ENTROPY NUMBERS OF (R, W)-NUCLEAR OPERATORS ACTING BETWEEN BANACH SPACES OF CERTAIN WEAK TYPE

Hi Ja Song

Abstract

We characterize (r, w)-nuclear operators acting from a Banach space whose dual has weak type q into a Banach space of weak type p by the asymptotic behaviour of their entropy numbers.

1. Introduction

The theory of the so-called entropy numbers was introduced by A. Pietsch [12]. Afterwards a lot of results concerning the behaviour of entropy numbers of certain classes of operators were established (cf. [4], [6], [10]). We only remind of diagonal operators acting between Lorentz sequence spaces as well as embedding maps between Besov function spaces.
B. Carl [4] characterized diagonal operators acting between Lorentz sequence spaces by their entropy numbers.

In [5] B. Carl considered operators $S: \ell_{q} \rightarrow X$ admitting a factorization through $\ell_{1}, S: \ell_{q} \xrightarrow{D} \ell_{1} \xrightarrow{B} X$, where D is a diagonal operator generated by a sequence belonging to a Lorentz sequence space and B is an arbitrary bounded operator. He characterized these operators in terms of their entropy numbers under the hypothesis that X is a Banach space of type p. By using this result, he [6] showed that the sequence of entropy numbers of r-nuclear operators acting from a Banach space L_{p} into a Banach space L_{q} belongs to the Lorentz sequence space.

In [10] T. Kühn dealt with operators $T: X \rightarrow \ell_{q}$ factorizing through $\ell_{\infty}, T: X \xrightarrow{B} \ell_{\infty} \xrightarrow{D} \ell_{q}$, where B is an arbitrary bounded operator
and D is a diagonal operator generated by a sequence belonging to a Lorentz sequence space. He estimated the asymptotic behaviour of the entropy numbers of these operators under the assumption that the dual of a Banach space X has type p. And then he applied this result to r-nuclear operators acting from a Banach space whose dual has type q into a Banach space of type p.

In this paper we determine the "degree of compactness" of (r, w) nuclear operators acting from a Banach space whose dual has weak type q into a Banach space of weak type p by means of entropy numbers. Here, we present Defant and Junge's approach [7].

2. Definitions and Notation

We present some of the definitions and notation to be used. Throughout this paper X and Y denote Banach spaces.

Let $\left(A_{0}, A_{1}\right)$ be a couple of quasi-Banach spaces. We consider the functional $K\left(t, a, A_{0}, A_{1}\right)=K(t, a)=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}: a_{0} \in\right.$ $\left.A_{0}, a_{1} \in A_{1}, a=a_{0}+a_{1}\right\}$ on $A_{0}+A_{1}$. If $0<\theta<1$ and $0<q \leq \infty$ then the real interpolation space $\left(A_{0}, A_{1}\right)_{\theta, q}$ consists of all elements $a \in A_{0}+A_{1}$ which have a finite quasi-norm

$$
\|a\|_{\left(A_{0}, A_{1}\right)_{\theta, q}}=\|a\|_{\theta, q}= \begin{cases}\left(\int_{0}^{\infty}\left[t^{-\theta} K(t, a)\right]^{q} \frac{d t}{t}\right)^{\frac{1}{q}} & \text { if } 0<q<\infty \\ \sup _{t}\left[t^{-\theta} K(t, a)\right] & \text { if } q=\infty\end{cases}
$$

Notation. (1) The dual of a Banach space X is denoted by X^{*}.
(2) For $1<p<\infty$, the conjugate of p is denoted by p^{\prime}, i.e., $1 / p+1 / p^{\prime}=1$.
(3) The closed unit ball of a Banach space X is denoted by B_{X}.
(4) $\mathcal{B}(X, Y)$ denotes the set of all bounded linear operators from X into Y.
(5) $\mathcal{F}(X, Y)$ denotes the set of all finite rank operators from X into Y.
(6) The dual operator of an operator T is denoted by T^{*}.
(7) $\operatorname{Vol}(\cdot)$ denotes the Lebesgue measure on \mathbb{R}^{n}.

For every operator $T \in \mathcal{B}(X, Y)$ the n-th outer entropy number $e_{n}(T)$ is defined to be the infimum of all $\epsilon \geq 0$ such that there are elements $y_{1}, \cdots, y_{q} \in Y$ with $q \leq 2^{n-1}$ and $T\left(B_{X}\right) \subseteq \bigcup_{i=1}^{q}\left\{y_{i}+\epsilon B_{Y}\right\}$.

The n-th approximation number of $T \in \mathcal{B}(X, Y)$ is defined by

$$
a_{n}(T)=\inf \{\|T-L\|: L \in \mathcal{F}(X, Y), \operatorname{rank}(L)<n\} .
$$

The n-th Gel'fand number of $T \in \mathcal{B}(X, Y)$ is defined by

$$
c_{n}(T)=\inf \left\{\left\|T J_{M}^{X}\right\|: \operatorname{codim}(M)<n\right\}
$$

where J_{M}^{X} denotes the canonical injection from the subspace M into X.

The n-th Kolmogorov number of $T \in \mathcal{B}(X, Y)$ is defined by

$$
d_{n}(T)=\inf \left\{\left\|Q_{N}^{Y} T\right\|: \operatorname{dim}(N)<\infty\right\}
$$

where Q_{N}^{Y} denotes the canonical surjection from Y onto the quotient space Y / N.

The n-th Weyl number of $T \in \mathcal{B}(X, Y)$ is defined by

$$
x_{n}(T)=\sup \left\{a_{n}(T U): U \in \mathcal{B}\left(\ell_{2}, X\right),\|U\| \leq 1\right\} .
$$

The n-th Grothendieck number of $T \in \mathcal{B}(X, Y)$ is defined by $\Gamma_{n}(T)=\sup \left\{\left|\operatorname{det}\left(\left\langle T x_{i}, y_{j}^{*}\right\rangle\right)\right|^{1 / n}:\left(x_{k}\right)_{k=1}^{n} \subset B_{X},\left(y_{k}^{*}\right)_{k=1}^{n} \subset B_{Y^{*}}\right\}$.
The n-th volume number of $T \in \mathcal{B}(X, Y)$ is defined by $v_{n}(T)=$
$\sup \left\{\left(\frac{\operatorname{Vol}\left(T\left(B_{M}\right)\right)}{\operatorname{Vol}\left(B_{N}\right)}\right)^{1 / n}: M \subset X, T(M) \subset N \subset Y, \operatorname{dim} M=\operatorname{dim} N=n\right\}$.
The n-th volume ratio number of $T \in \mathcal{B}(X, Y)$ is defined by

$$
v r_{n}(T)=\sup \left\{\left(\frac{\operatorname{Vol}\left(Q_{N}^{Y}\left(T\left(B_{X}\right)\right)\right.}{\operatorname{Vol}\left(B_{Y / N}\right)}\right)^{1 / n}: N \subset Y, \operatorname{codim} N=n\right\} .
$$

For an operator $U \in \mathcal{B}\left(\ell_{2}^{n}, X\right)$, we define

$$
\ell(U)=\left(\int_{\mathbb{R}^{n}}\|U x\|^{2} d \gamma_{n}(x)\right)^{1 / 2}
$$

where γ_{n} is the canonical Gaussian probability measure on \mathbb{R}^{n}.
For an operator $V \in \mathcal{B}\left(X, \ell_{2}^{n}\right)$, we set

$$
\ell^{*}(V)=\sup \left\{|\operatorname{tr}(V U)|: U \in \mathcal{B}\left(\ell_{2}^{n}, X\right), \ell(U) \leq 1\right\}
$$

A Banach space X is called a weak type p space if there is a constant C such that for all n and all operators $V \in \mathcal{B}\left(X, \ell_{2}^{n}\right)$, we have $\sup _{k} k^{1 / p^{\prime}} a_{k}(V) \leq C \cdot \ell^{*}(V)$. The smallest constant C for which this holds will be denoted by $w T_{p}(X)$.

