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ON T-FUZZY GROUPS

Inheung Chon

Abstract. We characterize some properties of t-fuzzy groups and
t-fuzzy invariant groups and represent every subgroup S of a group
X using the level set of t-fuzzy group constructed from S.

1. Introduction

The concept of fuzzy sets was first introduced by Zadeh ([7]). Rosen-
feld ([3]) used this concept to formulate the notion of fuzzy groups.
Since then, many other fuzzy algebraic concepts based on the Rosen-
feld’s fuzzy groups were developed. Anthony and Sherwood ([1]) re-
defined fuzzy groups in terms of t-norm which replaced the minimum
operation of Rosenfeld’s definition. Some properties of these redefined
fuzzy groups, which we call t-fuzzy groups in this paper, have been
developed by Sherwood ([5]), Sessa ([4]), Sidky and Mishref ([6]). As a
continuation of these studies, we characterize some basic properties of
t-fuzzy groups and t-fuzzy invariant groups and represent every sub-
group S of X using the level set of t-fuzzy group constructed from
S.

2. t-fuzzy groups

Definition 1. A function B from a set X to the closed unit interval
[0, 1] in R is called a fuzzy set in X. For every x ∈ B, B(x) is called a
membership grade of x in B.
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Definition 2. (Definition 1.3 of [4]) A t-norm is a function T :
[0, 1]× [0, 1] → [0, 1] satisfying, for each p, q, r, s in [0,1],

(1) T (0, p) = 0, T (p, 1) = p
(2) T (p, q) ≤ T (r, s) if p ≤ r and q ≤ s
(3) T (p, q) = T (q, p)
(4) T (p, T (q, r)) = T (T (p, q), r))

Definition 3. Let S be a groupoid and T be a t-norm. A function
B : S → [0, 1] is a t-fuzzy groupoid in S iff for every x, y in S, B(xy) ≥
T (B(x), B(y)). If X is a group, a fuzzy groupoid G is a t-fuzzy group
in X iff for each x ∈ X, G(x−1) = G(x).

Proposition 4. Let G be a fuzzy subset in a group X. G is a
t-fuzzy group such that G(e) = 1 iff G(xy−1) ≥ T (G(x), G(y)) and
G(e) = 1.

Proof. Straightforward. ¤

Proposition 5. Let G be a t-fuzzy group in a group X such that
G(a) = 1. Let ra : X → X be a right translation defined by ra(x) = xa
and let la : X → X be a left translation defined by la(x) = ax. Then
ra(G) = la(G) = G.

Proof. ra(G)(x) = sup
z∈r−1

a (x)

G(z) = G(xa−1) ≥ T (G(x), G(a−1)) =

T (G(x), G(a)) = G(x) = G(xa−1a) ≥ T (G(xa−1), G(a)) = G(xa−1) =
ra(G)(x). Thus ra(G)(x) ≥ G(x) ≥ ra(G)(x). That is, ra(G) = G.
Similarly we may show la(G) = G. ¤

For fuzzy sets U, V in a set X, U ◦V has been defined in most articles
by

(U ◦ V )(x) =

{
sup
ab=x

min(U(a), V (b)) if ab = x

0 if ab 6= x.

We generalize this in the following definition and develop some prop-
erties of t-fuzzy groups and t-fuzzy invariant groups.

Definition 6. Let X be a set and let U, V be two fuzzy sets in X.
U ◦ V is defined by

(U ◦ V )(x) =

{
sup
ab=x

T (U(a), V (b)) if ab = x

0 if ab 6= x.
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Proposition 7. Let A,B be fuzzy sets in a set X and let xp, yq be
fuzzy points in X. Then

(1) xp ◦ yq = (xy)T (p,q).
(2) A ◦B = ∪

xp∈A,yq∈B
xp ◦ yq, where

(xp ◦ yq)(z) = sup
cd=z

T (xp(c), yq(d)).

