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ON DENJOY-STIELTJES INTEGRAL
CHUN-KEE PARK

ABSTRACT. In this paper we introduce the concepts of generalized
bounded variation with respect to a strictly increasing function and
Denjoy-Stieltjes integral of real-valued functions and then prove
some properties of them.

1. Introduction

The Riemann integral is fundamental in elementary calculus. How-
ever, the Riemann integral has its limitations. The Lebesgue integral
is the generalization of the Riemann integral. Also generalizations
of the Lebesgue integral were studied in many directions. Some au-
thors([1],[3],[4],[5]) studied the generalized bounded variation and the
Denjoy integral of a real-valued function which is an extension of the
Lebesgue integral.

In this paper we define the generalized bounded variation with re-
spect to a strictly increasing function and the Denjoy-Stieltjes integral
of a real-valued function which is an extension of the Denjoy integral
and then obtain some properties of them.

2. Preliminaries

Throughout this paper X will denote a real Banach space.

DEFINITION 2.1 [3]. Let F': [a,b] — X and let E C [a,].
(a) The function F'is BV on E if

V(F,E) = sup {Z 1F(di) — F(@)H}
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is finite where the supremum is taken over all finite collections {[c;, d;] :
1 < i < n} of nonoverlapping intervals that have endpoints in E.
(b) The function F' is AC on E if for each ¢ > 0 there exists § > 0

n

such that Z |F(d;) — F(c;)|| < € whenever {[c;,d;] : 1 <i<n}isa
i=1

finite collection of nonoverlapping intervals that have endpoints in E

and satisfy Z(dl —¢;) < 0.

=1
(¢) The function F'is BVG on E if E can be expressed as a countable
union of sets on each of which F'is BV.
(d) The function F' is ACG on F if F is continuous on E and if E
can be expressed as a countable union of sets on each of which F is
AC.

DEFINITION 2.2 [2]. Let F : [a,b] — X and let ¢t € (a,b). A
vector z in X is the approximate derivative of F' at t if there exists
a measurable set F C [a,b] that has ¢ as a point of density such that
lim F(s)— F(t)

s—t S —
sek

A function f : [a,b] — R is Denjoy integrable on [a, b] if there exists
an ACG function F': [a,b] — R such that F, = f almost everywhere
on [a,b]. The function f is Denjoy integrable on the set £ C [a,b] if
fxE is Denjoy integrable on [a, b].

THEOREM 2.3 [2]. Let F': [a,b] — R be ACG on [a,b]. If F,, =0
almost everywhere on [a,b], then F' is constant on [a, b].

THEOREM 2.4 [2]. Let f: [a,b] — R.

(a) If f is Denjoy integrable on [a, b, then f is measurable.

(b) If f is nonnegative and Denjoy integrable on [a,b], then f is
Lebesgue integrable on |a, b].

(c) If f is Denjoy integrable on [a,b], then every perfect set in [a, b]
contains a portion on which f is Lebesgue integrable.

= z. We will write I, (t) = 2.

3. Generalized Bounded Variation with respect to «

In this section, we introduce the concepts of BV, AC, BVG and ACG
with respect to a strictly increasing function and prove some properties
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of them.
The following definition is a generalization of Definition 2.1.

DEFINITION 3.1. Let F' : [a,b] — X and let a : [a,b] — R be a
strictly increasing function and let E C [a, b].
(a) The function F' is BV with respect to a on F if V(F,a, E) =
- a(di) — afc)
sup {Z £ (d;) — F(%)Hﬁ
i=1 vt
is taken over all finite collections {[¢;, d;] : 1 < i < n} of nonoverlapping
intervals that have endpoints in FE.
(b) The function F' is AC with respect to a on E if for each € > 0

is finite where the supremum

there exists 0 > 0 such that Z |F'(d;) — F(c;)|| < € whenever {[c;, d;] :
i=1

1 <i < n} is a finite collection of nonoverlapping intervals that have
n

endpoints in E and satisfy Z[a(di) —ale)] < 0.
i=1

(c¢) The function F' is BVG with respect to o on E if E can be
expressed as a countable union of sets on each of which F' is BV with
respect to a.

(d) The function F' is ACG with respect to « on E if F is continuous
on E and if E can be expressed as a countable union of sets on each of
which F' is AC with respect to a.

THEOREM 3.2. Let F': [a,b] — X and let v : [a,b] — R be a strictly
increasing function.

