C-TRANSFORMATIONS ON OPEN 3-CELLS

Joo Sung Lee

Abstract

In this paper, we show the existence of open subsets U of S^{3} which admit a C-transformation onto the interior of B^{3}. Let U be an open set which is homeomorphic to the interior of B^{3}. Then, we prove that if U has a pseudo general polyhedral prime end structure then U admits a C-transformation.

1. Introduction

The existence of a C-transformation onto the interior of some compact manifold M with nonempty boundary is one of the interesting unsolved problems in geometric topology. This work continues the earlier work of the author and B. Brechner [B-L], where they develop a 3-dimensional prime end theory, define a C-transformation, and prove the following: If U is an open subset of S^{3} which admits a C-transformation ϕ onto the interior of a compact 3 -manifold M with nonempty boundary, then (1) ϕ is uniformly continuous on the collection of all crosscuts of U and (2) The Induced Homeomorphism Theorem holds; that is, if h is a homeomorphism of $C l(U)$ onto itself, then, $\phi h \phi^{-1}$ extends to a homeomorphism of all of M^{3} onto itself.

Here, we give a partial answer to a problem of the earlier paper[B-L], by characterizing those open 3 -cells of E^{3}, which admits C-transformation. Recall that L. Husch[Hu], C.T.C. Wall[W] and C. Edwards[E] provided sufficient conditions for an open 3-cell U to be homeomorphic to the interior of B^{3}, where B^{3} is the closed 3 -ball. Therefore, we will assume that our open set U is such an open set in this paper.

Received January 5, 2000.
2000 Mathematics Subject Classification: $54 \mathrm{H} 15,54 \mathrm{H} 20$.
Key words and phrases: prime ends, C-transformation, open 3-cell.
This work was supported by the research program of Dongguk University.

In this paper we will show that the existence of a pseudo general polyhedral prime end structure of U will guarantee the existence of a C transformation from U onto the interior of B^{3} and therefore we conclude that if U has a pseudo general polyhedral prime end structure then U admits the induced homeomorphism theorem[B-L].

2. Definitions

In this section we will briefly review three dimensional prime end theory. Prime end theory is essentially a compactification theory for simply connected, bounded domains, U, in E^{2}, or simply connected domains in S^{2} with nondegenerate complement. The planar case was originally due to Caratheodory [C], and was later generalized to the sphere by Ursell and Young [U-Y]. The author and B. Brechner developed a simple three dimensional prime end theory for certain open subsets of Euclidean three space [B-L]. One of the main purposes in this theory is to focus an induced homeomorphism theorem which, we believe, have many applications.

Let U be a bounded connected open subset in E^{3} with a finitely generated homology and a finitely generated fundamental group. We state basic definitions for prime end theory, a crosscut, a chain of crosscuts and a prime end. We refer to the reader [B-L] for the details including definitions and interesting examples.

1. A crosscut is an open 2-cell D in U such that
(1) D separates U into exactly two complementary domains,
(2) $C l(D)$ is a 2-cell, and
(3) $C l(D) \cap B d(U)=B d(D)$.
2. A chain of crosscuts in U is a sequence $\left\{D_{i}\right\}_{i=1}^{\infty}$ of crosscuts such that
(1) D_{i+1} separates D_{i} from $\left\{D_{i+j}\right\}_{j=2}^{\infty}$;
(2) $C l\left(D_{i}\right) \cap C l\left(D_{j}\right)=\phi$, for $i \neq j$; and
(3) $\lim _{i \rightarrow \infty}\left(\operatorname{diam}\left(D_{i}\right)\right)=0$.
3. Two chains of crosscuts, $\left\{Q_{i}\right\}$ and $\left\{R_{i}\right\}$, are equivalent iff
(1) For each Q_{i}, there exists $j>i$ such that Q_{i+1} separates Q_{i} from $Q_{j} \cup R_{j}$;
(2) For each R_{i}, there exists $j>i$ such that R_{i+1} separates R_{i} from $R_{j} \cup Q_{j}$.

That is, two subsequences can be alternated or "interspersed" to form a new, equivalent chain of crosscuts.
4. A prime end of U is an equivalence class of chains of crosscuts of U.

