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CONVERGENCE OF EXPONENTIALLY
BOUNDED C-SEMIGROUPS

YOUNG S. LEE

ABSTRACT. In this paper, we establish the conditions that a mild
C-existence family yields a solution to the abstract Cauchy prob-
lem. And we show the relation between mild C-existence family
and C-regularized semigroup if the family of linear operators is ex-
ponentially bounded and C' is a bounded injective linear operator.

1. Introduction

Let X be a Banach space and let A be a linear operator from D(A) C
X into X. The abstract Cauchy problem for A with initial data x € X
is to find a solution u(t) to the following initial value problem

d
d—qz —Au, t>0, u(0)=2. (ACP)

It is well known ([5]) that when A is closed, generating a Cy semigroup
{T'(t) : t > 0} guarantees the abstract Cauchy problem to have a
unique mild solution for all initial data x € X, and the solution is
given by u(t) = T'(t)z.

If the abstract Cauchy problem does not have a mild solution for all
x € X, we may look for initial data in X that produce mild solutions.
In [4], a family of linear operators was introduced that produces a solu-
tion of the abstract Cauchy problem for all initial data in the range of
a bounded linear operator C. It is known [4] that for a bounded linear
operator C' mild C-existence family yields a mild solution for all initial
data in the range of C'. C-existence family is a generalization of the
classical Cy semigroup such as integrated semigroups and regularized
semigroups (see [1, 2, 3, 4, 6]).
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In this paper, we establish the conditions that mild C-existence
family for A produces a solution of (ACP). It is known that a mild
C-existence family for A is a C-regularized semigroup generated by
an extension of A if the family of operators and A commute. We
will show the relation between C-regularized semigroup and mild C-
existence family if the family of operators is exponentially bounded.
If CA Cc AC, mild C-existence family is a C-regularized semigroup
generated by an extension of A.

Throughout this paper, we denote by D(A) the domain of the oper-
ator A on X and R(A) the range of A. An operator T in X is said to
commute with A if AT C T'A. It means that if z € D(T'), Az € D(T)
and T Az = ATz. By a solution u(t) of (ACP), we mean a continuously
differentiable function w : [0, co) — X such that u(t) € D(A) for all
t > 0 and satisfies (ACP). A mild solution of (ACP) is a continuous

function u : [0, co) — X such that v(t) = fg u(s)ds € D(A) and

d
dt
section2. Mild C-existence Families

Let A be as in (ACP).

DEFINITION 2.1. The strongly continuous family {S(¢) : ¢t > 0} of
bounded linear operators on X is called a mild C-existence family for
Aifforall z € X, t > 0, [7 S(s)zds € D(A) and

A ( /0 t S(s)xds) = S(t)z — Cx.

REMARK. If {S(¢) :t > 0} is a mild C-existence family for A, then
u(t) = S(t)x is a mild solution of (ACP) with u(0) = Cx.

THEOREM 2.2. Let {S(t) : t > 0} be a mild C-existence family for
A. Suppose that CA C AC. Then there exits a solution u(t) of (ACP)
with u(0) = z € C(D(A)).

Proof. Let x € C(D(A)). Then there exists y € D(A) such that
x = Cy. So Axr = ACy = C Ay. Define

v(t) = Av(t) +x, t>0.

u(t) == —1—/0 S(s)Ayds.
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Then du(t)/dt = S(t)Ay and Au(t) = Az + A(f(;5 S(s)Ayds) = Ax +
S(t)Ay — CAy = S(t)Ay, since {S(t) : t > 0} is a mild C-existence
family for A.. So u(t) is a solution of (ACP) with u(0) = =. O

THEOREM 2.3. Let {S(t) : t > 0} be a mild C-existence family for
A. If x € D(A) and Ax € R(C), then there exists a solution u(t) for
(ACP) with initial data x.

Proof. Let y € X such that Az = Cy. Define
¢
u(t) == —|—/ S(s)yds.
0

Then du(t)/dt = S(t)y and Au(t) = Az+ A [] S(s)yds = Az +S(t)y—
Cy = S(t)y, since {S(t) : t > 0} is a mild C-existence family for A.
Thus u(t) is a solution of (ACP) with u(0) = x. O

Next, we characterize an exponentially bounded mild C-existence
family in terms of Laplace transforms.