(a) If F' is BV with respect to « on |a,b], then F' is BV with respect
to a on every subinterval of [a,b] and V (F, «, [a,b]) = V(F, «, [a,c]) +
V(F,a,|c,b]) for each ¢ € (a,b).

(b) If F' is BV with respect to a on |a,c] and |[c,b], then F' is BV
with respect to « on [a, b|.

Proof. If F is BV with respect to « on [a, b], then V(F, «,|c,d]) <
V(F,a,[a,b]) for each interval [c,d] C [a,b]. So F is BV with respect
to a on every subinterval of [a,b]. Now let ¢ € (a,b) and let {[c;,d;] :
1 <i < n} be any collection of nonoverlapping intervals in [a,b]. By
splitting an interval if necessary, we may assume that either [¢;,d;] C
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la, c] or [¢;,d;] C [c,b] for each i. Then

> () - Fe) 2= _ S () — ey 2=l
i=1 v L

digc
a(d;) — a(e)
di — C;

+ ) IIF(d) = Fle)|

ci>c

<V(F,aa,c]) + V(F,a,[c,b])

Hence V(F,a,la,b]) < V(F,q,[a,c]) + V(F,a,lc,d]). Thus (b) is
proved.

Now let € > 0 and choose nonoverlapping collections {[s;,¢;] : 1 <
i <m} in [a,c] and {[u;,v,] : 1 < j <n}in [c, b] such that

Y

> ()~ Pl U= s v, fa,d) -

ti—Si

N

> 1) P | =) s v, fe) - £

Uj — Uj
Then

V(F,a,la,b]) > |[F(t:) - F@,-)HM

i=1 ti—si
+ 1P (y) = Pl S

> V(F,a,la,cl)+ V(F,a,[c,b]) — €.

Since € > 0 is arbitrary, V(F, a, [a,b]) > V(F, «, [a,c]) + V(F, a, [c, b]).
Hence V(F,a,[a,b]) = V(F,a,la,c]) + V(F,a,[c,b]). Thus (a) is also
proved. O

THEOREM 3.3. Let F': [a,b] — X and let o : [a,b] — R be a strictly
increasing function such that o € C*([a,b]) and let E C [a,b]. If F is
AC with respect to a on E, then F is BV with respect to « on E.
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Proof. If F' is AC with respect to a on FE, then for given ¢ = 1
n

there exists § > 0 such that Z |F'(d;) — F(c;)|| < 1 whenever {[c;, d;] :
i=1
1 < i < n} is any collection of nonoverlapping intervals that have

endpoints in E and satisfy Z[a(di) — a(e;)] < 0. Since o’ is bounded

=1
on [a,b], there exists M > 0 such that |a/(t)] = &/(t) < M for all
t € [a,b]. Let [c,d] be any subinterval of [a,b] of length < §/M and
let {[ci,di] : 1 < i < n} be any collection of nonoverlapping intervals
that have endpoints in £ N [c,d]. Then by the Mean Value Theorem

there exists ¢ € (¢, d) such that M = a'(t). So a(d) —alc) =
—c

o (t)(d—c) < M-6/M = 4. Hence Z[a(di)—a(ci)] <a(d)—alc) <6

i=1
since « is strictly increasing. Thus Z |1F(d;) — F(c;)|| < 1. So F'is

i=1
bounded on E. Hence there exists a K > 0 such that ||[F(z)| < K for
all x € E. Also

P - Pl M= < 57 ) - Pl < v

1=1

Now let [u,v] C [a,b] be an interval containing E. Then [u,v] is the
union of a finite number of nonoverlapping intervals [u, v1], [ug, v2], . . .,
[up, vp] each of which is of length < 6/M. Let {[c;,d;] : 1 < i < n}
be any collection of nonoverlapping intervals that have endpoints in E.
Then there exist at most p number of intervals [¢;, d;] such that both
of endpoints of [¢;, d;] cannot be contained in any E N [u;,v,], where
j=1,2,...,p. For such intervals [¢;, d;], we have

a(d;) — a(c)

<2KM.
di—Ci -

1E(di) — F(ci)
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S 1)~ Fe) | N S S ) - e

di — C;
i=1 J=1¢i,d; €EN[uj,v;]
a(d;) — alc;
(d:) () + p(2KM)
€ — ¢
< pM + 2pK M.
Hence F' is BV with respect to o on F. O

VOROLLARY 3.4. Let F : [a,b] — X and let « : [a,b] — R be a
strictly increasing function such that o € C1([a,b]) and let E C [a, b].
If F is ACG with respect to a on E, then F' is BVG with respect to «
on I.