Definition 2.1. A bounded domain U has a prime end structure iff there exists a finite number of prime ends, $\left\{E_{i}\right\}_{i=1}^{n}$, of U, and a finite number of crosscuts, $\left\{Q_{i}\right\}_{i=1}^{n}$, with Q_{i} a crosscut of some chain representing E_{i}, such that

1. $\operatorname{diam}\left(Q_{i}\right)<\epsilon$,
2. If U_{i} denotes the corresponding domain for Q_{i}, then $B d(U) \bigcup \cup_{i=1}^{n} U_{i}$ is an ϵ-neighborhood of $B d(U)$ in $C l(U)$, and
3. If B_{i} denotes the corresponding boundary compactum of Q_{i}, then $\cup_{i=1}^{n}\left(B_{i}-S_{i}\right)=B d(U)$ where $S_{i}=B d\left(Q_{i}\right)$.

Definition 2.2. Let U be a bounded domain which has a prime end structure. If the closure of each crosscut Q_{i} is a polyhedral disk in the definition of prime end structure, then we say that U has a polyhedral prime end structure. In particular if $B d\left(Q_{i}\right) \cap B d\left(Q_{j}\right)$ is even number of points then we say that U has a pseudo general polyhedral prime end structure.

Remark. We do not give any conditions of intersection of interior of crosscuts in the above. In fact, it may happen that the intersection of interior of crosscuts is finite union of disks. But we can modify our crosscuts so that the intersection is finite union of disjoint circles [Lemma 3.2].

Definition 2.3. An onto homeomorphism $\phi: U \rightarrow \operatorname{Int}\left(M^{3}\right)$, where M^{3} is a compact 3 -manifold, is called a C-transformation or a C-map iff
(1) The image of every chain of crosscuts of U is a chain of crosscuts of $\operatorname{Int}\left(M^{3}\right)$. In particular, the image of each crosscut of U is a crosscut of $\operatorname{Int}\left(M^{3}\right)$.
(2) On each crosscut Q, ϕ extends to a homeomorphism from $C l(Q)$ onto $C l(\phi(Q))$. (However, ϕ does not necessarily extend to a homeomorphism from the union of the closures of all the crosscuts of U to the union of the closures of their images in $\phi(Q)$.)
(3) For each crosscut Q_{i} of a prime end of U, let U_{i} be its corresponding domain. Let $\left(Q_{i}{ }^{\prime}, U_{i}{ }^{\prime}\right)$ be the image of $\left(Q_{i}, U_{i}\right)$ under ϕ. We consider the following open sets on $\operatorname{Bd}\left(M^{3}\right): \operatorname{Int}\left[C l\left(U_{i}{ }^{\prime}\right) \cap B d\left(M^{3}\right)\right]$.

We require that the collection of all such open disks on $B d\left(M^{3}\right)$ form a basis for the topology of $B d\left(M^{3}\right)$.

Notation. We will use notation Q_{i}, S_{i}, U_{i} and B_{i}, respectively, where Q_{i} is a crosscut, $S_{i}=B d\left(Q_{i}\right), U_{i}$ is the corresponding complementary domain of Q_{i} and $B_{i}=C l\left(U_{i}\right) \cap B d(U)$.

3. Main Theorems

In this section, we will prove the main theorem: If U has a pseudo general polyhedral prime end structure, then there exists a C-map h : $U \rightarrow \operatorname{Int}\left(B^{3}\right)$. We will use push and pull back technique which is one of the basic technique in geometric topology. We refer to the reader [B1,B2] for the details.

We remark that there are some theorems which provide sufficient conditions for an open 3-manifold to be homeomorphic to E^{3} ([E], [Hu], [W]). Therefore we give the following standing hypothesis in this section.

Standing Hypothesis for This Section: U is an open set which is homeomorphic to the interior of B^{3}.

