Kangweon-Kyungki Math. Jour. 9 (2001), No. 2, pp. 129–131

ON SOME MDS-CODES OVER ARBITRARY ALPHABET

GYU WHAN CHANG AND YOUNG HO PARK

ABSTRACT. Let $q = p_1^{e_1} \cdots p_m^{e_m}$ be the product of distinct prime elements. In this short paper, we show that the largest value of M such that there exists an (n, M, n-1) q-ary code is q^2 if $n-1 \leq p_i^{e_i}$ for all i.

1. Introduction

Let F_q be a set of q distinct elements. A q-ary code C of length n over F_q is a subset of F_q^n . The Hamming distance d(x, y) of $x, y \in C$ is defined to be the number of places in which they differ. The minimum distance d(C) of C is the minimum of d(x, y), where $x, y \in C$ and $x \neq y$. A q-ary (n, M, d) code is a code of length n over F_q , containing M codewords and having minimum distance d. We denote by $A_q(n, d)$ the largest value of M such that there exists an (n, M, d)-code. One of the main coding theory problem is to find the largest code of given length and given distance. An upper bound for $A_q(n, d)$ is given by Singleton.

THEOREM 1 (The Singleton Bound).

$$A_q(n,d) \le q^{n-d+1}.$$

An (n, q^{n-d+1}, d) -code is called a *maximum distance separable code* (MDS-code), which was first explicitly studied by Singleton [4]. The following theorem gives some MDS-codes [3].

THEOREM 2. 1. $A_q(4, 3) = q^2$ for all $q \neq 2, 6$. 2. $A_q(n, n-1) = q^2$ if q is a prime power and $n-1 \leq q$.

The purpose of this short paper is to generalize this result.

Received July 27, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 94B65, 94B05.

Key words and phrases: Singleton bound, MDS-code, mutually orthogonal Latin squares.

2. Main Theorem

Let $q = p_1^{e_1} \cdots p_m^{e_m}$ be the prime factorization of q and let $R_i = GF(p_i^{e_i})$ be the Galois field of order $p_i^{e_i}$. Let $R = R_1 \times \cdots \times R_m$ be the direct product of the Galois fields R_i . Then R is a commutative ring with identity.

LEMMA 3. If $d \leq p_i^{e_i}$ for all $i = 1, \dots, m$, there exist unit elements $\alpha_1, \dots, \alpha_{d-1}$ of R such that $\alpha_i - \alpha_j$ are also unit elements of R for all $i \neq j$.

Proof. Choose any nonzero d-1 distinct elements x_{i1}, \ldots, x_{id-1} of R_i and let $\alpha_j = (x_{1j}, x_{2j}, \ldots, x_{mj}) \in R$. Then each α_j is a unit element of R. Moreover, if $i \neq j$, then $\alpha_i - \alpha_j = (x_{1i} - x_{1j}, x_{2i} - x_{2j}, \ldots, x_{mi} - x_{mj})$ is a unit element of R because $x_{ki} - x_{kj} \neq 0$ for $k = 1, \ldots, m$. Thus $\{\alpha_1, \ldots, \alpha_{d-1}\}$ is a set of desired elements of R. \Box

A Latin square of order q is a $q \times q$ matrix whose entries are from R of q distinct elements such that each row and each column of the matrix contains each symbol exactly once. Let $A = (a_{ij})$ and $B = (b_{ij})$ be two Latin squares of order q. Then A and B are said to be mutually orthogonal Latin squares (MOLS) if the q^2 ordered pairs (a_{ij}, b_{ij}) are all distinct. A set $\{A_1, \ldots, A_k\}$ of Latin squares is called a set of MOLS if each pairs $\{A_i, A_j\}$ is a pair of MOLS.

PROPOSITION 4. Suppose that $d \leq p_i^{e_i}$ for i = 1, ..., m. Then there is a set $\{A_1, \ldots, A_{d-1}\}$ of mutually orthogonal $q \times q$ Latin squares whose entries are in R.

