Kangweon-Kyungki Math. Jour. 9 (2001), No. 2, pp. 149-156

ON T-FUZZY GROUPS

INHEUNG CHON

ABSTRACT. We characterize some properties of t-fuzzy groups and t-fuzzy invariant groups and represent every subgroup S of a group X using the level set of t-fuzzy group constructed from S.

1. Introduction

The concept of fuzzy sets was first introduced by Zadeh ([7]). Rosenfeld ([3]) used this concept to formulate the notion of fuzzy groups. Since then, many other fuzzy algebraic concepts based on the Rosenfeld's fuzzy groups were developed. Anthony and Sherwood ([1]) redefined fuzzy groups in terms of t-norm which replaced the minimum operation of Rosenfeld's definition. Some properties of these redefined fuzzy groups, which we call t-fuzzy groups in this paper, have been developed by Sherwood ([5]), Sessa ([4]), Sidky and Mishref ([6]). As a continuation of these studies, we characterize some basic properties of t-fuzzy groups and t-fuzzy invariant groups and represent every subgroup S of X using the level set of t-fuzzy group constructed from S.

2. t-fuzzy groups

DEFINITION 1. A function B from a set X to the closed unit interval [0, 1] in \mathbb{R} is called a *fuzzy set* in X. For every $x \in B$, B(x) is called a *membership grade* of x in B.

Received August 6, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 20N25.

Key words and phrases: t-fuzzy group, t-fuzzy invariant group.

This paper was supported by the Natural Science Research Institute of Seoul Women's University, 2000

DEFINITION 2. (Definition 1.3 of [4]) A *t*-norm is a function T: $[0,1] \times [0,1] \rightarrow [0,1]$ satisfying, for each p,q,r,s in [0,1],

- (1) T(0,p) = 0, T(p,1) = p
- (2) $T(p,q) \leq T(r,s)$ if $p \leq r$ and $q \leq s$
- (3) T(p,q) = T(q,p)
- (4) T(p, T(q, r)) = T(T(p, q), r))

DEFINITION 3. Let S be a groupoid and T be a t-norm. A function $B: S \to [0,1]$ is a t-fuzzy groupoid in S iff for every x, y in $S, B(xy) \ge T(B(x), B(y))$. If X is a group, a fuzzy groupoid G is a t-fuzzy group in X iff for each $x \in X, G(x^{-1}) = G(x)$.

PROPOSITION 4. Let G be a fuzzy subset in a group X. G is a t-fuzzy group such that G(e) = 1 iff $G(xy^{-1}) \ge T(G(x), G(y))$ and G(e) = 1.

Proof. Straightforward.

PROPOSITION 5. Let G be a t-fuzzy group in a group X such that G(a) = 1. Let $r_a : X \to X$ be a right translation defined by $r_a(x) = xa$ and let $l_a : X \to X$ be a left translation defined by $l_a(x) = ax$. Then $r_a(G) = l_a(G) = G$.

 $\begin{array}{l} \textit{Proof. } r_a(G)(x) = \sup_{z \in r_a^{-1}(x)} G(z) = G(xa^{-1}) \geq T(G(x), G(a^{-1})) = \\ T(G(x), G(a)) = G(x) = G(xa^{-1}a) \geq T(G(xa^{-1}), G(a)) = G(xa^{-1}) = \\ r_a(G)(x). \ \text{Thus } r_a(G)(x) \geq G(x) \geq r_a(G)(x). \ \text{That is, } r_a(G) = G. \\ \text{Similarly we may show } l_a(G) = G. \end{array}$

For fuzzy sets U, V in a set $X, U \circ V$ has been defined in most articles by

$$(U \circ V)(x) = \begin{cases} \sup_{ab=x} \min(U(a), V(b)) & \text{if } ab = x \\ 0 & \text{if } ab \neq x. \end{cases}$$

We generalize this in the following definition and develop some properties of t-fuzzy groups and t-fuzzy invariant groups.