Lemma 3.1. Let $\epsilon>0$ and $\left\{Q_{i}\right\}_{i=1}^{n}$ a finite number of crosscuts corresponding to ϵ in the definition of pseudo polyhedral prime end structure. Suppose that Q_{i} and Q_{j} be crosscuts such that $B d\left(Q_{i}\right) \cap B d\left(Q_{j}\right)=\emptyset$. Then there exists polyhedral crosscuts Q_{i}^{\prime} and Q_{j}^{\prime} such that $Q_{i}^{\prime} \cap Q_{j}^{\prime}=\emptyset$, $B d\left(Q_{i}\right)=\operatorname{Bd}\left(Q_{i}^{\prime}\right)$ and $\operatorname{Bd}\left(Q_{j}\right)=\operatorname{Bd}\left(Q_{j}^{\prime}\right)$.

Proof. We may assume that Q_{i} and Q_{j} are in general position by the technique "push and pull back". Hence the intersection of two polyhedral crosscuts is the finite disjoint union of simple closed curves [B2,pg.14]. Therefore we can untangle Q_{i} and Q_{j} by push and pull back technique [See B1]. Consequently we get new crosscuts Q_{i}^{\prime} and Q_{j}^{\prime} such that $Q_{i}^{\prime} \cap$ $Q_{j}^{\prime}=\emptyset, B d\left(Q_{i}\right)=B d\left(Q_{i}^{\prime}\right)$ and $B d\left(Q_{j}\right)=B d\left(Q_{j}^{\prime}\right)$.

Lemma 3.2. Let $\epsilon>0$ and $\left\{Q_{i}\right\}_{i=1}^{n}$ a finite number of polyhedral cross cuts corresponding to ϵ in the definition of pseudo general polyhedral prime end structure. Let Q_{i} and Q_{j} be crosscuts such that $B d\left(Q_{i}\right) \cap$ $B d\left(Q_{j}\right) \neq \emptyset$ and even number of points. Then, there exist polyhedral crosscuts Q_{i}^{\prime} and Q_{j}^{\prime} such that (1) $Q_{i}^{\prime} \cap Q_{j}^{\prime}$ is disjoint union of polyhedral arcs and (2) $B d\left(Q_{l}\right)=B d\left(Q_{l}^{\prime}\right)$ for $l=i, j$.

Proof. Note that we may consider the intersection of Q_{i} and Q_{j} is a finite disjoint union of arcs and simple closed curves by the technique "push and pull back". We now remove simple closed curves also by the technique "push and pull back". If we remove simple closed curves then the intersection of adjusted crosscuts Q_{i}^{\prime} and Q_{j}^{\prime} is disjoint union of polyhedral arc and $B d\left(Q_{l}\right)=B d\left(Q_{l}^{\prime}\right)$ for $l=i, j$.
M. Brown $[\mathrm{Br}]$ defined a local collar and a collar in metric spaces and proved that a locally collared subset in a metric space is collared. This paper has been a critical role in study of 3 -manifolds. For example, he shows that a manifold with boundary has collared boundary and two sided ($n-1$)-manifold imbedded in a locally flat fashion in an n -manifold is bi-collared $[\mathrm{Br}]$. Let B be a subset of a topological space X. Then B is collared in X if there exists a homeomorphism h carrying $B \times I^{\prime}$ onto a neighborhood of B such that $h(b, 0)=b$ for all $b \in B$. If B can be covered by a collection of open subsets (relative to B), each of which is collared in X, then B is locally collared in X.

Lemma 3.3. Let Q_{i} be a polyhedral crosscut of U and U_{i} the complementary domain of Q_{i}. Let $Q_{i}=D_{i} \cup_{i d .}\left[B d\left(D_{i}\right), S_{i}\right]$. Then there exists a collar $g_{i}: D_{i} \times[0,1) \rightarrow C l\left(U_{i}\right)$ carrying $D_{i} \times[0,1)$ onto a neighborhood of D_{i} such that $g_{i}\left(B d\left(D_{i}\right) \times[0,1)\right) \subset\left[B d\left(D_{i}\right), S_{i}\right)$.

Notation: $\left[B d\left(D_{i}\right), S_{i}\right]$ is a cylinder along Q_{i} whose ends are $B d\left(D_{i}\right)$ and S_{i} and $\left[B d\left(D_{i}\right), S_{i}\right)$ is half open cylinder.