Proof. (1) (xp ◦yq)(xy) = sup
ab=xy

T (xp(a), yq(b)) = T (xp(x), yq(y)) =

T (p, q). If z 6= xy,

(xp ◦ yq)(z) = sup
ab=z

T (xp(a), yq(b)) ≤ max[T (p, 0), T (0, q)] = 0,

that is, (xp ◦ yq)(z) = 0. Thus xp ◦ yq = (xy)T (p,q).
(2) If xp ∈ A and yq ∈ B, then A(s) ≥ xp(s) and B(t) ≥ yq(t). Thus

(A ◦B)(z) = sup
st=z

T (A(s), B(t))

≥ sup
st=z

sup
xp∈A,yq∈B

T (xp(s), yq(t))

= sup
xp∈A,yq∈B

sup
st=z

T (xp(s), yq(t))

= sup
xp∈A,yq∈B

(xp ◦ yq)(z)

= ( ∪
xp∈A,yq∈B

xp ◦ yq)(z).

Thus A ◦B ⊆ ∪ xp ◦ yq. Since sA(s) ∈ A and tB(t) ∈ B,

( ∪
xp∈A,yq∈B

xp ◦ yq)(z) = sup
xp∈A,yq∈B

sup
st=z

T (xp(s), yq(t))

≥ sup
st=z

T (sA(s)(s), tB(t)(t))

= sup
st=z

T (A(s), B(t)) = (A ◦B)(z). ¤

Proposition 8. Let X be a set. Then

(1) If X is associative, commutative, respectively, then so is ◦.
(2) If X has a unit e, then A ◦ ep = ep ◦ A for a fuzzy set A in X

and the fuzzy singleton e1 is a unit of the operation ◦, that is,
A ◦ e1 = A = e1 ◦A
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Proof. (1) Suppose X is associative. Then

[(A ◦B) ◦ C](z) = sup
ab=z

T [ sup
pq=a

T (A(p), B(q)), C(b)]

= sup
(pq)b=z

T [T (A(p), B(q)), C(b)]

= sup
(pq)b=z

T [A(p), T (B(q), C(b))]

= sup
pr=z

T [A(p), sup
qb=r

T (B(q), C(b))]

= sup
pr=z

T [A(p), (B ◦ C)(r)] = [A ◦ (B ◦ C)](z).

Suppose X is commutative. Then (A ◦ B)(x) = sup
yz=x

T (A(y), B(z)) =

sup
zy=x

T (B(z), A(y)) = (B ◦A)(x).

(2) (e1◦A)(x) = T (e1(e), A(x)) = A(x) and (A◦e1)(x) = T (A(x), e1(e))
= A(x).

(A ◦ ep)(x) = T (A(x), ep(e)) = T (ep(e), A(x))

= sup
yz=x

T (ep(y), A(z)) = (ep ◦A)(x). ¤

Theorem 9. Let A be an non-empty fuzzy set of a groupoid X.
Then the following are equivalent.

(1) A is a t-fuzzy groupoid.
(2) For any xp, yq ∈ A, xp ◦ yq ∈ A.
(3) A ◦A ⊆ A.

Proof. (1) → (2). Suppose that A(xy) ≥ T (A(x), A(y)). By Propo-
sition 7,

(xp ◦ yq)(z) = [(xy)T (p,q)](z) =
{

T (p, q), if z = xy

0, if z 6= xy.

Let xp, yq ∈ A. Then A(x) ≥ p and A(y) ≥ q. If z = xy, A(z) =
A(xy) ≥ T (A(x), A(y)) ≥ T (p, q) = (xp ◦yq)(z), and hence xp ◦yq ∈ A.
If z 6= xy, A(z) ≥ (xp ◦ yq)(z) = 0, and hence xp ◦ yq ∈ A.
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(2) → (3). Suppose that for any xp, yq ∈ A, xp ◦ yq ∈ A. By Proposi-
tion 7,

(A ◦A)(z) = [ ∪
xp∈A,yq∈A

xp ◦ yq](z) = sup
xp∈A,yq∈A

(xp ◦ yq)(z) ≤ A(z).