DEFINITION 6. Let X be a set and let U, V be two fuzzy sets in X. $U \circ V$ is defined by

$$(U \circ V)(x) = \begin{cases} \sup_{ab=x} T(U(a), V(b)) & \text{if } ab = x \\ 0 & \text{if } ab \neq x. \end{cases}$$

PROPOSITION 7. Let A, B be fuzzy sets in a set X and let x_p, y_q be fuzzy points in X. Then

(1)
$$x_p \circ y_q = (xy)_{T(p,q)}$$
.
(2) $A \circ B = \bigcup_{\substack{x_p \in A, y_q \in B}} x_p \circ y_q$, where
 $(x_p \circ y_q)(z) = \sup_{cd=z} T(x_p(c), y_q(d))$.

Proof. (1) $(x_p \circ y_q)(xy) = \sup_{ab=xy} T(x_p(a), y_q(b)) = T(x_p(x), y_q(y)) = T(p, q)$. If $z \neq xy$,

$$(x_p \circ y_q)(z) = \sup_{ab=z} T(x_p(a), y_q(b)) \le \max[T(p, 0), T(0, q)] = 0,$$

that is, $(x_p \circ y_q)(z) = 0$. Thus $x_p \circ y_q = (xy)_{T(p,q)}$. (2) If $x_p \in A$ and $y_q \in B$, then $A(s) \ge x_p(s)$ and $B(t) \ge y_q(t)$. Thus

$$(A \circ B)(z) = \sup_{st=z} T(A(s), B(t))$$

$$\geq \sup_{st=z} \sup_{x_p \in A, y_q \in B} T(x_p(s), y_q(t))$$

$$= \sup_{x_p \in A, y_q \in B} \sup_{st=z} T(x_p(s), y_q(t))$$

$$= \sup_{x_p \in A, y_q \in B} (x_p \circ y_q)(z)$$

$$= (\bigcup_{x_p \in A, y_q \in B} x_p \circ y_q)(z).$$

Thus $A \circ B \subseteq \bigcup x_p \circ y_q$. Since $s_{A(s)} \in A$ and $t_{B(t)} \in B$,

$$(\bigcup_{x_p \in A, y_q \in B} x_p \circ y_q)(z) = \sup_{x_p \in A, y_q \in B} \sup_{st=z} T(x_p(s), y_q(t))$$

$$\geq \sup_{st=z} T(s_{A(s)}(s), t_{B(t)}(t))$$

$$= \sup_{st=z} T(A(s), B(t)) = (A \circ B)(z).$$

PROPOSITION 8. Let X be a set. Then

- (1) If X is associative, commutative, respectively, then so is \circ .
- (2) If X has a unit e, then $A \circ e_p = e_p \circ A$ for a fuzzy set A in X and the fuzzy singleton e_1 is a unit of the operation \circ , that is, $A \circ e_1 = A = e_1 \circ A$

Proof. (1) Suppose X is associative. Then

$$\begin{split} [(A \circ B) \circ C](z) &= \sup_{ab=z} T[\sup_{pq=a} T(A(p), B(q)), C(b)] \\ &= \sup_{(pq)b=z} T[T(A(p), B(q)), C(b)] \\ &= \sup_{(pq)b=z} T[A(p), T(B(q), C(b))] \\ &= \sup_{pr=z} T[A(p), \sup_{qb=r} T(B(q), C(b))] \\ &= \sup_{pr=z} T[A(p), (B \circ C)(r)] = [A \circ (B \circ C)](z). \end{split}$$

Suppose X is commutative. Then $(A \circ B)(x) = \sup_{yz=x} T(A(y), B(z)) = \sup_{yz=x} T(B(z), A(y)) = (B \circ A)(x).$ (2) $(e_1 \circ A)(x) = T(e_1(e), A(x)) = A(x)$ and $(A \circ e_1)(x) = T(A(x), e_1(e)) = A(x).$

$$(A \circ e_p)(x) = T(A(x), e_p(e)) = T(e_p(e), A(x))$$

= $\sup_{yz=x} T(e_p(y), A(z)) = (e_p \circ A)(x).$

THEOREM 9. Let A be an non-empty fuzzy set of a groupoid X. Then the following are equivalent.