A Banach space X is called K-convex if there is a constant C such that for every n and every operator $V \in \ell^{*}\left(X, \ell_{2}^{n}\right)$, we have $\ell\left(V^{*}\right) \leq$ $C \cdot \ell^{*}(V)$. In this case, we define the K-convexity constant as $K(X)=$ $\inf C$, where the infimum is taken over all constants C satisfying the above inequality.

If $x=\left(\xi_{i}\right)$ is a bounded sequence then we put $s_{n}(x)=\inf \{\sigma \geq 0$: $\left.\operatorname{card}\left(i:\left|\xi_{i}\right| \geq \sigma\right)<n\right\} .\left(s_{n}(x)\right)$ is called the non-increasing rearrangement of x. Let $0<r<\infty$ and $0<w \leq \infty$. Then the Lorentz sequence
space $\ell_{r, w}$ consists of all sequences $x=\left(\xi_{i}\right)$ having a finite quasi-norm

$$
\|x\|_{r, w}= \begin{cases}\left(\sum_{n=1}^{\infty}\left[n^{1 / r-1 / w} s_{n}(x)\right]^{w}\right)^{1 / w} & \text { if } 0<w<\infty \\ \sup _{n}\left[n^{1 / r} s_{n}(x)\right] & \text { if } w=\infty\end{cases}
$$

For $s \in\{e, a, c, d, x, v, v r\}$, an operator $T \in \mathcal{B}(X, Y)$ is said to be of s-type $\ell_{r, w}$ if $\left(s_{n}(T)\right) \in \ell_{r, w}$. The set of these operators is denoted by $\mathcal{L}_{r, w}^{(s)}(X, Y)$. For $T \in \mathcal{L}_{r, w}^{(s)}(X, Y)$, we define $\left\|T \mid \mathcal{L}_{r, w}^{(s)}\right\|=\left\|\left(s_{n}(T)\right)\right\|_{r, w}$ [13].

Let $0<r<1$ and $0<w \leq \infty$. An operator $T \in \mathcal{B}(X, Y)$ is said to be (r, w)-nuclear if it can be written in the form $T=\sum_{i=1}^{\infty} \tau_{i} x_{i}^{*} \otimes y_{i}$ with $\left(x_{i}^{*}\right)$ in $B_{X^{*}},\left(y_{i}\right)$ in B_{Y} and $\left(\tau_{i}\right) \in \ell_{r, w}$. The set of these operators is denoted by $T \in \mathcal{N}_{r, w}(X, Y)$. For $T \in \mathcal{N}_{r, w}(X, Y)$, we define a quasinorm

$$
\nu_{r, w}(T)= \begin{cases}\inf \left(\sum_{n=1}^{\infty}\left[n^{1 / r-1 / w} \tau_{n}\right]^{w}\right)^{1 / w} & \text { if } 0<w<\infty, \\ \inf \left(\sup _{n}\left[n^{1 / r} \tau_{n}\right]\right) & \text { if } w=\infty,\end{cases}
$$

where the infimum is taken over all (r, w)-nuclear representations such that $\tau_{1} \geq \tau_{2} \geq \cdots \geq 0$.

3. Results

By using Carl's proof [5] and the generalized Carl-Maurey inequality, we estimate the entropy quasi-norm of operators acting from ℓ_{1}^{m} into a Banach space of weak type p.

Lemma 1. Let X be of weak type $p, 1 \leq p<2$, and $S \in \mathcal{B}\left(\ell_{1}^{m}, X\right)$. Then there exists a constant $C>0$ such that $\sup _{1 \leq k<\infty} k^{1 / s} e_{k}(S) \leq$ $C\|S\| m^{1 / s-1 / p^{\prime}}$ for $s<p^{\prime}$ and $m=1,2, \cdots$

Proof. We invoke Carl-Maurey inequality [8] to infer that there exists a constant $C \geq 0$ such that

$$
\begin{aligned}
\sup _{1 \leq k \leq m} k^{1 / s} e_{k}(S) \leq C\|S\| & \sup _{1 \leq k \leq m} \\
& k^{1 / s-1 / p^{\prime}}\left[1+\ln \left(\frac{m}{k}\right)\right]^{1 / p^{\prime}} \\
& \leq C_{0}\|S\| m^{1 / s-1 / p^{\prime}} \quad \text { for } s<p^{\prime} .
\end{aligned}
$$

Now we estimate $\sup _{k>m} k^{1 / s} e_{k}(S)$. Let I_{m} denote the identity operator on ℓ_{1}^{m}. Using the multiplicativity of the entropy numbers we obtain that

$$
\begin{aligned}
& \sup _{k>m} k^{1 / s} e_{k}(S)=\sup _{k \geq 1}(m+k)^{1 / s} e_{m+k}(S) \\
& \leq \sup _{k \geq 1}(m+k)^{1 / s} e_{m}(S) e_{k}\left(I_{m}\right) \leq e_{m}(S) \sup _{k \geq 1} 2^{1 / s}\left(m^{1 / s}+k^{1 / s}\right) e_{k}\left(I_{m}\right) \\
& \leq 2^{1 / s} m^{1 / s} e_{m}(S)+2^{1 / s} e_{m}(S) \sup _{k \geq 1} k^{1 / s} e_{k}\left(I_{m}\right) .
\end{aligned}
$$

Applying proposition 12.1.13 of [12] we derive that

$$
\begin{aligned}
\sup _{k \geq 1} k^{1 / s} e_{k}\left(I_{m}\right) & \leq\left(\sum_{k=1}^{\infty} e_{k}^{s}\left(I_{m}\right)\right)^{1 / s} \leq 4\left(\sum_{k=1}^{\infty}\left(2^{-(k-1) / 2 m}\right)^{s}\right)^{1 / s} \\
& \leq 4 \frac{1}{\left(1-2^{-s / 2 m}\right)^{1 / s}} \leq 4 \frac{2^{1 / 2 m}}{\left(2^{s / 2 m}-1\right)^{1 / s}} \\
& \leq 4 \frac{2^{1 / 2 m}}{(s / 2 m)^{1 / s}(\ln 2)^{1 / s}} \leq 8 \frac{2^{1 / s} m^{1 / s}}{(s \ln 2)^{1 / s}} .
\end{aligned}
$$

It takes another appeal to Carl-Maurey inequality [8] to yield that

$$
\begin{aligned}
& \sup _{k>m} k^{1 / s} e_{k}(S) \leq e_{m}(S) m^{1 / s} 2^{1 / s}\left[1+\frac{8 \cdot 2^{1 / s}}{(s \ln 2)^{1 / s}}\right] \\
& \quad \leq C_{1}\|S\| m^{1 / s-1 / p^{\prime}} 2^{1 / s}\left[1+\frac{8 \cdot 2^{1 / s}}{(s \ln 2)^{1 / s}}\right] \leq C_{2}\|S\| m^{1 / s-1 / p^{\prime}}
\end{aligned}
$$

Combining this with the above estimate we see that

$$
\begin{aligned}
& \sup _{1 \leq k<\infty} k^{1 / s} e_{k}(S) \leq \sup _{1 \leq k \leq m} k^{1 / s} e_{k}(S)+\sup _{k>m} k^{1 / s} e_{k}(S) \\
& \leq C_{3}\|S\| m^{1 / s-1 / p^{\prime}} \quad \text { for } s<p^{\prime}
\end{aligned}
$$

Applying this lemma and Carl's proof [4], [5] we intend to characterize operators of the form $S D_{\sigma}$, where $D_{\sigma}: \ell_{q} \rightarrow \ell_{1}$ is a diagonal operator generated by a sequence belonging to a Lorentz sequence space and $S: \ell_{1} \rightarrow X$ is an arbitrary operator with the image in a Banach space of weak type p, in terms of entropy numbers.