Proof. Let $R = \{\lambda_1, \lambda_2, \ldots, \lambda_q\}$ and let $\{\alpha_1, \ldots, \alpha_{d-1}\}$ be a set of units in R such that $\alpha_i - \alpha_j$ is also a unit of R for $i \neq j$. Let A_1, \ldots, A_{d-1} be $q \times q$ matrices, in which the (i, j)th entry of A_k is an element of Rdefined by

$$a_{ij}^{(k)} = \lambda_i + \alpha_k \lambda_j.$$

First, note that A_k is a Latin square. For if $a_{ij}^{(k)} = a_{it}^{(k)}$, then $\alpha_k \lambda_j = \alpha_k \lambda_t$ and hence $\lambda_j = \lambda_t$ (note that α_k is a unit in R). Similarly, if $a_{ij}^{(k)} = a_{tj}^{(k)}$, then i = t. Now we show that each pair A_k, A_t is mutually orthogonal. For $1 \leq k < t \leq d-1$, if

$$(a_{i_1j_1}^{(k)}, a_{i_1j_1}^{(t)}) = (a_{i_2j_2}^{(k)}, a_{i_2j_2}^{(t)}),$$

130

then

$$\lambda_{i_1} + \alpha_k \lambda_{j_1} = \lambda_{i_2} + \alpha_k \lambda_{j_2}, \quad \lambda_{i_1} + \alpha_t \lambda_{j_1} = \lambda_{i_2} + \alpha_t \lambda_{j_2}.$$

and hence $(\alpha_k - \alpha_t)\lambda_{j_1} = (\alpha_k - \alpha_t)\lambda_{j_2}$. Recall that α_k , α_t , and $\alpha_k - \alpha_t$ are units in R. Thus $\lambda_{j_1} = \lambda_{j_2}$ and $\lambda_{i_1} = \lambda_{i_2}$, which implies that A_k and A_t are mutually orthogonal.

THEOREM 5. If $n-1 \leq p_i^{e_i}$ for all $i = 1, \dots, m$, then $A_q(n, n-1) = q^2$.

Proof. By the Singleton bound, it suffices to show that there exists a $(n, q^2, n-1)$ -code. Let $\{A_1, \ldots, A_{n-2}\}$ be a set of mutually orthogonal $q \times q$ Latin squares over R as in Proposition 3. Let

$$C = \{ (\lambda_i, \ \lambda_j, \ a_{ij}^{(1)}, \ a_{ij}^{(2)}, \dots, \ a_{ij}^{(n-2)}) \mid \lambda_i, \ \lambda_j \in R \}.$$

C has length *n*, and $|C| = q^2$. Next, since A_k are mutually orthogonal Latin squares, it follows that if $a_{i_1j_1}^{(k)} = a_{i_2j_2}^{(k)}$ for some *k*, then $i_1 \neq i_2$, $j_1 \neq j_2$ and $a_{i_1j_1}^{(t)} \neq a_{i_2j_2}^{(t)}$ for all $t \neq k$. On the other hand, if $a_{i_1j_1}^{(k)} \neq a_{i_2j_2}^{(k)}$ for all *k*, then clearly $i_1 \neq i_2$ or $j_1 \neq j_2$. Thus $d(C) \geq n-1$ and hence d(C) = n-1. Therefore *C* is a desired code by the construction of *C*.

References

- R. Bose, S. Shrikhande and E. Parker, Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture, Canad. J. Math. 12 (1960), 189-203.
- [2] J. Denées and A. Keedwell, *Latin squares and their applications*, Academic press, New York, 1974.
- [3] R. Hill, A first course in Coding Theory, Oxford University press, 1986.
- [4] R. Singleton, Maximum distance q-nary codes, IEEE Trans. Info. Theory 10 (1964), 116-118.

Department of Mathematics Kangwon National University Chunchon 200-701, KOREA