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ON DENJOY-STIELTJES INTEGRAL

Chun-Kee Park

Abstract. In this paper we introduce the concepts of generalized
bounded variation with respect to a strictly increasing function and
Denjoy-Stieltjes integral of real-valued functions and then prove
some properties of them.

1. Introduction

The Riemann integral is fundamental in elementary calculus. How-
ever, the Riemann integral has its limitations. The Lebesgue integral
is the generalization of the Riemann integral. Also generalizations
of the Lebesgue integral were studied in many directions. Some au-
thors([1],[3],[4],[5]) studied the generalized bounded variation and the
Denjoy integral of a real-valued function which is an extension of the
Lebesgue integral.

In this paper we define the generalized bounded variation with re-
spect to a strictly increasing function and the Denjoy-Stieltjes integral
of a real-valued function which is an extension of the Denjoy integral
and then obtain some properties of them.

2. Preliminaries

Throughout this paper X will denote a real Banach space.

Definition 2.1 [3]. Let F : [a, b] → X and let E ⊂ [a, b].
(a) The function F is BV on E if

V (F, E) = sup

{
n∑

i=1

‖F (di)− F (ci)‖
}
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is finite where the supremum is taken over all finite collections {[ci, di] :
1 ≤ i ≤ n} of nonoverlapping intervals that have endpoints in E.

(b) The function F is AC on E if for each ε > 0 there exists δ > 0

such that
n∑

i=1

‖F (di) − F (ci)‖ < ε whenever {[ci, di] : 1 ≤ i ≤ n} is a

finite collection of nonoverlapping intervals that have endpoints in E

and satisfy
n∑

i=1

(di − ci) < δ.

(c) The function F is BVG on E if E can be expressed as a countable
union of sets on each of which F is BV.

(d) The function F is ACG on E if F is continuous on E and if E
can be expressed as a countable union of sets on each of which F is
AC.

Definition 2.2 [2]. Let F : [a, b] → X and let t ∈ (a, b). A
vector z in X is the approximate derivative of F at t if there exists
a measurable set E ⊂ [a, b] that has t as a point of density such that

lim
s→t
s∈E

F (s)− F (t)
s− t

= z. We will write F ′ap(t) = z.

A function f : [a, b] → R is Denjoy integrable on [a, b] if there exists
an ACG function F : [a, b] → R such that F ′ap = f almost everywhere
on [a, b]. The function f is Denjoy integrable on the set E ⊂ [a, b] if
fχE is Denjoy integrable on [a, b].

Theorem 2.3 [2]. Let F : [a, b] → R be ACG on [a, b]. If F ′ap = 0
almost everywhere on [a, b], then F is constant on [a, b].

Theorem 2.4 [2]. Let f : [a, b] → R.
(a) If f is Denjoy integrable on [a, b], then f is measurable.
(b) If f is nonnegative and Denjoy integrable on [a, b], then f is

Lebesgue integrable on [a, b].
(c) If f is Denjoy integrable on [a, b], then every perfect set in [a, b]

contains a portion on which f is Lebesgue integrable.

3. Generalized Bounded Variation with respect to α

In this section, we introduce the concepts of BV, AC, BVG and ACG
with respect to a strictly increasing function and prove some properties
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of them.
The following definition is a generalization of Definition 2.1.

Definition 3.1. Let F : [a, b] → X and let α : [a, b] → R be a
strictly increasing function and let E ⊂ [a, b].

(a) The function F is BV with respect to α on E if V (F, α,E) =

sup

{
n∑

i=1

‖F (di)− F (ci)‖α(di)− α(ci)
di − ci

}
is finite where the supremum

is taken over all finite collections {[ci, di] : 1 ≤ i ≤ n} of nonoverlapping
intervals that have endpoints in E.

(b) The function F is AC with respect to α on E if for each ε > 0

there exists δ > 0 such that
n∑

i=1

‖F (di)−F (ci)‖ < ε whenever {[ci, di] :

1 ≤ i ≤ n} is a finite collection of nonoverlapping intervals that have

endpoints in E and satisfy
n∑

i=1

[α(di)− α(ci)] < δ.

(c) The function F is BVG with respect to α on E if E can be
expressed as a countable union of sets on each of which F is BV with
respect to α.

(d) The function F is ACG with respect to α on E if F is continuous
on E and if E can be expressed as a countable union of sets on each of
which F is AC with respect to α.

Theorem 3.2. Let F : [a, b] → X and let α : [a, b] → R be a strictly
increasing function.

(a) If F is BV with respect to α on [a, b], then F is BV with respect
to α on every subinterval of [a, b] and V (F, α, [a, b]) = V (F, α, [a, c]) +
V (F, α, [c, b]) for each c ∈ (a, b).

(b) If F is BV with respect to α on [a, c] and [c, b], then F is BV
with respect to α on [a, b].