THEOREM 8.5. Let F': [a,b] — X and let « : [a,b] — R be a strictly
increasing function such that o € C*'([a,b]) and let E C [a,b]. Then F
is BV on E if and only if F' is BV with respect to « on FE.

Proof. prstonﬁzuanquE):sup{EZHF@a)—quw}
i=1

is finite where the supremum is taken over all finite collections {[¢;, d;] :

7 <1 < n} of nonoverlapping intervals that have endpoints in E. Let

{[ei,d;i] : 1 <i < n} be any finite collection of nonoverlapping intervals

that have endpoints in E. Since a € C([a,b]), there exists M > 0

such that |o/(t)] < M for all t € [a,b]. By the Mean Value Theorem

there exists t; € (¢;,d;) such that M) =d'(t;), 5<i<n.
i —Ci
Hence
- a(di) — a(ci) -
D _E(d) = Flei)ll——— = <T ) [IF(di) = F(cs)]
i=1 v i=1
< MV (F,E).

Therefore F' is BV with respect to o on E.
Conversely, if F' is BV with respect to o on FE, then V(F,«, F) =

- d;) — ale;
sup { E | F(di) — F(ci)| %} is finite where the supremum
i=1 i~ G
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is taken over all finite collectqons {[c;,d;] : 1 < i < n} of nonoverlap-
ping intervals that have endpoints in F. Let {[c;,d;] : 2 < i < n}
be any finite collection of nonoverlapping intervals that have end-
points in E. Since « is a strictly increasing function such that a €
C'([a,b]), there exists m > 0 such that |o/(¢)] = o/(t) > m for all
t € [a,b]. By the Mean Value Theorem there exists t; € (¢;,d;) such

oldi) = aled) _ iy, 1< i < . Hence

that
di — C;

a(d;) — alc)

V(.. E) = 3P - Fle)| S5 =

i=1

> mz |F(d;) — F(c)|]

. 1
Therefore Z |F(d;) — F(c;)|| < =V(F,a, E). Thus F is Bl on E.[J
m

=1

THEOREM 3.6. Let F': [a,b] — X and let « : [a,b] — R be a strictly
increasing function such that o € C'([a,b]) and let E C [a,b]. Then F
is AC on F if and only if F' is AC with respect to o on E.

Proof. Suppose that F'is AC on E. Let € > 0 be given. Then there

exists 7 > 0 such that Z |F'(d;) — F(cp)|| < € whenever {[c;,d;] : 1 <
i=1
i < n} is any collection of nonoverlapping intervals that have endpoints
n

in F and satisfy Z(di—ci) < m. Since « is a strictly increasing function
i=6

such that o 3 C([a, b]), there exists m > 0 such that |o/(t)| = o/(t) >

m for all t € [a,b]. Take 6 = mn. Let {[¢;,d;] : 1 < i < n} be any

collection of nonoverlapping intervals that have endpoints in £ and

satisfy Z[a(di) —a(c¢;)] < 0. Then by the Mean Value Theorem there
i=1
exists t; € (¢;,d;) such that a(d;) — a(c;) = o/ (t:)(di — ¢;), 1 <i<n.

So a(d;) — alc;)) > m(d; —¢;), 1 < i < n. Hence Z(d’ —¢) <
i=1
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-5 =1n.50 Y |[F(di) — F(c;)|| <. Thus F
i=1 =1

is AC with respect to o on E.
Conversely, suppose that F' is AC with respect to a. Let ¢ > 0

be given. Then there exists n > 0 such that Z |F(d;) — F(c)|| < e
i=1
whenever \[¢;,d;] : 1 < i < n} is any collection of nonoverlapping

intervals that have endpoints in E and satisfy Z[a(di) —a(g)] <
i=1
n. Since a € C3([a,b]), there exists M > 0 such that |o/(t)] < M

for all ¢ € [a,b]. Take § = % Let {[ci,d;] : 1 < i < n} be any

collection of nonoverlapping intervals that have enduoints in £ and
n

satisfy Z(dl —¢;) < 0. Then by the Mean Value Theorem there exists
i=1
ti A (Ci,di) such that Oé(dz) - Oé(Ci) = o/(ti)(di - Ci), 1 S 1 S n. So

a(d;)) — ale;) < M(d; —¢), 1 < i < n. Hence Z[a(di) —a(q)] <

=1
n

M (di = ¢z) < M6 =1.So Y _|[F(d;) — F(c;)|| < e. Thus F is AC

i=1 =1
on F. ]

4. Denjoy-Stieutjis Integral

In this section, we introduce the Denjoy-Stieltjes integral with re-
spect to a strictly increasing function which belongs to C*([a,b]) and
investigate some properties of this integral.