THEOREM 2.4. Let {S(t) : t > 0} be a strongly continuous family
of bounded linear operators on X such that ||S(¢)|| < Me“!, t > 0, for
some M, w > 0. Suppose that A is closed and A\ — A is injective for
A > w. Then the following are equivalent.

(1) {S(t) :t > 0} is a mild C-existence family for A.
(2) R(C)C R(A—A) for A > w and

()\—A)_lC’:c:/ e MS(t)adt, € X, A\>w.
0

Proof. Suppose that {S(t) : ¢t > 0} is a mild C-existence family for
A. Let x € X. By integration by parts, we have

/OOO e MS(t)adt = A/OOO e M (/Ot S(s)xds) dt.
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Since A is closed,

A/OOO e MS(t)adt = M\A /Ooo e M (/Ot S(s)xds) dt
= A/OOO e MA (/Ot S(s)xds) dt

\ / e M(S(t)z — C)dt
0

= )\/ e MS(t)adt — Cu.
0

So Cz = (A —A) [° e *S(t)zdt for all z € X, and the result follows.
Suppose that (2) is satisfied. Let z € X. By Post-Widder inversion
theorem of Laplace transform and the closedness of A, we have

ATAN—A) 1oz = A‘lA/ e MS(t)xdt
0

_ /0 Ty ( /O t S(s)xds) dt.

Since Cz = (A — A)(\ — A)~1Cux,
ANTAN-A) 0 =(\—A)"'Cox— 2"1Cx

_ / T e NS (@) — Ca)dt.

By the uniqueness of the Laplace transform, we have

A ( /0 t S(s)xds) = S(t)z — Cx. 0

The following shows the relation between mild C-existence family
and regularized semigroup.

THEOREM 2.5. Let {S(t) : t > 0} be an exponentially bounded mild
C-existence family for A such that ||S(t)|| < Me“* for t > 0, some M
and w > 0, and let C' be a bounded injective linear operator. Suppose
that A is closed and has no eigenvalue in (w, oo) with CA C AC. Then

{S(t) : t > 0} is a C-regularized semigroup generated by an extension
of A.



Convergence of exponentially bounded C'—semigroups 119

Proof. Let x € X. Since {S(t) : t > 0} is a mild C-existence family
and CA C AC,

CS(t)e — C%x = CA ( /0 t S(s)xds) ! ( /0 t CS(S):CdS) |

So CS(t)z is a mild solution of (ACP) with u(0) = C?z. Clearly,
S(t)Cz is a mild solution of (ACP) with u(0) = C%x. By the unique-
ness of mild solution (Proposition in [4]), CS(t) = S(t)C.

By Theorem 2.4, for x € X,
CA— A)yLCz = C / M S(1)adt
0

:/ e MS(t)Caxdt = (A — A)~1C%x.
0

So we have

A—A)C(u—A)'Cx
= AN - A)'C(u—A)Cx + %C(u — A" 0x

1
AN—A)'CA(p— A)~'Cx + X(,u —A)7C%x

P R N e

)l — A) O~ C) o+ (p— A C

>
!
S

1 1
A=A)C(p—A)'Cx - T - A)T1C% + = Ao

Thus

AN=p)AN=A70(u—-A)"Cx = (n—A)"'C%x — (N — A)~'C?x.
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By Theorem 2.4 and integration by parts,

1
- — A —1~2_, — A —12
(= )7 (- 4) )
:/ e_(’\_“)t(,u—A)_ICQxdt—L/ e MS(t)Cadt
0 A—nJo
:/ e_(’\_“)t(,u—A)_lC’Qxdt—/ ! e~ A—mte=mt G (1) Cudt
0 0 A— K

=/ e~ (A—mt (/ e“SS(s)C’xds) dt

0 ¢

:/ e M (/ e_“(s_t)S(s)C:L’ds) dt
0 t

=/ e M (/ e MUS(t —|—w)C’:z:dw> dt
0 0

On the other hand, we have

A=A C(u—A)~1Cx = /Ooo e MS(t)(n— A" Cxdt

_ /O ) ( /0 b e_“SS(s)a:ds> dt
_ /O Y ( /0 b e‘“sS(t)S(s)a:ds) dt.

By the uniqueness of the Laplace transform, we have
S(t+s)C = S(t)S(s).

Therefore {S(t) : t > 0} is a C-regularized semigroup generated by
an extension of A. O
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