Proposition 1. Let X be of weak type $p, 1 \leq p<2, S \in \mathcal{B}\left(\ell_{1}, X\right)$ and let $D_{\sigma} \in \mathcal{B}\left(\ell_{1}, \ell_{1}\right)$ be a diagonal operator generated by a sequence $\sigma=\left(\sigma_{i}\right) \in \ell_{r, t}$, where $0<r<\infty$ and $0<t \leq \infty$. Then $S D_{\sigma} \in$ $\mathcal{L}_{s, t}^{(e)}\left(\ell_{1}, X\right)$ for $1 / s=1 / r+1 / p^{\prime}$.

Proof. First we shall show that if $\sigma \in \ell_{r, \infty}$ then $S D_{\sigma} \in \mathcal{L}_{s, \infty}^{(e)}\left(\ell_{1}, X\right)$, where $1 / s=1 / r+1 / p^{\prime}(*)$.
There is no loss in assuming that $\left|\sigma_{1}\right| \geq\left|\sigma_{2}\right| \geq \cdots \geq 0$. We define canonical operators $J_{k} \in \mathcal{B}\left(\ell_{1}^{2^{k}}, \ell_{1}\right)$ and $Q_{k} \in \mathcal{B}\left(\ell_{1}, \ell_{1}^{2^{k}}\right)$ by

$$
\begin{gathered}
J_{k}\left(\xi_{1}, \cdots, \xi_{2^{k}}\right)=\left(0, \cdots, 0, \xi_{1}, \cdots, \xi_{2^{k}}, 0, \cdots\right), \\
Q_{k}\left(\xi_{1}, \cdots, \xi_{k}, \cdots\right)=\left(\xi_{2^{k}}, \cdots, \xi_{2^{k+1}-1}\right),
\end{gathered}
$$

respectively, for $k \geq 0$. Let $M_{k} \in \mathcal{B}\left(\ell_{1}^{2^{k}}, \ell_{1}^{2^{k}}\right)$ be the operator defined by $M_{k}\left(\eta_{1}, \cdots, \eta_{2^{k}}\right)=\left(\sigma_{2^{k}} \eta_{1}, \cdots, \sigma_{2^{k+1}-1} \eta_{2^{k}}\right)$ for $k \geq 0$. Then $D_{\sigma}=$ $\sum_{k=0}^{\infty} J_{k} M_{k} Q_{k}$ and so $S D_{\sigma}=\sum_{k=0}^{\infty} S J_{k} M_{k} Q_{k}$. Taking account of the fact that $\mathcal{L}_{s, \infty}^{(e)}$ admits an equivalent α-norm and using lemma 1 we obtain

$$
\begin{aligned}
& \left\|\sum_{k=0}^{m-1} S J_{k} M_{k} Q_{k} \mid \mathcal{L}_{s, \infty}^{(e)}\right\| \leq C_{0}\left(\sum_{k=0}^{m-1}\left\|S J_{k} M_{k} Q_{k} \mid \mathcal{L}_{s, \infty}^{(e)}\right\|^{\alpha}\right)^{1 / \alpha} \\
& \leq C_{0}\left(\sum_{k=0}^{m-1}\left\|S J_{k} \mid \mathcal{L}_{s, \infty}^{(e)}\right\|^{\alpha}\left\|M_{k}\right\|^{\alpha}\left\|Q_{k}\right\|^{\alpha}\right)^{1 / \alpha} \\
& \leq C_{0}\left(\sum_{k=0}^{m-1}\left\|\left.S J_{k}\left|\mathcal{L}_{s, \infty}^{(e)} \|^{\alpha}\right| \sigma_{2^{k}}\right|^{\alpha}\right)^{1 / \alpha}\right. \\
& \leq C_{1}\left(\sum_{k=0}^{m-1}\left\|S J_{k}\right\|^{\alpha} 2^{\alpha k\left(1 / s-1 / p^{\prime}\right)}\left|\sigma_{2^{k}}\right|^{\alpha}\right)^{1 / \alpha} \\
& \leq C_{1}\|S\|\left(\sum_{k=0}^{m-1} 2^{\alpha k\left(1 / s-1 / p^{\prime}\right)}\left|\sigma_{2^{k}}\right|^{\alpha}\right)^{1 / \alpha} \quad \text { for } s<p^{\prime} .
\end{aligned}
$$

We assume that $\sigma=\left(\sigma_{i}\right) \in \ell_{r, \infty}$. Then we get

$$
\begin{aligned}
& \left\|\sum_{k=0}^{m-1} S J_{k} M_{k} Q_{k} \mid \mathcal{L}_{s, \infty}^{(e)}\right\| \leq C_{2}\|S\|\left(\sum_{k=0}^{m-1} 2^{\alpha k\left(1 / s-1 / p^{\prime}\right)} 2^{-\alpha k / r}\right)^{1 / \alpha} \\
& \leq C_{3}\|S\| 2^{m\left(1 / s-1 / p^{\prime}-1 / r\right)} \quad \text { for } 1 / s>1 / r+1 / p^{\prime} .
\end{aligned}
$$

This yields $e_{2^{m-1}}\left(\sum_{k=0}^{m-1} S J_{k} M_{k} Q_{k}\right) \leq C_{4}\|S\| 2^{-m\left(1 / r+1 / p^{\prime}\right)}$. In order to estimate $\left\|\sum_{k=m}^{\infty} S J_{k} M_{k} Q_{k} \mid \mathcal{L}_{s, \infty}^{(e)}\right\|$ we choose s such that $1 / p^{\prime}<$ $1 / s<1 / r+1 / p^{\prime}$. By arguing similarly as above, we establish the following estimation

$$
\begin{aligned}
&\left\|\sum_{k=m}^{\infty} S J_{k} M_{k} Q_{k} \mid \mathcal{L}_{s, \infty}^{(e)}\right\| \leq C_{5}\|S\|\left(\sum_{k=m}^{\infty} 2^{\alpha k\left(1 / s-1 / r-1 / p^{\prime}\right)}\right)^{1 / \alpha} \\
& \leq C_{5}\|S\| 2^{m\left(1 / s-1 / r-1 / p^{\prime}\right)} \cdot\left(\sum_{k=0}^{\infty} 2^{\alpha k\left(1 / s-1 / r-1 / p^{\prime}\right)}\right)^{1 / \alpha} \\
& \leq C_{6}\|S\| 2^{m\left(1 / s-1 / r-1 / p^{\prime}\right)}
\end{aligned}
$$

This implies $e_{2^{m-1}}\left(\sum_{k=m}^{\infty} S J_{k} M_{k} Q_{k}\right) \leq C_{7}\|S\| 2^{-m\left(1 / r+1 / p^{\prime}\right)}$. From the additivity of the entropy numbers it follows that

$$
\begin{aligned}
e_{2^{m}}\left(S D_{\sigma}\right) \leq e_{2^{m-1}}\left(\sum_{k=0}^{m-1} S J_{k} M_{k} Q_{k}\right)+e_{2^{m-1}}\left(\sum_{k=m}^{\infty} S J_{k} M_{k} Q_{k}\right) \\
\leq C_{8}\|S\| 2^{-m\left(1 / r+1 / p^{\prime}\right)}
\end{aligned}
$$

If n is a natural number we take m so that $2^{m} \leq n<2^{m+1}$. An appeal to the monotonicity of the entropy numbers establishes that $e_{n}\left(S D_{\sigma}\right) \leq e_{2^{m}}\left(S D_{\sigma}\right) \leq C_{9}\|S\| n^{-1 / r-1 / p^{\prime}}$. Hence $S D_{\sigma} \in \mathcal{L}_{s, \infty}^{(e)}\left(\ell_{1}, X\right)$ for $1 / s=1 / r+1 / p^{\prime}$, which verifies $(*)$.