(3) → (1). Suppose A ◦ A ⊆ A. Then A(xy) ≥ (A ◦ A)(xy) =
sup

ab=xy
T (A(a), A(b)) ≥ T (A(x), A(y)). Thus A is a t-fuzzy groupoid.¤

Definition 10. Let A be a t-fuzzy subgroup of a set X. A is called
a t-fuzzy invariant (or normal) subgroup of X if A(xy) = A(yx) for all
x, y ∈ X.

Theorem 11. Let A be a t-fuzzy invariant subgroup of an associa-
tive set X. Then

(1) For a fuzzy set B of X, A ◦B = B ◦A.
(2) If B is a t-fuzzy subgroup of X, so is B ◦A.

Proof. (1)

(A ◦B)(x) = sup
yz=x

T (A(y), B(z)) = sup
xz−1z=x

T (A(xz−1), B(z))

= sup
zz−1xz−1z=x

T (B(z), A(z−1x)) = sup
zz−1x=x

T (B(z), A(z−1x))

= sup
zy=x

T (B(z), A(y)) = (B ◦A)(x).

(2) By Theorem 9 and part (1) of this theorem, (B ◦ A) ◦ (B ◦ A) =
B ◦ (A ◦ B) ◦ A = B ◦ (B ◦ A) ◦ A = (B ◦ B) ◦ (A ◦ A) ⊆ B ◦ A.
(B◦A)(x−1) = sup

yz=x−1
T (B(y), A(z)) = sup

z−1y−1=x

T (A(z−1), B(y−1)) =

(A ◦B)(x). Since A ◦B = B ◦A, (B ◦A)(x−1) = (B ◦A)(x). ¤

Proposition 12. If A is a t-fuzzy invariant subgroup of a group
X such that A(e) = 1, then XA = {x ∈ X : A(x) = A(e)} is a normal
subgroup of X.

Proof. It is easy to see that XA is a subgroup of X. Let g ∈ X
and h ∈ XA. Then A(h) = 1. Since A is a t-fuzzy invariant subgroup,
A(ghg−1) = A(hg−1g) = A(h) = 1, and hence ghg−1 ∈ XA. Thus XA

is a normal subgroup of a group X. ¤
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Proposition 13. If A is a t-fuzzy invariant subgroup of X and B
is a fuzzy set in X, then h−1(h(B)) = XA ◦ B, where h : X → X/XA

is a natural homomorphism.

Proof.

[h−1(h(B))](x) = h(B)(h(x)) = sup
y∈h−1(h(x))

B(y)

= sup
yXA=xXA

B(y) = sup
xy−1∈XA

B(y),

(XA ◦B)(x) = sup
zy=x

T (XA(z), B(y)) = sup
z∈XA,zy=x

T (1, B(y))

= sup
xy−1∈XA

B(y).

Thus h−1(h(B)) = XA ◦B. ¤

Definition 14. Let B be a fuzzy set in a set X and f be a map
defined on X. Then B is called f-invariant if, for all x, y ∈ X, f(x) =
f(y) implies B(x) = B(y).

Theorem 15. Let N be a normal subgroup of a group X and let
G be a t-fuzzy group in X such that G(x) = 1 for all x ∈ N . Let
φ : X → X/N be a canonical homomorphism. Then G is φ-invariant
and φ(G) is a t-fuzzy group in X/N .

Proof. Suppose φ(x) = φ(y). Then xN = yN , that is, xy−1 ∈ N .
G(x) = G(xy−1y) ≥ T (G(xy−1), G(y)) = T (1, G(y)) = G(y). G(y) =
G(yx−1x) ≥ T (G(yx−1), G(x)) = T (G(xy−1), G(x)) = T (1, G(x)) =
G(x). Thus G(x) = G(y), that is, G is φ-invariant. Since G is φ-
invariant, φ(G)(xNyN) = φ(G)(xyN) = sup

z∈φ−1(xyN)

G(z) = G(xy),

φ(G)(xN) = sup
z∈φ−1(xN)

G(z) = G(x), and φ(G)(yN) = sup
z∈φ−1(yN)

G(z) =

G(y). Thus

φ(G)(xNyN) = G(xy) ≥ T (G(x), G(y)) = T (φ(G)(xN), φ(G)(yN)),

φ(G)((xN)−1) = φ(G)(x−1N) = sup
z∈φ−1(x−1N)

G(z)

= G(x−1) = G(x) = φ(G)(xN).