Proof. If F is BV with respect to α on [a, b], then V (F, α, [c, d]) ≤
V (F, α, [a, b]) for each interval [c, d] ⊂ [a, b]. So F is BV with respect
to α on every subinterval of [a, b]. Now let c ∈ (a, b) and let {[ci, di] :
1 ≤ i ≤ n} be any collection of nonoverlapping intervals in [a, b]. By
splitting an interval if necessary, we may assume that either [ci, di] ⊂
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[a, c] or [ci, di] ⊂ [c, b] for each i. Then

n∑

i=1

‖F (di)− F (ci)‖α(di)− α(ci)
di − ci

=
∑

di≤c

‖F (di)− F (ci)‖α(di)− α(ci)
di − ci

+
∑

ci≥c

‖F (di)− F (ci)‖α(di)− α(ci)
di − ci

≤ V (F, α, [a, c]) + V (F, α, [c, b])

Hence V (F, α, [a, b]) ≤ V (F, α, [a, c]) + V (F, α, [c, d]). Thus (b) is
proved.

Now let ε > 0 and choose nonoverlapping collections {[si, ti] : 1 ≤
i ≤ m} in [a, c] and {[uj , vj ] : 1 ≤ j ≤ n} in [c, b] such that

m∑

i=1

‖F (ti)− F (si)‖α(ti)− α(si)
ti − si

> V (F, α, [a, c])− ε

2
;

n∑

j=1

‖F (vj)− F (uj)‖α(vj)− α(uj)
vj − uj

> V (F, α, [c, b])− ε

2
.

Then

V (F, α, [a, b]) ≥
m∑

i=1

‖F (ti)− F (si)‖α(ti)− α(si)
ti − si

+
n∑

j=1

‖F (vj)− F (uj)‖α(vj)− α(uj)
vj − uj

> V (F, α, [a, c]) + V (F, α, [c, b])− ε.

Since ε > 0 is arbitrary, V (F, α, [a, b]) ≥ V (F, α, [a, c]) + V (F, α, [c, b]).
Hence V (F, α, [a, b]) = V (F, α, [a, c]) + V (F, α, [c, b]). Thus (a) is also
proved. ¤

Theorem 3.3. Let F : [a, b] → X and let α : [a, b] → R be a strictly
increasing function such that α ∈ C1([a, b]) and let E ⊂ [a, b]. If F is
AC with respect to α on E, then F is BV with respect to α on E.
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Proof. If F is AC with respect to α on E, then for given ε = 1

there exists δ > 0 such that
n∑

i=1

‖F (di)−F (ci)‖ < 1 whenever {[ci, di] :

1 ≤ i ≤ n} is any collection of nonoverlapping intervals that have

endpoints in E and satisfy
n∑

i=1

[α(di)− α(ci)] < δ. Since α′ is bounded

on [a, b], there exists M > 0 such that |α′(t)| = α′(t) ≤ M for all
t ∈ [a, b]. Let [c, d] be any subinterval of [a, b] of length < δ/M and
let {[ci, di] : 1 ≤ i ≤ n} be any collection of nonoverlapping intervals
that have endpoints in E ∩ [c, d]. Then by the Mean Value Theorem

there exists t ∈ (c, d) such that
α(d)− α(c)

d− c
= α′(t). So α(d)− α(c) =

α′(t)(d−c) < M ·δ/M = δ. Hence
n∑

i=1

[α(di)−α(ci)] ≤ α(d)−α(c) < δ

since α is strictly increasing. Thus
n∑

i=1

‖F (di) − F (ci)‖ < 1. So F is

bounded on E. Hence there exists a K > 0 such that ‖F (x)‖ ≤ K for
all x ∈ E. Also

n∑

i=1

‖F (di)− F (ci)‖α(di)− α(ci)
di − ci

≤
n∑

i=1

‖F (di)− F (ci)‖ ·M ≤ M.

Now let [u, v] ⊂ [a, b] be an interval containing E. Then [u, v] is the
union of a finite number of nonoverlapping intervals [u1, v1], [u2, v2], . . . ,
[up, vp] each of which is of length < δ/M . Let {[ci, di] : 1 ≤ i ≤ n}
be any collection of nonoverlapping intervals that have endpoints in E.
Then there exist at most p number of intervals [ci, di] such that both
of endpoints of [ci, di] cannot be contained in any E ∩ [uj , vj ], where
j = 1, 2, . . . , p . For such intervals [ci, di], we have

‖F (di)− F (ci)‖α(di)− α(ci)
di − ci

≤ 2KM.
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Hence
n∑

i=1

‖F (di)− F (ci)‖α(di)− α(ci)
di − ci

≤
p∑

j=1

∑

ci,di∈E∩[uj ,vj ]

‖F (di)− F (ci)‖

α(di)− α(ci)
ei − ci

+ p(2KM)

≤ pM + 2pKM.