- (1) A is a t-fuzzy groupoid.
- (2) For any $x_p, y_q \in A$, $x_p \circ y_q \in A$.
- (3) $A \circ A \subseteq A$.

Proof. $(1) \to (2)$. Suppose that $A(xy) \ge T(A(x), A(y))$. By Proposition 7,

$$(x_p \circ y_q)(z) = [(xy)_{T(p,q)}](z) = \begin{cases} T(p,q), & \text{if } z = xy \\ 0, & \text{if } z \neq xy. \end{cases}$$

Let $x_p, y_q \in A$. Then $A(x) \ge p$ and $A(y) \ge q$. If z = xy, $A(z) = A(xy) \ge T(A(x), A(y)) \ge T(p, q) = (x_p \circ y_q)(z)$, and hence $x_p \circ y_q \in A$. If $z \ne xy$, $A(z) \ge (x_p \circ y_q)(z) = 0$, and hence $x_p \circ y_q \in A$.

On t-fuzzy groups

 $(2) \rightarrow (3)$. Suppose that for any $x_p, y_q \in A, x_p \circ y_q \in A$. By Proposition 7,

$$(A \circ A)(z) = [\bigcup_{x_p \in A, y_q \in A} x_p \circ y_q](z) = \sup_{x_p \in A, y_q \in A} (x_p \circ y_q)(z) \le A(z).$$

 $(3) \to (1)$. Suppose $A \circ A \subseteq A$. Then $A(xy) \ge (A \circ A)(xy) = \sup_{ab=xy} T(A(a), A(b)) \ge T(A(x), A(y))$. Thus A is a t-fuzzy groupoid. \Box

DEFINITION 10. Let A be a t-fuzzy subgroup of a set X. A is called a *t*-fuzzy invariant (or normal) subgroup of X if A(xy) = A(yx) for all $x, y \in X$.

THEOREM 11. Let A be a t-fuzzy invariant subgroup of an associative set X. Then

(1) For a fuzzy set B of X, $A \circ B = B \circ A$.

(2) If B is a t-fuzzy subgroup of X, so is $B \circ A$.

Proof. (1)

$$(A \circ B)(x) = \sup_{yz=x} T(A(y), B(z)) = \sup_{xz^{-1}z=x} T(A(xz^{-1}), B(z))$$

=
$$\sup_{zz^{-1}xz^{-1}z=x} T(B(z), A(z^{-1}x)) = \sup_{zz^{-1}x=x} T(B(z), A(z^{-1}x))$$

=
$$\sup_{zy=x} T(B(z), A(y)) = (B \circ A)(x).$$

(2) By Theorem 9 and part (1) of this theorem, $(B \circ A) \circ (B \circ A) = B \circ (A \circ B) \circ A = B \circ (B \circ A) \circ A = (B \circ B) \circ (A \circ A) \subseteq B \circ A.$ $(B \circ A)(x^{-1}) = \sup_{yz=x^{-1}} T(B(y), A(z)) = \sup_{z^{-1}y^{-1}=x} T(A(z^{-1}), B(y^{-1})) = (A \circ B)(x).$ Since $A \circ B = B \circ A$, $(B \circ A)(x^{-1}) = (B \circ A)(x).$

PROPOSITION 12. If A is a t-fuzzy invariant subgroup of a group X such that A(e) = 1, then $X_A = \{x \in X : A(x) = A(e)\}$ is a normal subgroup of X.

