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MAPPING CLASS GROUP OPERAD

Chan-Seok Jeong and Yongjin Song

Abstract. We construct an operad which is called the mapping
class group operad. Its structure map is induced by the attachings
of surfaces. The similar operad was constructed by Tillmann in order
prove that Γ+

∞ is an infinite loop space. Our operad is rather simpler
and easier to deal with.

1. Introduction

The theory of operads was introduced by homotopy theorists in the
early seventies in order to understand and detect iterated and in par-
ticular infinite loop spaces. The little n-cube operad Cn introduced by
Boardman and Vogt([2]) has been playing a key role in investigating the
internal structure of iterated loop spaces.

It was announced by E. Miller([5]) that the classifying space of the
collection of mapping class groups with one boundary component has
the homotopy type of double loop space, and that he noticed the action
of little 2-cube operad on it. Tillman([6]) proved that the space is really
an infinite loop space by using a higher genus surface operad. In this
paper we construct the operad which is simpler and more direct because
we do not take any quotients on the level of categories. It is important
to note that the structure maps of the mapping class group operad S
induced by the attachings do not produce a surface of type F0,2. We
may take a single object S1 in the category S0,1,1.
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2. Preliminaries

In this section we review some definitions and well-known results con-
cerning mapping class groups, classifying space of categories, ribbon
braid group and operads; for more details see ([1], [3], [4]).

Let Fg,k be a compact connected orientable surface of genus g with
k boundary components. Let Diff+(Fg,k) be the group of orienta-
tion preserving diffeomorphisms of Fg,k that fix the boundary pointwise,
and let Iso(Fg,k) be the normal subgroup of diffeomorphisms which are
isotopic to the identity relative to the boundary. The quotient group
Γg,k = Diff+(Fg,k)/Iso(Fg,k) is called the mapping class group of the
surface Fg,k. It is well-known that Γg,k is isomorphic to the group of
isotopy classes of those self-diffeomorphisms, and each connected com-
ponent of Diff+(Fg,k) is contractible so that Γg,k = π0Diff+(Fg,k).

Definition 2.1. Let C be a small category. Then we can form a
simplicial set B∗C, which is called the bar construction (or nerve) of C.
Let B0C = Obj(C). For n ≥ 1, n-simplices BnC is a set of all possible
chains of morphisms of the form

A0
α1−→ A1

α2−→ · · · αn−→ An, Ai ∈ Obj(C), αj ∈ Mor(C).

The i-th face map di deletes the i-th object and composes maps if nec-

essary. The i-th degeneracy map si replaces Ai by Ai
id−→ Ai. The

classifying space BC of a category C is defined BC = |B∗C|. In par-
ticular, for a group G, we may regard G as a category with a single

object ∗ and morphism ∗ g→ ∗ for all g ∈ G. Here the composition
of morphisms is the multiplication. Then we have BG = K(G, 1), the
Eilenberg-MacLane space. The functor B : Cat → T op is called the
classifying space functor.

Let F, G be functors from C to D. If there is a natural transformation

η : F → G then η induces a homotopy BF
Bη' BG.

Lemma 2.2. Let C and D be categories. Then

B(C × D) ' BC ×BD.

Lemma 2.3. Let C be a connected groupoid. Then BC is homotopy
equivalent to BHom(x, x) for each x ∈ Obj(C).
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Proof. We first show that for pairs (x0, y0), (x1, y1) of objects,

Hom(x0, y0) ∼= Hom(x1, y1).

Choose isomorphisms f : x1 → x0, g : y0 → y1. Define Φ : Hom(x0, y0) →
Hom(x1, y1) and Ψ : Hom(x1, y1) → Hom(x0, y0) as follows: Φ(φ) =
g ◦φ ◦ f for φ ∈ Hom(x0, y0), Ψ(ψ) = g−1 ◦ψ ◦ f−1 for ψ ∈ Hom(x1, y1).
Then Ψ ◦ Φ(φ) = φ and Φ ◦Ψ(ψ) = ψ.