Now we use real interpolation to derive the desired assertion. Given r with $0<r<\infty$ we can find r_{0}, r_{1} and θ such that $0<r_{0}<r_{1}<$ $\infty, 0<\theta<1$ and $1 / r=(1-\theta) / r_{0}+\theta / r_{1}$. We consider the operator \mathcal{T} transforming every sequence σ into the composition operator $S D_{\sigma}$. $\operatorname{By}(*), \mathcal{T}: \ell_{r_{i}, \infty} \rightarrow \mathcal{L}_{s_{i}, \infty}^{(e)}\left(\ell_{1}, X\right)$, where $1 / s_{i}=1 / r_{i}+1 / p^{\prime}, i=0,1$, are both bounded linear operators. Since $1 / r=(1-\theta) / r_{0}+\theta / r_{1}$,
theorem 5.3.1. of [1] tells us that $\left(\ell_{r_{0}, \infty}, \ell_{r_{1}, \infty}\right)_{\theta, t}=\ell_{r, t}$. The wellknown interpolation formula concerning entropy ideals allows us to obtain $\left(\mathcal{L}_{s_{0}, \infty}^{(e)}\left(\ell_{1}, X\right), \mathcal{L}_{s_{1}, \infty}^{(e)}\left(\ell_{1}, X\right)\right)_{\theta, t} \subseteq \mathcal{L}_{s, t}^{(e)}\left(\ell_{1}, X\right)$, where $1 / s=(1-$ $\theta) / s_{0}+\theta / s_{1}=1 / r+1 / p^{\prime}$. We apply the interpolation theorem [1] to deduce that $\mathcal{T}: \ell_{r, t} \rightarrow \mathcal{L}_{s, t}^{(e)}\left(\ell_{1}, X\right)$ is also bounded. This ends the proof of the proposition.

Proposition 2. Let X be of weak type $p, 1 \leq p<2, S \in \mathcal{B}\left(\ell_{1}, X\right)$ and let $D_{\sigma} \in \mathcal{B}\left(\ell_{q}, \ell_{1}\right)$ be a diagonal operator generated by a sequence $\sigma=\left(\sigma_{i}\right) \in \ell_{r, t}$, where $0<r<\infty, 0<t \leq \infty, 1 \leq q \leq \infty$ and $1 / r+$ $1 / q>1$. Then $S D_{\sigma} \in \mathcal{L}_{s, t}^{(e)}\left(\ell_{q}, X\right)$ provided that $1 / s=1 / r+1 / q-1 / p$.

Proof. The assumptions on q and r guarantee that we can choose r_{0} and r_{1} such that $0<r_{0}, r_{1}<\infty, 1 / r=1 / r_{0}+1 / r_{1}$ and $1 / r_{1}+$ $1 / q>1$. Then we can split $\sigma=\tau \circ \mu$ with $\mu \in \ell_{r_{1}, \infty}$ and $\tau \in$ $\ell_{r_{0}, t}$. As a result the operator $D_{\sigma} \in \mathcal{B}\left(\ell_{q}, \ell_{1}\right)$ can be factorized with diagonal operators D_{μ} and D_{τ} as $D_{\sigma}: \ell_{q} \xrightarrow{D_{\mu}} \ell_{1} \xrightarrow{D_{\tau}} \ell_{1}$. Since $1 / r_{1}>$ $\max (1-1 / q, 0)$, we use a result of Carl [4] to see that $D_{\mu} \in \mathcal{L}_{s_{1}, \infty}^{(e)}\left(\ell_{q}, \ell_{1}\right)$ for $1 / s_{1}=1 / r_{1}+1 / q-1$. An appeal to proposition 1 reveals that $S D_{\tau} \in \mathcal{L}_{s_{0}, t}^{(e)}\left(\ell_{1}, X\right)$ for $1 / s_{0}=1 / r_{0}+1 / p^{\prime}$. Using the multiplication theorem for the entropy ideals we derive that $S D_{\sigma}=S D_{\tau} D_{\mu} \in \mathcal{L}_{s_{0}, t}^{(e)}$ 。 $\mathcal{L}_{s_{1}, \infty}^{(e)}\left(\ell_{q}, X\right) \subseteq \mathcal{L}_{s, t}^{(e)}\left(\ell_{q}, X\right)$ for $1 / s=1 / s_{0}+1 / s_{1}=1 / r+1 / q-1 / p . \square$

In the next proposition we describe the dual situation.
Proposition 3. Let X^{*} be of weak type $p, 1 \leq p<2, R \in$ $\mathcal{B}\left(X, \ell_{\infty}\right)$ and let $D_{\sigma} \in \mathcal{B}\left(\ell_{\infty}, \ell_{q}\right)$ be a diagonal operator generated by a sequence $\sigma=\left(\sigma_{i}\right) \in \ell_{r, t}$, where $1 \leq q \leq \infty, 0<r<q \leq \infty$ and $0<t \leq \infty$. Then $D_{\sigma} R \in \mathcal{L}_{s, t}^{(e)}\left(X, \ell_{q}\right)$ for $1 / s=1 / r+1 / q^{\prime}-1 / p$.

Proof. We start with the case $1<q<\infty$. For $R \in \mathcal{B}\left(X, \ell_{\infty}\right)$, we denote the restriction of R^{*} to ℓ_{1} by S. Since X^{*} is of weak type p and $1 / r+1 / q^{\prime}>1$, it follows from proposition 2 that $S D_{\sigma} \in$ $\mathcal{L}_{s, t}^{(e)}\left(\ell_{q^{\prime}}, X^{*}\right)$ with $1 / s=1 / r+1 / q^{\prime}-1 / p$. The K-convexity of $\ell_{q^{\prime}}$ enables us to invoke a result due to Bourgain, Pajor,Szarek and TomczakJaegermann [2] to get that there exists a constant $C \geq 0$ such that
$\left\|D_{\sigma} R\left|\mathcal{L}_{s, t}^{(e)}\|=\| D_{\sigma} S^{*}\right|_{X}\left|\mathcal{L}_{s, t}^{(e)}\|\leq\| D_{\sigma} S^{*}\right| \mathcal{L}_{s, t}^{(e)}\right\| \leq C\left\|S D_{\sigma} \mid \mathcal{L}_{s, t}^{(e)}\right\|$. Consequently $D_{\sigma} R \in \mathcal{L}_{s, t}^{(e)}\left(X, \ell_{q}\right)$ for $1 / s=1 / r+1 / q^{\prime}-1 / p$.

Now we deal with the case $q=1$ or $q=\infty$. Given r with $0<r<$ $q \leq \infty$, we choose r_{0}, r_{1} and u such that $0<r_{0}, r_{1}<\infty, 1<u<$ $\infty, 1 / r_{0}+1 / u>1 / q, 1 / r_{1}>1 / u$ and $1 / r=1 / r_{0}+1 / r_{1}$. Thus we split $\sigma=\mu \circ \tau$ with $\tau \in \ell_{r_{1}, t}$ and $\mu \in \ell_{r_{0}, \infty}$ and hence the operator $D_{\sigma} \in$ $\mathcal{B}\left(\ell_{\infty}, \ell_{q}\right)$ is factorized with diagonal operators D_{τ} and D_{μ} as D_{σ} : $\ell_{\infty} \xrightarrow{D_{\tau}} \ell_{u} \xrightarrow{D_{\mu}} \ell_{q}$. Since $1 / r_{0}>\max (1 / q-1 / u, 0)$, we take account of a result due to Carl [4] to conclude that $D_{\mu} \in \mathcal{L}_{s_{0}, \infty}^{(e)}\left(\ell_{u}, \ell_{q}\right)$ with $1 / s_{0}=1 / r_{0}+1 / u-1 / q$. Applying the result of the preceding case to the operator $D_{\tau} \in \mathcal{B}\left(\ell_{\infty}, \ell_{u}\right)$ we have $D_{\tau} R \in \mathcal{L}_{s_{1}, t}^{(e)}\left(X, \ell_{u}\right)$ with $1 / s_{1}=$ $1 / r_{1}+1 / u^{\prime}-1 / p$. The multiplication theorem for the entropy ideals assures us that $D_{\sigma} R=D_{\mu} D_{\tau} R \in \mathcal{L}_{s_{0}, \infty}^{(e)} \circ \mathcal{L}_{s_{1}, t}^{(e)}\left(X, \ell_{q}\right) \subseteq \mathcal{L}_{s, t}^{(e)}\left(X, \ell_{q}\right)$ whenever $1 / s=1 / s_{0}+1 / s_{1}=1 / r+1 / q^{\prime}-1 / p$.