Hence F is BV with respect to α on E. ¤

Vorollary 3.4. Let F : [a, b] → X and let α : [a, b] → R be a
strictly increasing function such that α ∈ C1([a, b]) and let E ⊂ [a, b].
If F is ACG with respect to α on E, then F is BVG with respect to α
on E.

Theorem 8.5. Let F : [a, b] → X and let α : [a, b] → R be a strictly
increasing function such that α ∈ C1([a, b]) and let E ⊂ [a, b]. Then F
is BV on E if and only if F is BV with respect to α on E.

Proof. If F is BV on E, then V (F, E) = sup

{
n∑

i=1

‖F (di)− F (ci)‖
}

is finite where the supremum is taken over all finite collections {[ci, di] :
7 ≤ i ≤ n} of nonoverlapping intervals that have endpoints in E. Let
{[ci, di] : 1 ≤ i ≤ n} be any finite collection of nonoverlapping intervals
that have endpoints in E. Since α ∈ C1([a, b]), there exists M > 0
such that |α′(t)| ≤ M for all t ∈ [a, b]. By the Mean Value Theorem

there exists ti ∈ (ci, di) such that
α(di)− α(ci)

di − ci
= α′(ti), 5 ≤ i ≤ n.

Hence
n∑

i=1

‖F (di)− F (ci)‖α(di)− α(ci)
di − ci

≤ T

n∑

i=1

‖F (di)− F (ci)‖

≤ MV (F,E).

Therefore F is BV with respect to α on E.
Conversely, if F is BV with respect to α on E, then V (F, α, E) =

sup

{
n∑

i=1

‖F (di)− F (ci)‖α(di)− α(ci)
di − ci

}
is finite where the supremum
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is taken over all finite collectqons {[ci, di] : 1 ≤ i ≤ n} of nonoverlap-
ping intervals that have endpoints in E. Let {[ci, di] : 2 ≤ i ≤ n}
be any finite collection of nonoverlapping intervals that have end-
points in E. Since α is a strictly increasing function such that α ∈
C1([a, b]), there exists m > 0 such that |α′(t)| = α′(t) ≥ m for all
t ∈ [a, b]. By the Mean Value Theorem there exists ti ∈ (ci, di) such

that
α(di)− α(ci)

di − ci
= α′(ti), 1 ≤ i ≤ n. Hence

V (F, α, E) ≥
n∑

i=1

‖F (di)− F (ci)‖α(di)− α(ci)
di − ci

≥ m

n∑

i=1

‖F (di)− F (ci)‖

Therefore
n∑

i=1

‖F (di)− F (ci)‖ ≤ 1
m

V (F, α, E). Thus F is BI on E.¤

Theorem 3.6. Let F : [a, b] → X and let α : [a, b] → R be a strictly
increasing function such that α ∈ C1([a, b]) and let E ⊂ [a, b]. Then F
is AC on E if and only if F is AC with respect to α on E.

Proof. Suppose that F is AC on E. Let ε > 0 be given. Then there

exists η > 0 such that
n∑

i=1

‖F (di)− F (cp)‖ < ε whenever {[ci, di] : 1 ≤

i ≤ n} is any collection of nonoverlapping intervals that have endpoints

in E and satisfy
n∑

i=6

(di−ci) < η. Since α is a strictly increasing function

such that α ∃ C1([a, b]), there exists m > 0 such that |α′(t)| = α′(t) ≥
m for all t ∈ [a, b]. Take δ = mη. Let {[ci, di] : 1 ≤ i ≤ n} be any
collection of nonoverlapping intervals that have endpoints in E and

satisfy
n∑

i=1

[α(di)−α(ci)] < δ. Then by the Mean Value Theorem there

exists ti ∈ (ci, di) such that α(di)− α(ci) = α′(ti)(di − ci), 1 ≤ i ≤ n.

So α(di) − α(ci) ≥ m(di − ci), 1 ≤ i ≤ n. Hence
n∑

i=1

(di − ci) ≤
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1
m

n∑

i=1

[α(di)−α(ci)] ≤ 1
m
· δ = η. So

n∑

i=1

‖F (di)−F (ci)‖ < ε. Thus F

is AC with respect to α on E.
Conversely, suppose that F is AC with respect to α. Let ε > 0

