗
2X4). Then the matrices M(X3) and M(X4) associated to X3

and X4, respectively, are (1). The matrices N(X2X3) and N(X2X4)

associated to X2X3 and X2X4 are
(
|b|2 b
b̄ 1

)
and

(
|c|2 c
c̄ 1

)
, respec-

tively, where b = ρ(X∗
2X3) and c = ρ(X∗

2X4). The matrix M(X2)
associated to X2 and the final matrix M(X1) are

M(X2) =

 1 b c
b̄ 1 0
c̄ 0 1

 and M(X1) =


1 a ab ac
ā 1 b c
c̄ b̄ 1 0
āc̄ c̄ 0 1

 ,

where a = ρ(X∗
1X2).

It is straightforward to show directly that all matrices above are
positive. On the other hand, Theorem 3.2 allows us that all matrices
above are positive.
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