Let G = Hom(x0, x0) for a fixed object x0 ∈ C, and let G
i

↪→ C.
Let φ(x, y) : Hom(x, y) → G be an isomorphism. Now, we can define
a functor F : C → G as follows: F (x) = x0 for x ∈ Obj(C), F (f) =
φ(x, y)(f) for f : x → y ∈ Hom(x, y). Then F ◦ i = idG and we get a
natural transformation η : i ◦ F → idC such that the following diagram
commutes

idC(x) = x
f−−−−→ idC(y) = y

ηx

y
y ηy

F (x) = x0

φ(x,y)(f)

−−−−→ F (y) = x0 .

Hence BC ' BHom(x0, x0).

Definition 2.4. (a) An operad C is a family of spaces C(j) for j ≥ 0,
such that the following conditions hold:

1. The space C(0) contains exactly one point ∗.
2. Continuous functions(called structure maps)

γ : C(k)× C(j1)× · · · × C(jk) −→ C(j), j =
k∑

i=1

ji

are given such that the associativity relation

γ(γ(c; d1, · · · , dk)); e1, · · · , ej) = γ(c; f1, · · · , fk)

is satisfied, where c ∈ C(k), di ∈ C(ji), es ∈ C(is), and

fi =

{
γ(di, ej1+···+ji−1+1, · · · , ej1+···+ji

) ji 6= 0
∗ ji = 0.

3. There is a distinguished element 1 ∈ C(1) such that γ(1; d) = d for
any d ∈ C(j) and γ(c; 1, · · · , 1) = c for any c ∈ C(k).
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4. Right actions of the symmetric groups Σj on the spaces C(j) are
given, and the following equivariance relations hold:

γ(cσ; d1, · · · , dk) = γ(c; dσ−1(1), · · · , dσ−1(k))σ(j1, · · · , jk),
γ(c; d1τ1, · · · , dkτk) = γ(c; d1, · · · , dk)(τ1 ⊕ · · · ⊕ τk),

where σ(j1, · · · , jk) is the permutation of j elements which is de-
fined by partitioning the set of these elements into k blocks of
j1, · · · , jk elements and acting on the blocks by the permutation σ;
τ1⊕· · ·⊕τk is the image of (τ1, · · · , τk) under the natural embedding
of the direct product Σj1 × · · ·Σjk

into Σj.

(b) A map of operads f : C → D is a family f = {f(j)} of Σj-equivalent
continuous maps f(j) : C(j) → D(j) which commute with γ’s.

The operads we will consider in this paper are all constructed from
families of discrete groups and groupoids. Let G be a group and H
be a subgroup. Let CG

H denote the category with the set of objects
G/H, the left cosets of H, and morphism sets CG

H(g0H, g1H) = {g ∈
G|gg0H = g1H} ' H. An element h of which may be identified with
left multiplication by g1hg−1

0 . Then by Lemma 2.3, we have BCG
H ' BH.

Let (Gn, Hn) be a family of pair of groups with Gn/Hn = Σn. Assume

there are wreath products Gk

∫
Gn

ω→ Gkn which restrict to the family of
subgroups. If ω’s satisfy the necessary associativity and identity condi-
tions, the the disjoint union qn≥0BCGn

Hn
forms an operad with free action

of the symmetric groups whose structure maps are induced by ω.
Recall that the wreath product Gk

∫
Gn is Gk×Gk

n = Gk×Gn×· · ·×Gn

as a set. Let x = (c; g1, · · · , gk) and y = (d; h1, · · · , hk) be in Gk

∫
Gn

with c, d ∈ Gk and gi, hj ∈ Gn. Then the product xy is defined to be
(cd; gσ(1)h1, gσ(2)h2, · · · , gσ(k)hk) where σ in Σk is given by σ = p(d) for
some map p : Gk → Σk (Gk acts on {1, · · · , k} as a permutation).