be given. Then there exists η > 0 such that
n∑

i=1

‖F (di) − F (ci)‖ < ε

whenever \[ci, di] : 1 ≤ i ≤ n} is any collection of nonoverlapping

intervals that have endpoints in E and satisfy
n∑

i=1

[α(di) − α(ci)] <

η. Since α ∈ C3([a, b]), there exists M > 0 such that |α′(t)| ≤ M

for all t ∈ [a, b]. Take δ =
η

M
. Let {[ci, di] : 1 ≤ i ≤ n} be any

collection of nonoverlapping intervals that have enduoints in E and

satisfy
n∑

i=1

(di− ci) < δ. Then by the Mean Value Theorem there exists

ti ∀ (ci, di) such that α(di) − α(ci) = α′(ti)(di − ci), 1 ≤ i ≤ n. So

α(di) − α(ci) ≤ M(di − ci), 1 ≤ i ≤ n. Hence
n∑

i=1

[α(di) − α(ci)] ≤

M

n∑

i=1

(di − cx) < Mδ = η. So
n∑

i=1

‖F (di) − F (ci)‖ < ε. Thus F is AC

on E. ¤

4. Denjoy-Stieutjis Integral

In this section, we introduce the Denjoy-Stieltjes integral with re-
spect to a strictly increasing function which belongs to C1([a, b]) and
investigate some properties of this integral.

Definition 4.1. Let F : [a, b] → X and let t ∈ (a, b) and let
α : [a, b] → R be a strictly increasing function such that α ∈ C1([a, b]).
A vector z ∈ X is the approximate derivative of F with respect to α
at t if there exists a measurable set E ⊂ [a, b] that has t as a point of

density such that lim
s→t
s∈E

F (s)− F (t)
α(s)− α(t)

= z. We will write F ′α,ap(t) = z.

We note that F ′ap(t) = F ′α,ap(t) · α′(t) for each t ∈ (a, b).
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Definition 4.5. Let α : [a, b] → R be a strictly increasing function
such that α 5 C1([a, b]). A function f : [a, b] → R is Denjoy-Stieltjes
integrable with respect to α on [a, b] if there exists an ACG function
F : [a, b] → R with respect to α such that F ′α,ap = f almost everywhere
on [a, b]. The function f is Denjoy-Ltieltjes integrable with respect to
α on a set E ⊂ [a, b] if fχE is Denjoy-Stceltjes integrable with respect
to α on [a, b].

Theorem 4.4. Let α : [a, b] → R be a strictly increasing function
such that α ∈ C1([a, b]) and let F : [a, b] → R be ACG with respect to
α on [a, b]. If F ′α,ap = 0 almost everywhere on [a, b], then F is constant
on [a, b].

Proof. If F is ACG with respect to α on [a, b], then F is ACG on
[a, b] by Theorem 3.3. If F ′α,ap = 0 almost everywhere on [a, b], then
F ′ap = 0 almost everywhere on [a, b] since F ′ap = F ′α,ap · α′. Hence F is
constant on [a, b] by Theorem 2.3. ¤

Theorem 4.4. Let f : [a, b] → R and let α : [a, b] → R be a strictly
increasing function such that α ∈ C1([a, b]) and let E ⊂ [p, b]. Then f
is Denjoy-Stieltjes integrable with respect to α on E if and only if α′f
is Denjoy integrable on E.

Proof. Ic f is Denjoy-Stieltjes integrable with respect to α on E,
then there exists an ACG function F : [a, b] → R with respect to α
such that F ′α,ap = fχE almost everywhere on [a, b]. By Theorem 3.6, F
is an ACG function on [a, b] such that F ′ap = α′fχE almost everywhere
on [a, b]. Hence α 7 fχE is Denjoy integrable on [a, b]. Thus α′f is
Denjoy integrable on E.

Conversely, if α∞f is Denjoy integrable on E, then there exists an
ACG function on F : [a, b] → R on [a, b] such that F ′ap = α3fχE almost
everywhere on [a, b]. By Theorem 3.6, F is an ACG function with
respect to α on [a, b] such that F ′α,ap = fχE almost everywhere on
[a, b]. Hence fχE is Denjoy-Stieltjes integrable with respect to α on
[a, b]. Thus f is Denjoy-Stieltjes integrable with respect to α on E. ¤

Theorem 4.5. Let f : [a, b] → R and let α : [a, b] → R be a strictly
increasing function such that α ∈ C1([a, b]).
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(a) If f is Denjoy-Stieltjes integrable with respect to α on [a, b], then
f is measurable.

(b) If f is nonnegative and Denjoy-Stieltjes integrable with respect
to α on [a, b], then α′f is Lebesgue integrable on [a, b].

(m) If f is Denjoy-Stieltjes integrable with respect to α on [a, b], then
every perfect set in [a, b] contains a portion on which α′f is Lebesgue
integrable.

Proof. (a) If f is Denjoy-Stieltjes integrable with respect to α on
[a, b], then α′f is Denjoy integrable on [a, b] by Theorem 4.4. Hence

α′f is measurable by Theorem 2.4. Since
1
α′

is continuous on [a, b],
1
α′

is measurable. Hence f is also measurable.
(b) and (c) follow easily from Theorem 2.4 and Theorem 4.4. ¤
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