Propositions 2 and 3 permit us to give a description of (r, w)-nuclear operators acting from a Banach space whose dual has weak type q into a Banach space of weak type $p, 1 \leq p, q<2$, in terms of their entropy numbers.

Theorem 1. Let X^{*} be of weak type q and Y of weak type p, $1 \leq p, q<2$. Then $\mathcal{N}_{r, w}(X, Y) \subset \mathcal{L}_{s, w}^{(e)}(X, Y)$ provided that $0<r<$ $1,0<w \leq \infty$ and $1 / s=1+1 / r-1 / p-1 / q$.

Proof. We divide the proof into two steps.
Step 1. The first step is to verify the following assertion : If $R \in$ $\mathcal{B}\left(X, \ell_{\infty}\right), D_{\sigma} \in \mathcal{B}\left(\ell_{\infty}, \ell_{1}\right)$ is a diagonal operator generated by a sequence $\sigma=\left(\sigma_{i}\right) \in \ell_{r}, 0<r<1$, and $S \in \mathcal{B}\left(\ell_{1}, Y\right)$ then $S D_{\sigma} R \in$ $\mathcal{L}_{s, r}^{(e)}(X, Y)$ with $1 / s=1+1 / r-1 / p-1 / q$.
Since $1 / r=1 / 2 r+1 / 2 r$, for $\sigma \in \ell_{r}$, we split $\sigma=\tau \circ \tau$ with $\tau \in$ $\ell_{2 r}$. Therefore the operator $D_{\sigma} \in \mathcal{B}\left(\ell_{\infty}, \ell_{1}\right)$ admits a factorization $D_{\sigma}: \ell_{\infty} \xrightarrow{D_{\tau}} \ell_{2} \xrightarrow{D_{\tau}} \ell_{1}$, where D_{τ} is a diagonal operator induced by a sequence $\tau \in \ell_{2 r}$. Since Y is of weak type p and $1 / 2 r+1 / 2>1$, we apply proposition 2 to deduce that $S D_{\tau} \in \mathcal{L}_{s_{0}, 2 r}^{(e)}\left(\ell_{2}, Y\right)$ for $1 / s_{0}=$ $1 / 2 r+1 / 2-1 / p$. As X^{*} is of weak type q and $0<2 r<2$, we invoke proposition 3 to produce $D_{\tau} R \in \mathcal{L}_{s_{1}, 2 r}^{(e)}\left(X, \ell_{2}\right)$ with $1 / s_{1}=1 / 2 r+1 / 2-$
$1 / q$. The multiplication theorem for the entropy ideals informs us that $S D_{\sigma} R=S D_{\tau} D_{\tau} R \in \mathcal{L}_{s_{0}, 2 r}^{(e)} \circ \mathcal{L}_{s_{1}, 2 r}^{(e)}(X, Y) \subseteq \mathcal{L}_{s, r}^{(e)}(X, Y) \subseteq \mathcal{L}_{s, \infty}^{(e)}(X, Y)$ with $1 / s=1 / s_{0}+1 / s_{1}=1+1 / r-1 / p-1 / q$.
Step 2. We improve the result of the preceding step by real interpolation. Given r with $0<r<1$ we can find r_{0}, r_{1} and θ such that $0<r_{0}<r_{1}<1,0<\theta<1$ and $1 / r=(1-\theta) / r_{0}+\theta / r_{1}$. Let \mathcal{T} be the operator transforming every sequence σ into the composition operator $S D_{\sigma} R$. By Step $1, \mathcal{T}: \ell_{r_{i}} \rightarrow \mathcal{L}_{s_{i}, \infty}^{(e)}(X, Y)$, where $1 / s_{i}=1+1 / r_{i}-1 / p-1 / q, i=0,1$, are both bounded linear operators. Since $1 / r=(1-\theta) / r_{0}+\theta / r_{1}$, we have $\left(\ell_{r_{0}}, \ell_{r_{i}}\right)_{\theta, w}=\ell_{r, w}$ with the help of theorem 5.3.1. of [1]. The well-known interpolation formula concerning entropy ideals asserts that $\left(\mathcal{L}_{s_{0}, \infty}^{(e)}(X, Y), \mathcal{L}_{s_{1}, \infty}^{(e)}(X, Y)\right)_{\theta, w} \subseteq$ $\mathcal{L}_{s, w}^{(e)}(X, Y)$, where $1 / s=(1-\theta) / s_{0}+\theta / s_{1}=1+1 / r-1 / p-1 / q$. An appeal to the interpolation theorem [1] establishes that $\mathcal{T}: \ell_{r, w} \rightarrow$ $\mathcal{L}_{s, w}^{(e)}(X, Y)$ is also bounded.

Now we select any $T \in \mathcal{N}_{r, w}(X, Y)$. It is known that T can be represented as $T=S D_{\sigma} R$, where $R \in \mathcal{B}\left(X, \ell_{\infty}\right), D_{\sigma} \in \mathcal{B}\left(\ell_{\infty}, \ell_{1}\right)$ is a diagonal operator generated by a sequence $\sigma=\left(\sigma_{i}\right) \in \ell_{r, w}$ and $S \in \mathcal{B}\left(\ell_{1}, Y\right)$. This leads us to have that $T=S D_{\sigma} R \in \mathcal{L}_{s, w}^{(e)}(X, Y)$. This proves the desired inclusion.

Naturally the question arises: Does the above theorem remain valid even when $p=2$ or $q=2$? This is answered by the theorems stated below. By applying a known fact concerning the relationship between entropy numbers and Kolmogorov numbers, together with estimates for the Kolmogorov numbers in terms of the Weyl numbers, we improve proposition 2 in Banach spaces of weak type 2.

Proposition 4. Let X be of weak type $2, S \in \mathcal{B}\left(\ell_{1}, X\right)$ and let $D_{\sigma} \in \mathcal{B}\left(\ell_{q}, \ell_{1}\right)$ be a diagonal operator generated by a sequence $\sigma=$ $\left(\sigma_{i}\right) \in \ell_{r, t}$, where $1 \leq q \leq \infty, 0<r<\min \left(2, q^{\prime}\right)$ and $0<t \leq \infty$. Then $S D_{\sigma} \in \mathcal{L}_{s, t}^{(e)}\left(\ell_{q}, X\right)$ with $1 / s=1 / r+1 / q-1 / 2$.