Proof. We modify crosscut Q_{i} with the union of D_{i} and $\left[B d\left(D_{i}\right), S_{i}\right]$. Then we give a natural collar on $B d\left(D_{i}\right)$ along $\left[B d\left(D_{i}\right), S_{i}\right]$. For example, let $h_{i}: S_{i} \times I \rightarrow Q_{i}$ be a homotopy such that $h_{i}(x, 0)=x$ and $h_{i}(x, 1)=$ x_{0} for some $x_{0} \in D_{i}$ and $h_{i}\left(S_{i} \times[1 / 2,1]\right)=D_{i}$.

Recall that the disk D_{i} is collared in ϵ-neighborhood, i.e., there exists a homeomorphism $g_{i}: D_{i} \times[0,1) \rightarrow C l\left(U_{i}\right)$. We also can take $g_{i}(x, t)=$ $h_{i}\left(x,(1-t) / 2\right.$ on $\operatorname{Bd}\left(D_{i}\right) \times[0,1)$.

Proposition 3.1. Let $\epsilon>0$ and $\left\{Q_{i}\right\}_{i=1}^{n}$ a finite number of crosscuts corresponding to ϵ in the definition of pseudo general polyhedral prime end structure. Then there exists a 2 sphere S induced by crosscuts $\left\{Q_{i}^{\prime \prime}\right\}_{i=1}^{n}$ such that S has a collar in ϵ-neighborhood induced by the local collar as in Lemma 3.3.

Proof. We will prove this proposition by inductive step.

Let Q_{1}, Q_{2} be crosscuts such that $B d\left(Q_{1}\right) \cap B d\left(Q_{2}\right) \neq \emptyset$. We can find such Q_{2} by (3) of definition of prime end structure. Then by Lemma 3.2, we can find Q_{2}^{\prime} which is pseudo general position with Q_{1} such that $\left(Q_{1} \cup Q_{2}^{\prime}\right)-\left(U_{1} \cup U_{2}^{\prime}\right)$ forms a 2-manifold with boundary, we denote it with N_{1}.

Take Q_{3} so that $N_{1} \cap Q_{3} \neq \emptyset$. Then we apply Lemma 3.2 on Q_{3} and N_{1} and get Q_{3}^{\prime} such that N_{1} and Q_{3}^{\prime} are in pseudo general position. Then $\left(N_{1} \cap Q_{3}^{\prime}\right)-U_{3}^{\prime}$ forms a 2-manifold with boundary, denoted by N_{2}.

Now we suppose that we have N_{k} which is a 2-manifold with boundary such that $B d\left(N_{k}\right)$ has diameter so small, i.e., each component of $B d\left(N_{k}\right)$ is contained in a complementary domain U_{i} of a crosscut Q_{i} for some i. Then by the same argument as the above we can find a 2 -manifold without boundary without handle, denoted by S^{\prime}.

Finally we will find a 2 -sphere which has a collar induced by the local collar as in Lemma 3.3. In the above we found a sphere S^{\prime}. But we can not guarantee S^{\prime} has a collar induced by local collar on D_{i} 's as in Lemma 3.3.

So we take regular neighborhood \mathcal{R} of 1 -skeleton $K \subset S^{\prime}$ in ϵ-neighborhood which are the intersection of Q_{i} 's in S^{\prime}. We now replace the neighborhood of 1 -skeleton in $S^{\prime}, S^{\prime} \cap \mathcal{R}$, with $B d(\mathcal{R}) \cap \cup_{i=1}^{i=n} C l\left(U_{i}\right)$. We denote the modified sphere with S and modified crosscuts with $Q_{i}^{\prime \prime}$. Let $D_{i}^{\prime \prime}=S \cap Q_{i}^{\prime \prime}$. Then S is covered by $\left\{D_{i}^{\prime \prime}\right\}_{i=1}^{n}$. Moreover $\operatorname{Bd}\left(D_{i}^{\prime \prime}\right)$ is homeomorphic to S_{i} and has a collar along $Q_{i}^{\prime \prime}$. This proves the proposition.

We now state and prove one of our main theorem.
Theorem 3.1. If U has a pseudo general polyhedral prime end structure, then there exists a C-map $h: U \rightarrow I n t B^{3}$.