Proof. It is easy to see that X_A is a subgroup of X. Let $g \in X$ and $h \in X_A$. Then A(h) = 1. Since A is a t-fuzzy invariant subgroup, $A(ghg^{-1}) = A(hg^{-1}g) = A(h) = 1$, and hence $ghg^{-1} \in X_A$. Thus X_A is a normal subgroup of a group X.

PROPOSITION 13. If A is a t-fuzzy invariant subgroup of X and B is a fuzzy set in X, then $h^{-1}(h(B)) = X_A \circ B$, where $h: X \to X/X_A$ is a natural homomorphism.

Proof.

$$[h^{-1}(h(B))](x) = h(B)(h(x)) = \sup_{y \in h^{-1}(h(x))} B(y)$$

= $\sup_{yX_A = xX_A} B(y) = \sup_{xy^{-1} \in X_A} B(y),$
 $(X_A \circ B)(x) = \sup_{zy = x} T(X_A(z), B(y)) = \sup_{z \in X_A, zy = x} T(1, B(y))$
= $\sup_{xy^{-1} \in X_A} B(y).$
 $\Leftrightarrow h^{-1}(h(B)) = X_A \circ B.$

Thus $h^{-1}(h(B)) = X_A \circ B$.

DEFINITION 14. Let B be a fuzzy set in a set X and f be a map defined on X. Then B is called *f*-invariant if, for all $x, y \in X$, f(x) =f(y) implies B(x) = B(y).

THEOREM 15. Let N be a normal subgroup of a group X and let G be a t-fuzzy group in X such that G(x) = 1 for all $x \in N$. Let $\phi: X \to X/N$ be a canonical homomorphism. Then G is ϕ -invariant and $\phi(G)$ is a t-fuzzy group in X/N.

Proof. Suppose $\phi(x) = \phi(y)$. Then xN = yN, that is, $xy^{-1} \in N$. $G(x) = G(xy^{-1}y) \ge T(G(xy^{-1}), G(y)) = T(1, G(y)) = G(y). \ G(y) = G(y).$ $G(yx^{-1}x) \ge T(G(yx^{-1}), G(x)) = T(G(xy^{-1}), G(x)) = T(1, G(x)) =$ G(x). Thus G(x) = G(y), that is, G is ϕ -invariant. Since G is ϕ invariant, $\phi(G)(xNyN) = \phi(G)(xyN) =$ sup G(z) = G(xy), $z \in \phi^{-1}(xyN)$ $\sup \quad G(z) = G(x), \text{ and } \phi(G)(yN) =$ $\phi(G)(xN) =$ $\sup G(z) =$ $z{\in}\phi^{-1}(yN)$ $z \in \phi^{-1}(xN)$ G(y). Thus $\phi(G)(xNyN) = G(xy) \ge T(G(x), G(y)) = T(\phi(G)(xN), \phi(G)(yN)),$ $\phi(G)((xN)^{-1}) = \phi(G)(x^{-1}N) = \sup_{z \in \phi^{-1}(x^{-1}N)} G(z)$ $= G(x^{-1}) = G(x) = \phi(G)(xN).$

Thus $\phi(G) = G/N$ is a t-fuzzy group.

On t-fuzzy groups

PROPOSITION 16. Let S be a fuzzy set in a group X. If $S_t = \{x \in X : S(x) \ge t\}$ is a subgroup of X for all t > 0, then S is a t-fuzzy group in X.

Proof. Let $S(x) = t_1$ and $S(y) = t_2$ with $t_1 \leq t_2$. Then $x \in S_{t_1}$, $y \in S_{t_2}$, and $S_{t_2} \subset S_{t_1}$. Thus $y \in S_{t_1}$. Since $x, y \in S_{t_1}$ and S_{t_1} is a subgroup, $xy \in S_{t_1}$, and hence $S(xy) \geq t_1$. Since T(S(x), S(y)) = $T(t_1, t_2) \leq T(t_1, 1) = t_1, S(xy) \geq t_1 \geq T(S(x), S(y))$. Let S(z) = t. Then $z \in S_t$. Since S_t is a subgroup, $z^{-1} \in S_t$, that is, $S(z^{-1}) \geq t$. Thus $S(z^{-1}) \geq S(z)$. Similarly, we may show $S(z) \geq S(z^{-1})$. Hence S is a t-fuzzy group. \Box