Proof. First we shall show that if $\sigma \in \ell_{r}$ then $S D_{\sigma} \in \mathcal{L}_{s, \infty}^{(e)}\left(\ell_{q}, X\right)$, where $1 / s=1 / r+1 / q-1 / 2$. $(*)$
Given r with $0<r<\min \left(2, q^{\prime}\right)$, we can pick r_{1} and r_{2} such that $0<r_{1}<2,1 / r_{2}>\max (1 / 2-1 / q, 0)$ and $1 / r=1 / r_{1}+1 / r_{2}$. Hence
for $\sigma \in \ell_{r}$, we split $\sigma=\tau \circ \mu$ with $\mu \in \ell_{r_{2}}$ and $\tau \in \ell_{r_{1}}$. Accordingly the operator $D_{\sigma} \in \mathcal{B}\left(\ell_{q}, \ell_{1}\right)$ can be factorized with diagonal operators D_{μ} and D_{τ} as $D_{\sigma}: \ell_{q} \xrightarrow{D_{\mu}} \ell_{2} \xrightarrow{D_{\tau}} \ell_{1}$. Since $1 / r_{2}>\max (1 / 2-1 / q, 0)$, we invoke a result of Carl [4] to deduce that $D_{\mu} \in \mathcal{L}_{s_{2}, r_{2}}^{(e)}\left(\ell_{q}, \ell_{2}\right) \subset$ $\mathcal{L}_{s_{2}, \infty}^{(e)}\left(\ell_{q}, \ell_{2}\right)$ for $1 / s_{2}=1 / r_{2}+1 / q-1 / 2$. Using a result due to Carl [3] and making use of theorem 11.7.7. of [12] we get that $\left\|S D_{\tau} \mid \mathcal{L}_{r_{1}, \infty}^{(e)}\right\| \leq$ $C_{0}\left\|S D_{\tau}\left|\mathcal{L}_{r_{1}, \infty}^{(d)}\left\|=C_{0}\right\|\left(S D_{\tau}\right)^{*}\right| \mathcal{L}_{r_{1}, \infty}^{(c)}\right\|$. Since X is of weak type 2 , it follows that X is K-convex and hence X^{*} is K-convex. This enables us to use a result of Pajor and Tomczak-Jaegermann [11] to see that

$$
\begin{aligned}
\left\|\left(S D_{\tau}\right)^{*} \mid \mathcal{L}_{r_{1}, \infty}^{(c)}\right\| & \leq C_{1} K\left(X^{*}\right)^{2 / r_{1}}\left\|\left(S D_{\tau}\right)^{*} \mid \mathcal{L}_{r_{1}, \infty}^{(v r)}\right\| \\
& \leq C_{1} K\left(X^{*}\right)^{2 / r_{1}}\left\|S D_{\tau} \mid \mathcal{L}_{r_{1}, \infty}^{(v)}\right\|
\end{aligned}
$$

Now we estimate the volume numbers in terms of the Weyl numbers. Let H be an n-dimensional subspace of ℓ_{2}. By setting $E=$ $\operatorname{ran}\left(S D_{\tau} i_{H}\right)$, where $i_{H}: H \rightarrow \ell_{2}$ is the natural injection, we have $\operatorname{dim} E \leq n$. Then Lewis' theorem [14] asserts that there is an isomorphism $u: \ell_{2}^{n} \rightarrow E$ and an operator $v: X \rightarrow \ell_{2}^{n}$ such that $\left.v\right|_{E}=u^{-1}$ and $\ell(u)=\ell^{*}(v) \leq n^{1 / 2}$. Using Geiss' theorem [9] and a result due to Pajor and Tomczak-Jaegermann [14], together with the multiplicativity of the volume numbers, we obtain the following :

$$
\begin{aligned}
& v_{n}\left(S D_{\tau} i_{H}\right)=v_{n}\left(u v S D_{\tau} i_{H}\right) \leq v_{n}(u) v_{n}\left(v S D_{\tau} i_{H}\right) \\
& \quad \leq 4 e_{n}(u)\left(\prod_{k=1}^{n} a_{k}\left(v S D_{\tau} i_{H}\right)\right)^{1 / n} \\
& \leq 4 C_{2} n^{-1 / 2} \ell(u) n^{-\left(1 / r_{1}+1 / 2\right)} \sup _{k} k^{1 / r_{1}+1 / 2} x_{k}\left(v^{*}\left(S D_{\tau} i_{H}\right)^{*}\right) \\
& \leq 4 C_{3} n^{-\left(1 / r_{1}+1 / 2\right)}\left\|v\left|\mathcal{L}_{2, \infty}^{(a)}\|\cdot\|\left(S D_{\tau}\right)^{*}\right| \mathcal{L}_{r_{1}, \infty}^{(x)}\right\| \\
& \leq 4 C_{3} n^{-\left(1 / r_{1}+1 / 2\right)} w T_{2}(X) \ell^{*}(v)\left\|\left(S D_{\tau}\right)^{*} \mid \mathcal{L}_{r_{1}, \infty}^{(x)}\right\| \\
& \leq 4 C_{3} n^{-1 / r_{1}} w T_{2}(X)\left\|\left(S D_{\tau}\right)^{*} \mid \mathcal{L}_{r_{1}, \infty}^{(x)}\right\|
\end{aligned}
$$

This gives that $\left\|S D_{\tau}\left|\mathcal{L}_{r_{1}, \infty}^{(v)}\left\|\leq 4 C_{3} w T_{2}(X)\right\|\left(S D_{\tau}\right)^{*}\right| \mathcal{L}_{r_{1}, \infty}^{(x)}\right\|$. From a result of Lubitz [13], we know that $\left\|\left(S D_{\tau}\right)^{*} \mid \mathcal{L}_{r_{1}, \infty}^{(x)}\right\| \leq C_{4}\|S\|$.
$\|\tau\|_{r_{1}, \infty} \leq C_{4}\|S\| \cdot\|\tau\|_{r_{1}}$. Combining the above inequalities we arrive at $\left\|S D_{\tau} \mid \mathcal{L}_{r_{1}, \infty}^{(e)}\right\| \leq C K\left(X^{*}\right)^{2 / r_{1}} w T_{2}(X)\|S\| \cdot\|\tau\|_{r_{1}}$, that is $S D_{\tau} \in$ $\mathcal{L}_{r_{1}, \infty}^{(e)}\left(\ell_{2}, X\right)$. An appeal to the multiplication theorem for the entropy ideals ensures that $S D_{\sigma}=S D_{\tau} D_{\mu} \in \mathcal{L}_{r_{1}, \infty}^{(e)} \circ \mathcal{L}_{s_{2}, \infty}^{(e)}\left(\ell_{q}, X\right) \subseteq$ $\mathcal{L}_{s, \infty}^{(e)}\left(\ell_{q}, X\right)$ for $1 / s=1 / r_{1}+1 / s_{2}=1 / r+1 / q-1 / 2$, which proves $(*)$.

Next we apply real interpolation to derive the required assertion. Given r with $0<r<\min \left(2, q^{\prime}\right)$, we can select r_{0}, r_{1} and θ such that $0<r_{0}<r_{1}<\min \left(2, q^{\prime}\right), 0<\theta<1$ and $1 / r=(1-\theta) / r_{0}+\theta / r_{1}$. Let \mathcal{T} be the operator assigning to every sequence σ the composition operator $S D_{\sigma}$. By (*), $\mathcal{T}: \ell_{r_{i}} \rightarrow \mathcal{L}_{s_{i}, \infty}^{(e)}\left(\ell_{q}, X\right)$, where $1 / s_{i}=1 / r_{i}+$ $1 / q-1 / 2, i=0,1$, are both bounded linear operators. Since $1 / r=(1-$ $\theta) / r_{0}+\theta / r_{1}$, we have $\left(\ell_{r_{0}}, \ell_{r_{1}}\right)_{\theta, t}=\ell_{r, t}$ in view of theorem 5.3.1. of [1]. The well-known interpolation formula concerning entropy ideals tells us that $\left(\mathcal{L}_{s_{0}, \infty}^{(e)}\left(\ell_{q}, X\right), \mathcal{L}_{s_{1}, \infty}^{(e)}\left(\ell_{q}, X\right)\right)_{\theta, t} \subseteq \mathcal{L}_{s, t}^{(e)}\left(\ell_{q}, X\right)$, where $1 / s=$ $(1-\theta) / s_{0}+\theta / s_{1}=1 / r+1 / q-1 / 2$. Applying the interpolation theorem [1] we draw that $\mathcal{T}: \ell_{r, t} \rightarrow \mathcal{L}_{s, t}^{(e)}\left(\ell_{q}, X\right)$ is also bounded. This completes the proof of the proposition.