Proof. Let $\left\{\epsilon_{n}\right\}$ be a decreasing sequence of positive real number with $\epsilon_{i} \rightarrow 0$. For $\epsilon_{1}>0$, there exists a finite number of cross cuts $\left\{Q_{1 i}\right\}_{i=1}^{n_{1}}$ satisfying the definition of pseudo general prime end structure. Therefore we can find a 2 -sphere S_{1} induced by modified crosscuts $\left\{Q_{1 i}^{\prime}\right\}_{i=1}^{n_{1}}$ as in Proposition 3.1. (Here, $Q_{1 i}^{\prime}$ is $Q_{1 i}^{\prime \prime}$ in Proposition 3.1. Recall that $\cup_{i=1}^{n_{i}} B d\left(D_{1 i}\right)$ has a collar p_{1} along crosscuts on S_{1} such that $p_{1}\left(\cup_{i=1}^{n_{1}} B d\left(D_{1 i}^{\prime}\right) \times 1\right)=\cup_{i=1}^{n_{i}} S_{1 i}$.

Take ϵ_{k} and a finite number of crosscuts $\left\{Q_{k i}\right\}_{i=1}^{n_{k}}$ so that ϵ_{k}-neighborhood induced by $\left\{Q_{k i}\right\}_{i=1}^{n_{k}}$ is contained in complementary domain of S_{1} and
$S_{1} \cap S_{k} \neq \emptyset$ where S_{k} is a 2 sphere induced by $\left\{Q_{k i}\right\}_{i=1}^{n_{k}}$. For convenience we may consider $\epsilon_{k}=\epsilon_{2}$.

We now encounter one obstruction to prove theorem. In fact, we can find a collar p_{2} on S_{2} such that $p_{2}\left(\cup_{i=1}^{n_{2}} B d\left(D_{2 i}^{\prime}\right) \times 1\right)=\cup_{i=1}^{n_{2}} S_{2 i}$. But we can not guarantee that the collaring structures p_{1} and p_{2} are compatible. I.e., $p_{1}(x \times[0,1)) \cap U-E_{2}$ is in a single fiber of p_{2} where E_{2} is the open 3 ball whose boundary is S_{2}.

We now add new crosscuts induced by $Q_{1 i} \cap Q_{2 j}$ to $\left\{Q_{2 i}\right\}_{i=1}^{2_{n}}$ for $i=$ $1, \ldots, n_{1}$ and $j=1, \ldots, n_{2}$. Then new collection of crosscuts $\left\{Q_{2 i}\right\}_{i=1}^{n_{n}^{\prime}}$ covers $\cup_{i=1}^{n_{1}} S_{1 i}$. We may consider $\left\{Q_{2 i}\right\}_{i=1}^{2^{\prime}}$ is pseudo general polyhedral since we can modify new crosscuts induced by $Q_{1 i} \cap Q_{2 j}$ so that new crosscuts is pseudo general position with $Q_{2 i}$ by fixing the part of $S_{1 i}$. Consequently, by Proposition 3.1, we can find 2 sphere S_{2} such that S_{2} has a collar induced by local collar $D_{2 i}^{\prime}$ for $i=1, \ldots, 2_{n^{\prime}}$.

Recall that $\left\{S_{2 i}\right\}_{i=1}^{2_{n^{\prime}}}$ covers $\left\{S_{1 i}\right\}_{i=1}^{1_{n}}$. Moreover $\cup_{i=1}^{2_{n^{\prime}}} B d\left(D_{2 i}^{\prime}\right)$ has a collaring structure p_{2} inherit the collaring structure of $\cup_{i=1}^{1_{n}} B d\left(D_{1 i}^{\prime}\right)$, i.e., a fiber $p_{1}(x \times[0,1]) \cap U-E_{2}$ is a fiber of the collar p_{2} for $x \in \operatorname{Bd}\left(D_{i}^{\prime}\right)$ where E_{2} is the open 3 ball whose boundary is S_{2}.

We now extend collar $p_{1}: S_{1} \times[0,1) \rightarrow\left[S_{1}, S_{2}\right)$ to $p_{1}: S_{1} \times[0,1] \rightarrow$ $\left[S_{1}, S_{2}\right]$ so that $p_{1}\left(S_{1} \times 1\right)=p_{2}\left(S_{2} \times 0\right)$.