Thus φ(G) = G/N is a t-fuzzy group. ¤
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Proposition 16. Let S be a fuzzy set in a group X. If St = {x ∈
X : S(x) ≥ t} is a subgroup of X for all t > 0, then S is a t-fuzzy
group in X.

Proof. Let S(x) = t1 and S(y) = t2 with t1 ≤ t2. Then x ∈ St1 ,
y ∈ St2 , and St2 ⊂ St1 . Thus y ∈ St1 . Since x, y ∈ St1 and St1 is
a subgroup, xy ∈ St1 , and hence S(xy) ≥ t1. Since T (S(x), S(y)) =
T (t1, t2) ≤ T (t1, 1) = t1, S(xy) ≥ t1 ≥ T (S(x), S(y)). Let S(z) = t.
Then z ∈ St. Since St is a subgroup, z−1 ∈ St, that is, S(z−1) ≥ t.
Thus S(z−1) ≥ S(z). Similarly, we may show S(z) ≥ S(z−1). Hence
S is a t-fuzzy group. ¤

Theorem 17. Let S be a subgroup of a group X and let H be a
fuzzy set in X defined by

H(x) =
{

p if x ∈ S

0 if x ∈ X − S.

Then H is a t-fuzzy group and every subgroup S of a group X can be
represented as S = Hp = {x ∈ X : H(x) = p}, where 0 < p.

Proof. Let x, y, z ∈ X.
(i) Suppose x, y ∈ S.
Then xy ∈ S, and hence H(x) = p, H(y) = p, and H(xy) = p. Since
T (H(x),H(y)) = T (p, p) ≤ T (p, 1) = p, H(xy) = p ≥ T (H(x),H(y)).
If z ∈ S, then z−1 ∈ S, and hence H(z−1) = p = H(z). If z /∈ S, then
z−1 /∈ S, and hence H(z−1) = H(z) = 0. Thus H is a t-fuzzy group.
(ii) Suppose x ∈ S, y /∈ S, and xy ∈ S.
Then H(x) = p, H(y) = 0, and H(xy) = p. Since T (H(x),H(y)) =
T (p, 0) ≤ T (p, 1) = p, H(xy) = p ≥ T (H(x),H(y)). We may show
H(z−1) = H(z) for all z ∈ X as shown in part (i). Thus H is a t-fuzzy
group.
(iii) Suppose x ∈ S, y /∈ S, and xy /∈ S.
Then H(x) = p, H(y) = 0, and H(xy) = 0. Since T (p, 0) = 0,
T (H(x),H(y)) = T (p, 0) = 0. Thus H(xy) = T (H(x),H(y)). We may
show H(z−1) = H(z) for all z ∈ X as shown in part (i). Thus H is a
t-fuzzy group.
(iv) Suppose x /∈ S and y /∈ S.
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Then H(x) = 0 and H(y) = 0. If xy ∈ S, then H(xy) = p ≥
T (H(x),H(y)) = T (0, 0), and hence H(xy) ≥ T (H(x),H(y)). If xy /∈
S, then H(xy) = T (H(x),H(y)) = 0. We may show H(z−1) = H(z)
for all z ∈ X as shown in part (i). Thus H is a t-fuzzy group.

From (i), (ii), (iii), and (iv), H is a t-fuzzy group in X. Let α ∈ Hp.
Then H(α) = p > 0, and hence α ∈ S. Thus Hp ⊆ S. Let β ∈ S.
Then H(β) = p, and hence β ∈ Hp. Thus S ⊆ Hp. Hence S = Hp. ¤
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