The following proposition shows a corresponding dual formulation for a Banach space whose dual has weak type 2.

Proposition 5. Let X^{*} be of weak type 2, $R \in \mathcal{B}\left(X, \ell_{\infty}\right)$ and let $D_{\sigma} \in \mathcal{B}\left(\ell_{\infty}, \ell_{q}\right)$ be a diagonal operator generated by a sequence $\sigma=\left(\sigma_{i}\right) \in \ell_{r, t}$, where $1 \leq q \leq \infty, 0<r<\min (2, q)$ and $0<t \leq \infty$. Then $D_{\sigma} R \in \mathcal{L}_{s, t}^{(e)}\left(X, \ell_{q}\right)$ for $1 / s=1 / r-1 / q+1 / 2$.

Proof. We proceed in the same way as in the proof of proposition 3. We first deal with the case $1<q<\infty$. For $R \in \mathcal{B}\left(X, \ell_{\infty}\right)$, we define $\left.R^{*}\right|_{\ell_{1}}=S \in \mathcal{B}\left(\ell_{1}, X^{*}\right)$. As X^{*} is of weak type 2 and $0<r<\min (2, q)$, we summon up proposition 4 to conclude that $S D_{\sigma} \in \mathcal{L}_{s, t}^{(e)}\left(\ell_{q^{\prime}}, X^{*}\right)$ with $1 / s=1 / r+1 / q^{\prime}-1 / 2$. Since $\ell_{q^{\prime}}$ is K convex, we use a result due to Bourgain, Pajor, Szarek and TomczakJaegermann [2] to obtain that there exists a constant $C \geq 0$ such that $\left\|D_{\sigma} R\left|\mathcal{L}_{s, t}^{(e)}\|=\| D_{\sigma} S^{*}\right|_{X}\left|\mathcal{L}_{s, t}^{(e)}\|\leq\| D_{\sigma} S^{*}\right| \mathcal{L}_{s, t}^{(e)}\right\| \leq C\left\|S D_{\sigma} \mid \mathcal{L}_{s, t}^{(e)}\right\|$. This implies $D_{\sigma} R \in \mathcal{L}_{s, t}^{(e)}\left(X, \ell_{q}\right)$ for $1 / s=1 / r-1 / q+1 / 2$.

Next we treat the case $q=1$ or $q=\infty$. Given r with $0<r<$ $\min (2, q)$, we find r_{0}, r_{1} and u such that $0<r_{0}<\infty, 1<u<$
$\infty, 0<r_{1}<\min (2, u), 1 / r_{0}+1 / u>1 / q$ and $1 / r=1 / r_{0}+1 / r_{1}$. Therefore we split $\sigma=\mu \circ \tau$ with $\tau \in \ell_{r_{1}, t}$ and $\mu \in \ell_{r_{0}, \infty}$ and so the operator $D_{\sigma} \in \mathcal{B}\left(\ell_{\infty}, \ell_{q}\right)$ is factorized with diagonal operators D_{τ} and D_{μ} as $D_{\sigma}: \ell_{\infty} \xrightarrow{D_{\tau}} \ell_{u} \xrightarrow{D_{\mu}} \ell_{q}$. Since $1 / r_{0}>\max (1 / q-1 / u, 0)$, we invoke a result of Carl [4] to infer that $D_{\mu} \in \mathcal{L}_{s_{0}, \infty}^{(e)}\left(\ell_{u}, \ell_{q}\right)$ with $1 / s_{0}=1 / r_{0}+1 / u-1 / q$. Applying the result of the preceding case to the operator $D_{\tau} \in \mathcal{B}\left(\ell_{\infty}, \ell_{u}\right)$ we get $D_{\tau} R \in \mathcal{L}_{s_{1}, t}^{(e)}\left(X, \ell_{u}\right)$ with $1 / s_{1}=$ $1 / r_{1}-1 / u+1 / 2$. Thanks to the multiplication theorem for the entropy ideals, we have $D_{\sigma} R=D_{\mu} D_{\tau} R \in \mathcal{L}_{s_{0}, \infty}^{(e)} \circ \mathcal{L}_{s_{1}, t}^{(e)}\left(X, \ell_{q}\right) \subseteq \mathcal{L}_{s, t}^{(e)}\left(X, \ell_{q}\right)$ for $1 / s=1 / s_{0}+1 / s_{1}=1 / r-1 / q+1 / 2$.

We are now in a position to extend theorem 1 to the case $p=2$ or $q=2$.

Theorem 2. Let X^{*} be of weak type 2 and Y of weak type p, $1 \leq p<2$. Then $\mathcal{N}_{r, w}(X, Y) \subset \mathcal{L}_{s, w}^{(e)}(X, Y)$ provided that $0<r<$ $1,0<w \leq \infty$ and $1 / s=1 / 2+1 / r-1 / p$.

Proof. We divide the proof into two steps.
Step 1. The first step is to verify the following assertion : If $R \in$ $\mathcal{B}\left(X, \ell_{\infty}\right), D_{\sigma} \in \mathcal{B}\left(\ell_{\infty}, \ell_{1}\right)$ is a diagonal operator generated by a sequence $\sigma=\left(\sigma_{i}\right) \in \ell_{r}, 0<r<1$, and $S \in \mathcal{B}\left(\ell_{1}, Y\right)$ then $S D_{\sigma} R \in$ $\mathcal{L}_{s, r}^{(e)}(X, Y)$ with $1 / s=1 / 2+1 / r-1 / p$.
Since $1 / r=1 / 2 r+1 / 2 r$, for $\sigma \in \ell_{r}$, we split $\sigma=\tau \circ \tau$ with $\tau \in$ $\ell_{2 r}$. Consequently the operator $D_{\sigma} \in \mathcal{B}\left(\ell_{\infty}, \ell_{1}\right)$ admits a factorization $D_{\sigma}: \ell_{\infty} \xrightarrow{D_{\tau}} \ell_{2} \xrightarrow{D_{\tau}} \ell_{1}$, where D_{τ} is a diagonal operator generated by a sequence $\tau \in \ell_{2 r}$. As Y is of weak type p and $1 / 2 r+1 / 2>1$, it follows from proposition 2 that $S D_{\tau} \in \mathcal{L}_{s_{1}, 2 r}^{(e)}\left(\ell_{2}, Y\right)$ for $1 / s_{1}=1 / 2 r+$ $1 / 2-1 / p$. Since X^{*} is of weak type 2 and $0<2 r<\min (2,2)$, we have $D_{\tau} R \in \mathcal{L}_{2 r}^{(e)}\left(X, \ell_{2}\right)$ by way of proposition 5 . Appealing to the multiplication theorem for the entropy ideals we derive that $S D_{\sigma} R=$ $S D_{\tau} D_{\tau} R \in \mathcal{L}_{s_{1}, 2 r}^{(e)} \circ \mathcal{L}_{2 r}^{(e)}(X, Y) \subseteq \mathcal{L}_{s, r}^{(e)}(X, Y) \subseteq \mathcal{L}_{s, \infty}^{(e)}(X, Y)$ with $1 / s=$ $1 / s_{1}+1 / 2 r=1 / 2+1 / r-1 / p$.
Step 2. We improve the result of the preceding step by real interpolation. Given r with $0<r<1$ we can select r_{0}, r_{1} and θ such that $0<r_{0}<r_{1}<1,0<\theta<1$ and $1 / r=(1-\theta) / r_{0}+\theta / r_{1}$. We
consider the operator \mathcal{T} transforming every sequence σ into the composition operator $S D_{\sigma} R$. By step $1, \mathcal{T}: \ell_{r_{i}} \rightarrow \mathcal{L}_{s_{i}, \infty}^{(e)}(X, Y)$, where $1 / s_{i}=1 / 2+1 / r_{i}-1 / p, i=0,1$, are both bounded linear operators. Applying the interpolation formulas given in the proof of theorem 1 we deduce that $\mathcal{T}: \ell_{r, w} \rightarrow \mathcal{L}_{s, w}^{(e)}(X, Y)$ is also bounded, where $1 / s=(1-\theta) / s_{0}+\theta / s_{1}=1 / 2+1 / r-1 / p$.