If we apply the above argument to ϵ_{2} and ϵ_{3} then we get a 2 sphere S_{3} corresponding to ϵ_{3} and a collar p_{3}. Moreover $p_{2}: S_{2} \times[0,1] \rightarrow\left[S_{2}, S_{3}\right]$ is the collar such that $p_{2}\left(S_{2} \times 1\right)=p_{3}\left(S_{3} \times 0\right)$.

We paste p_{1} and p_{2} to get a map

$$
f_{1}(x)= \begin{cases}p_{1}(x) & \text { for } x \in\left[S_{1}, S_{2}\right] \\ p_{2}(x) & \text { for } x \in\left[S_{2}, S_{3}\right] .\end{cases}
$$

By continuing this process, we can define $f=\lim _{i \rightarrow \infty} f_{i}$. Then f : $S_{1} \times[0,1) \rightarrow U-E_{1}$, where E_{1} is the open 3 ball whose boundary is S_{1}, is the collar blocked by crosscuts $\left\{Q_{k i}\right\}_{k=1, i=1}^{k=\infty, i=k_{n}}$. Let $g: S_{1} \times$ $[0,1) \rightarrow S_{1} \times[0,1 / 2)$ be a map with $g(x, t)=(x,(1 / 2) t)$. Consider $f \circ g \circ f^{-1}: U-E_{1} \rightarrow E^{*}-E_{1}$ where E^{*} is the open 3 ball whose boundary is $f\left(S_{1} \times 1 / 2\right)$ which is 2 sphere.

We now extend $h=f \circ g \circ f^{-1}$ to U so that $h=$ identity on E_{1} to get a map $h: U \rightarrow \operatorname{Int}\left(B^{3}\right)$ where $B^{3}=f\left(S_{1} \times 1 / 2\right) \cup E^{*}$. Then, by the construction of the map h, it is clear that h is a C-transformation. This proves the theorem.

Theorem 3.2. If U has a pseudo polyhedral prime end structure, then U satisfies the induced homeomorphism theorem. [B-L] I.e., if $f: C l(U) \rightarrow C l(U)$ is an onto homeomorphism, then $h f h^{-1}: \operatorname{Int}\left(B^{3}\right) \rightarrow$ Int $\left(B^{3}\right)$ can be extended to the homeomorphism of B^{3} onto itself, where h is the homeomorphism in Theorem 3.1.

References

[B1] R. H. Bing. A Surface is Tame if its Complement is 1-ULC. Trans. Amer. Math. Soc., vol. 101(1961), 294-305.
[B2] R. H. Bing, The Geometric Topology of 3-manifolds (Amer. Math. Soc. Colloquium Publications, Providence RI, 1983).
[B-L] B. L. Brechner and J. S. Lee, A Three Dimensional Prime End Theory, Topology Proceedings, Vol 20 (1995), pp 15-47.
[Br] M. Brown, Locally flat imbeddings of topological manifolds, Annals of Math. 75 No. 2, (1962) 331-341.
[C] C. Caratheodory, Uber die Begrenzung einfach zusammenhangender Gebiete, Math. Ann. 73 (1913) 323-370.
[E] C. H. Edwards, Jr., Open 3-manifolds which are simply connected at infinity, Proc. Amer. Math. Soc. 14 (1963) 391-395.
[Hu] L. Husch, Finding a boundary for a 3-manifold, Proc. Amer. Math. Soc. 21 (1969) 64-68.
[Kn] H. Kneser. Geschlossene Flachen in Dreidemensionalen Mannigfaltigkeiten. Jber. Deutsch. Math.-Vereinig, vol. 38(1929), 248-260.
[U-Y] H. D. Ursell and L.C. Young, Remarks on the theory of prime ends, Memoirs Amer. Math. Soc. 3 (1951) 1-29.
[W] C. T. C. Wall, Open 3-manifolds which are 1-connected at infinity, Quart. J. Math. 16 (1965) 263-268.

Department of Mathematics
Dongguk University
Seoul 100-715, Korea
E-mail: jsl@dongguk.edu