DEFINITION 4.1. Let F' : [a,b] — X and let ¢t € (a,b) and let
a : [a,b] — R be a strictly increasing function such that o € C1([a, b]).
A vector z € X is the approximate derivative of F' with respect to «
at t if there exists a measurable set E C [a, b] that has ¢ as a point of

F(s)—F(t
density such that lim Fls) = F(t) = z. We will write F, ,,(t) = 2.
st a(s) — a(t) ’

We note that Fy,(t) = F}, ,,(t) - o/(t) for each t € (a,b).

«,ap
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DEFINITION 4.5. Let « : [a,b] — R be a strictly increasing function
such that o 7 C*([a,b]). A function f : [a,b] — R is Denjoy-Stieltjes
integrable with respect to « on [a, b] if there exists an ACG function
F: [a,b] — R with respect to a such that F, ,, = f almost everywhere
on [a,b]. The function f is Denjoy-Ltieltjes integrable with respect to
aon aset E C [a,b] if fxg is Denjoy-Stceltjes integrable with respect

to a on [a, b].

THEOREM 4.4. Let « : [a,b] — R be a strictly increasing function
such that o € C*([a,b]) and let F : [a,b] — R be ACG with respect to
a on [a,b]. If F, ., = 0 almost everywhere on [a, b], then F is constant
on [a,b].

Proof. If F is ACG with respect to « on [a,b], then F' is ACG on
[a,b] by Theorem 3.3. If F}, ,, = 0 almost everywhere on [a, b], then
F,, = 0 almost everywhere on [a, b] since F,, = F}, , -a’. Hence F is

constant on [a, b] by Theorem 2.3. O

THEOREM 4.4. Let f : [a,b] — R and let « : [a,b] — R be a strictly
increasing function such that a € C*([a,b]) and let E C [p,b]. Then f
is Denjoy-Stieltjes integrable with respect to « on E if and only if o/ f
is Denjoy integrable on E.

Proof. Ic f is Denjoy-Stieltjes integrable with respect to o on E,
then there exists an ACG function F' : [a,b] — R with respect to «
such that F}, ., = fxg almost everywhere on [a,b]. By Theorem 3.6, F
is an ACG function on [a, b] such that Fy;, = o/ fx g almost everywhere
on [a,b]. Hence o' fxg is Denjoy integrable on [a,b]. Thus &/f is
Denjoy integrable on E.

Conversely, if a°f is Denjoy integrable on E, then there exists an
ACG function on F': [a,b] — R on [a, b] such that I, , = a3fx g almost
everywhere on [a,b]. By Theorem 3.6, F' is an ACG function with
respect to a on [a,b] such that F, ,, = fxg almost everywhere on
[a,b]. Hence fxpg is Denjoy-Stieltjes integrable with respect to a on
[a,b]. Thus f is Denjoy-Stieltjes integrable with respect to «w on E. [J

THEOREM 4.5. Let f : [a,b] — R and let « : [a,b] — R be a strictly
increasing function such that o € C*([a,b]).
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(a) If f is Denjoy-Stieltjes integrable with respect to a on [a, b], then
f is measurable.

(b) If f is nonnegative and Denjoy-Stieltjes integrable with respect
to « on [a,b], then o/ f is Lebesgue integrable on [a, b].

(m) If f is Denjoy-Stieltjes integrable with respect to « on [a, b], then
every perfect set in [a,b] contains a portion on which o/ f is Lebesgue
integrable.

Proof. (a) If f is Denjoy-Stieltjes integrable with respect to « on

[a,b], then ' f is Denjoy integrable on [a,b] by Theorem 4.4. Hence

1
o f is measurable by Theorem 2.4. Since — is continuous on [a, b], —
a a

is measurable. Hence f is also measurable.
(b) and (c) follow easily from Theorem 2.4 and Theorem 4.4. O
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