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ON SOME MDS-CODES OVER ARBITRARY

ALPHABET

Gyu Whan Chang and Young Ho Park

Abstract. Let q = pe1
1 · · · pem

m be the product of distinct prime
elements. In this short paper, we show that the largest value of M
such that there exists an (n,M, n− 1) q-ary code is q2 if n− 1 ≤ pei

i

for all i.

1. Introduction

Let Fq be a set of q distinct elements. A q-ary code C of length n over
Fq is a subset of F n

q . The Hamming distance d(x, y) of x, y ∈ C is defined
to be the number of places in which they differ. The minimum distance
d(C) of C is the minimum of d(x, y), where x, y ∈ C and x 6= y. A q-ary
(n,M, d) code is a code of length n over Fq, containing M codewords
and having minimum distance d. We denote by Aq(n, d) the largest
value of M such that there exists an (n, M, d)-code. One of the main
coding theory problem is to find the largest code of given length and
given distance. An upper bound for Aq(n, d) is given by Singleton.

Theorem 1 (The Singleton Bound).

Aq(n, d) ≤ qn−d+1.

An (n, qn−d+1, d)-code is called a maximum distance separable code
(MDS-code), which was first explicitly studied by Singleton [4]. The
following theorem gives some MDS-codes [3].

Theorem 2. 1. Aq(4, 3) = q2 for all q 6= 2, 6 .
2. Aq(n, n− 1) = q2 if q is a prime power and n− 1 ≤ q.

The purpose of this short paper is to generalize this result.
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2. Main Theorem

Let q = pe1
1 · · · pem

m be the prime factorization of q and let Ri =
GF (pei

i ) be the Galois field of order pei
i . Let R = R1 × · · · × Rm be

the direct product of the Galois fields Ri. Then R is a commutative ring
with identity.

Lemma 3. If d ≤ pei
i for all i = 1, · · · ,m, there exist unit elements

α1, . . . , αd−1 of R such that αi − αj are also unit elements of R for all
i 6= j.

Proof. Choose any nonzero d−1 distinct elements xi1, . . . , xid−1 of Ri

and let αj = (x1j, x2j, . . . , xmj) ∈ R. Then each αj is a unit element of
R. Moreover, if i 6= j, then αi−αj = (x1i−x1j, x2i−x2j, . . . , xmi−xmj)
is a unit element of R because xki − xkj 6= 0 for k = 1, . . . , m. Thus
{α1, . . . , αd−1} is a set of desired elements of R.

A Latin square of order q is a q × q matrix whose entries are from R
of q distinct elements such that each row and each column of the matrix
contains each symbol exactly once. Let A = (aij) and B = (bij) be
two Latin squares of order q. Then A and B are said to be mutually
orthogonal Latin squares (MOLS) if the q2 ordered pairs (aij, bij) are all
distinct. A set {A1, . . . , Ak} of Latin squares is called a set of MOLS
if each pairs {Ai, Aj} is a pair of MOLS.

Proposition 4. Suppose that d ≤ pei
i for i = 1, . . .m. Then there is

a set {A1, . . . , Ad−1} of mutually orthogonal q × q Latin squares whose
entries are in R.

Proof. Let R = {λ1, λ2, . . . , λq} and let {α1, . . . , αd−1} be a set of units
in R such that αi − αj is also a unit of R for i 6= j. Let A1, . . . , Ad−1

be q × q matrices, in which the (i, j)th entry of Ak is an element of R
defined by

a
(k)
ij = λi + αkλj.

First, note that Ak is a Latin square. For if a
(k)
ij = a

(k)
it , then αkλj = αkλt

and hence λj = λt (note that αk is a unit in R). Similarly, if a
(k)
ij = a

(k)
tj ,

then i = t. Now we show that each pair Ak, At is mutually orthogonal.
For 1 ≤ k < t ≤ d− 1, if

(a
(k)
i1j1

, a
(t)
i1j1

) = (a
(k)
i2j2

, a
(t)
i2j2

),
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then

λi1 + αkλj1 = λi2 + αkλj2 , λi1 + αtλj1 = λi2 + αtλj2 ,

and hence (αk − αt)λj1 = (αk − αt)λj2 . Recall that αk, αt, and αk − αt

are units in R. Thus λj1 = λj2 and λi1 = λi2 , which implies that Ak and
At are mutually orthogonal.

Theorem 5. If n−1 ≤ pei
i for all i = 1, · · · ,m, then Aq(n, n−1) = q2.

Proof. By the Singleton bound, it suffices to show that there exists a
(n, q2, n − 1)-code. Let {A1, . . . , An−2} be a set of mutually orthogonal
q × q Latin squares over R as in Proposition 3. Let

C = {(λi, λj, a
(1)
ij , a

(2)
ij , . . . , a

(n−2)
ij ) | λi, λj ∈ R}.

C has length n, and |C| = q2. Next, since Ak are mutually orthogonal

Latin squares, it follows that if a
(k)
i1j1

= a
(k)
i2j2

for some k, then i1 6= i2,

j1 6= j2 and a
(t)
i1j1

6= a
(t)
i2j2

for all t 6= k. On the other hand, if a
(k)
i1j1

6= a
(k)
i2j2

for all k, then clearly i1 6= i2 or j1 6= j2. Thus d(C) ≥ n − 1 and hence
d(C) = n − 1. Therefore C is a desired code by the construction of
C.
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