Now we take any $T \in \mathcal{N}_{r, w}(X, Y)$. It is known that T can be represented as $T=S D_{\sigma} R$, where $R \in \mathcal{B}\left(X, \ell_{\infty}\right), D_{\sigma} \in \mathcal{B}\left(\ell_{\infty}, \ell_{1}\right)$ is a diagonal operator generated by a sequence $\sigma=\left(\sigma_{i}\right) \in \ell_{r, w}$ and $S \in \mathcal{B}\left(\ell_{1}, Y\right)$. This allows us to have that $T=S D_{\sigma} R \in \mathcal{L}_{s, w}^{(e)}(X, Y)$. This proves the required inclusion.

Theorem 3. Let X^{*} be of weak type $q, 1 \leq q<2$, and Y of weak type 2. Then $\mathcal{N}_{r, w}(X, Y) \subset \mathcal{L}_{s, w}^{(e)}(X, Y)$ for $0<r<1,0<w \leq \infty$ and $1 / s=1 / 2+1 / r-1 / q$.

Proof. Suppose that $R \in \mathcal{B}\left(X, \ell_{\infty}\right), D_{\sigma} \in \mathcal{B}\left(\ell_{\infty}, \ell_{1}\right)$ is a diagonal operator generated by a sequence $\sigma=\left(\sigma_{i}\right) \in \ell_{r}, 0<r<1$, and $S \in \mathcal{B}\left(\ell_{1}, Y\right)$. Since $1 / r=1 / 2 r+1 / 2 r$, for $\sigma \in \ell_{r}$, we split $\sigma=\tau \circ \tau$ with $\tau \in \ell_{2 r}$. As a result the operator $D_{\sigma} \in \mathcal{B}\left(\ell_{\infty}, \ell_{1}\right)$ admits a factorization $D_{\sigma}: \ell_{\infty} \xrightarrow{D_{\tau}} \ell_{2} \xrightarrow{D_{\tau}} \ell_{1}$, where D_{τ} is a diagonal operator induced by a sequence $\tau \in \ell_{2 r}$. Since Y is of weak type 2 and $0<2 r<$ $\min (2,2)$, we have $S D_{\tau} \in \mathcal{L}_{2 r}^{(e)}\left(\ell_{2}, Y\right)$ with the aid of proposition 4. Since X^{*} is of weak type q and $0<2 r<2$, an appeal to proposition 3 reveals that $D_{\tau} R \in \mathcal{L}_{s_{1}, 2 r}^{(e)}\left(X, \ell_{2}\right)$ for $1 / s_{1}=1 / 2 r+1 / 2-1 / q$. We apply the multiplication theorem for the entropy ideals to produce that $S D_{\sigma} R=S D_{\tau} D_{\tau} R \in \mathcal{L}_{2 r}^{(e)} \circ \mathcal{L}_{s_{1}, 2 r}^{(e)}(X, Y) \subseteq \mathcal{L}_{s, t}^{(e)}(X, Y) \subseteq \mathcal{L}_{s, \infty}^{(e)}(X, Y)$ with $1 / s=1 / 2 r+1 / s_{1}=1 / 2+1 / r-1 / q$. The required inclusion can be carried out by arguing exactly as in the second part of the proof of theorem 2.

Theorem 4. Let X^{*} be of weak type 2 and Y of weak type 2. Then $\mathcal{N}_{r, w}(X, Y) \subset \mathcal{L}_{r, w}^{(e)}(X, Y)$ where $0<r<1$ and $0<w \leq \infty$.

Proof. Assume that $R \in \mathcal{B}\left(X, \ell_{\infty}\right), D_{\sigma} \in \mathcal{B}\left(\ell_{\infty}, \ell_{1}\right)$ is a diagonal operator generated by a sequence $\sigma=\left(\sigma_{i}\right) \in \ell_{r}, 0<r<1$, and $S \in \mathcal{B}\left(\ell_{1}, Y\right)$. Since $1 / r=1 / 2 r+1 / 2 r$, for $\sigma \in \ell_{r}$, we split $\sigma=\tau \circ \tau$
with $\tau \in \ell_{2 r}$. Accordingly the operator $D_{\sigma} \in \mathcal{B}\left(\ell_{\infty}, \ell_{1}\right)$ admits a factorization $D_{\sigma}: \ell_{\infty} \xrightarrow{D_{\tau}} \ell_{2} \xrightarrow{D_{\tau}} \ell_{1}$, where D_{τ} is a diagonal operator generated by a sequence $\tau \in \ell_{2 r}$. Since Y is of weak type 2 and $0<$ $2 r<\min (2,2)$, it follows from proposition 4 that $S D_{\tau} \in \mathcal{L}_{2 r}^{(e)}\left(\ell_{2}, Y\right)$. As X^{*} is of weak type 2 and $0<2 r<\min (2,2)$, proposition 5 steps in to assure that $D_{\tau} R \in \mathcal{L}_{2 r}^{(e)}\left(X, \ell_{2}\right)$. Application of the multiplication theorem for the entropy ideals leads to $S D_{\sigma} R=S D_{\tau} D_{\tau} R \in \mathcal{L}_{2 r}^{(e)}$ 。 $\mathcal{L}_{2 r}^{(e)}(X, Y) \subseteq \mathcal{L}_{r}^{(e)}(X, Y) \subseteq \mathcal{L}_{r, \infty}^{(e)}(X, Y)$. The remaining assertions are established by arguing exactly as in the second part of the proof of theorem 2.

References

1. J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, 1976.
2. J. Bourgain, A. Pajor, S. J. Szarek and N. Tomczak-Jaegermann, On the duality problem for entropy numbers of operators, Lecture Notes in Math. 1376, Springer-Verlag, 1989, pp. 50-63.
3. B. Carl, Entropy numbers, s-numbers and eigenvalue problems, J. Funct. Anal. 41 (1981), 290-306.
4. B. Carl, Entropy numbers of diagonal operators with an application to eigenvalue problems, J. Approx. Theory 32 (1981), 135-150.
5. B. Carl, On a characterization of operators from ℓ_{q} into a Banach space of type p with some applications to eigenvalue problems, J. Funct. Anal. 48 (1982), 394-407.
6. B. Carl, Entropy numbers of r-nuclear operators between L_{p} spaces, Studia Math. 77 (1983), 155-162.
7. M. Defant and M. Junge, Characterization of weak type by the entropy distribution of r-nuclear operators, Studia Math. 107 (1993), 1-14.
8. M. Defant and M. Junge, Some estimates on entropy numbers, Israel J. Math. 84 (1993), 417-433.
9. S. Geiss, Grothendieck numbers of linear and continuous operators on Banach spaces, Math. Nachr. 148 (1990), 65-79.
10. T. Kühn, Entropy numbers of r-nuclear operators in Banach spaces of type q, Studia Math. 80 (1984), 53-61.
11. A. Pajor and N. Tomczak-Jaegermann, Volume ratio and other s-numbers of operators related to local properties of Banach spaces, J. Funct. Anal. 87 (1989), 273-293.
12. A. Pietsch, Operator Ideals, North-Holland, 1980.
13. A. Pietsch, Eigenvalues and s-Numbers, Cambridge University Press, 1987.
14. G. Pisier, The volume of convex bodies and Banach space geometry, Cambridge University Press, 1989.

Department of Mathematics
Dongguk University
Seoul 100-715, KOREA
E-mail: hsong@dongguk.edu