THEOREM 17. Let S be a subgroup of a group X and let H be a fuzzy set in X defined by

$$H(x) = \begin{cases} p & \text{if } x \in S \\ 0 & \text{if } x \in X - S. \end{cases}$$

Then H is a t-fuzzy group and every subgroup S of a group X can be represented as $S = H_p = \{x \in X : H(x) = p\}$, where 0 < p.

Proof. Let $x, y, z \in X$.

(i) Suppose $x, y \in S$. Then $xy \in S$, and hence H(x) = p, H(y) = p, and H(xy) = p. Since $T(H(x), H(y)) = T(p, p) \leq T(p, 1) = p$, $H(xy) = p \geq T(H(x), H(y))$. If $z \in S$, then $z^{-1} \in S$, and hence $H(z^{-1}) = p = H(z)$. If $z \notin S$, then $z^{-1} \notin S$, and hence $H(z^{-1}) = H(z) = 0$. Thus H is a t-fuzzy group.

(ii) Suppose $x \in S$, $y \notin S$, and $xy \in S$.

Then H(x) = p, H(y) = 0, and H(xy) = p. Since $T(H(x), H(y)) = T(p,0) \le T(p,1) = p$, $H(xy) = p \ge T(H(x), H(y))$. We may show $H(z^{-1}) = H(z)$ for all $z \in X$ as shown in part (i). Thus H is a t-fuzzy group.

(iii) Suppose $x \in S$, $y \notin S$, and $xy \notin S$.

Then H(x) = p, H(y) = 0, and H(xy) = 0. Since T(p,0) = 0, T(H(x), H(y)) = T(p,0) = 0. Thus H(xy) = T(H(x), H(y)). We may show $H(z^{-1}) = H(z)$ for all $z \in X$ as shown in part (i). Thus H is a t-fuzzy group.

(iv) Suppose $x \notin S$ and $y \notin S$.

Then H(x) = 0 and H(y) = 0. If $xy \in S$, then $H(xy) = p \ge T(H(x), H(y)) = T(0, 0)$, and hence $H(xy) \ge T(H(x), H(y))$. If $xy \notin S$, then H(xy) = T(H(x), H(y)) = 0. We may show $H(z^{-1}) = H(z)$ for all $z \in X$ as shown in part (i). Thus H is a t-fuzzy group.

From (i), (ii), (iii), and (iv), H is a t-fuzzy group in X. Let $\alpha \in H_p$. Then $H(\alpha) = p > 0$, and hence $\alpha \in S$. Thus $H_p \subseteq S$. Let $\beta \in S$. Then $H(\beta) = p$, and hence $\beta \in H_p$. Thus $S \subseteq H_p$. Hence $S = H_p$. \Box

References

- J. M. Anthony and H. Sherwood, Fuzzy groups redefined, J. Math. Anal. Appl. 69 (1979), 124–130.
- W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982), 133–139.
- 3. A. Rosenfeld, Fuzzy Groups, J. Math. Anal. Appl. 35 (1971), 512–517.
- S. Sessa, On fuzzy subgroups and fuzzy ideals under triangular norms, Fuzzy Sets and Systems 13 (1984), 95–100.
- H. Sherwood, Products of fuzzy subgroups, Fuzzy Sets and Systems 11 (1983), 79–89.
- F. I. Sidky and M. Atif Mishref, Fuzzy cosets and cyclic and Abelian fuzzy subgroups, Fuzzy Sets and Systems 43 (1991), 243–250.
- 7. L. A. Zadeh, *Fuzzy sets*, Inform. and Control 8 (1965), 338–353.

Department of Mathematics Seoul Women's University Seoul 139-774, Korea