Example 2.5. The braid group operad B constructed from the family
of pairs (βn, Pβn) where βn is Artin’s braid group on n strands and Pβn

is the pure braid group. The wreath product ω(g; g1, · · · , gn) is obtained
by replacing the i-th strand in g by the braid gi as in Figure 1.-

Figure 1.
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Recall that a presentation for the ribbon braid group Rβn is given by
the generators si for 1 ≤ i ≤ n and the relations:




sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2
sisj = sjsi for |i− j| > 1
sn−1snsn−1sn = snsn−1snsn−1

For example, the i-th twist element is expressed by

s−1
i s−1

i+1 · · · s−1
n−1snsn−1 · · · si+1si for 1 ≤ i ≤ n− 1.

si; 1 � i � n� 1 sn
12 i i+ 1 n1

1 12 i i+ 1
n
n

n� 1
n� 1n

Figure 2.

Example 2.6. The ribbon braid group operad RB constructed from
the family of pairs (Rβn, PRβn). The strands are replaced by ribbons
which might be twisted. The wreath product is defined just as for the
braid groups. The symmetric operad Γ constructed from the pair (Σn, e);
this is an E∞-operad in the sense of [3].

3. Mapping Class Group Operad S

For the collection of mapping class groups Γg,n+1 of genus g and with
n+1 boundary components, let Sn = qg≥0BΓg,n+1. We like to construct
directly an operad which may give us an information of loop space struc-
tures of mapping class groups.

Let Fg,n+1 be a compact oriented surface of genus g with n+1 bound-
ary components. We may think that one of the boundary components
of Fg,n+1 is marked and the remaining n boundary components are free.
We may define wreath products

Γg,k+1

∫
Γh,n+1 −→ Γg+kh,kn+1

by attaching the marked boundary components of k copies of the sur-
faces Fh,n+1 to the k free boundary components of Fg,k+1. We call this
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the attachings. This might give an operad structure to S = qn≥0Sn,
which may not play an interesting role because it has trivial actions of
the symmetric groups Σn. Moreover, there is a technical problem in
identifying the surfaces with the same genus and the same number of
boundary components generated by the above attachings.

We now define groupoids which give rise to an operad which has the
same homotopy type as S, and may play more interesting role because
there is a natural map from this operad to the symmetric operad Γ.

We first consider the normal extension of Γg,n+1 by Σn:

Γg,n+1 −→ Γg,n,1 −→ Σn.

If we let Fg,n,1 be a fixed surface with one marked boundary component
and n ordered boundary components, we may regard Γg,n,1 be the group
of isotopy classes of self-diffeomorphisms of Fg,n,1 which permute the n
boundary components.

The construction of mapping class group operad We now con-
struct an operad which is derived from some groupoids and whose struc-
ture maps are induced by the attachings.

Definition 3.1. Let F denote a surface of type Fg,n,1 which is ob-
tained by attaching block surfaces as follows:

(A) For (g, n) 6= (0, 1), a surface F is obtained by attaching a pair of
pants P = F0,3, a torus T = F1,2 with two boundary components
and a disk D each of which has one marked boundary component.D P T

Figure 3.

We should attach a marked boundary component to one of free
boundary components. We finally give an ordering to n free bound-
ary components.

Let Sg,n,1 be a category whose objects are pairs (F, σ), where
σ is an ordering of the n free boundary components of F , and
a morphism from (F, σ) to (F ′, σ′) is an isotopy class of orienta-
tion preserving diffeomorphisms from F to F ′ which preserve the
ordering.
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(B) Let S0,1,1 be a category with one object S1 and the morphism set
Z.

Remark 3.2. The reason why we take S1 rather than a surface of
type F0,2 is that we need the identity element in the mapping class group
operad. Note that the morphism set Z of S0,1,1 stands for Γ0,2.

Theorem 3.3. BSg,n,1 has the same homotopy type as BΓg,n+1.

Proof. It is easy to see that BS0,1,1 ' BCΓ0,1,1

Γ0,2
= BΓ0,2. For two

objects (F, σ) and (F ′, σ′), Hom((F, σ), (F ′, σ′)) is isomorphic to Γg,n+1

which we may regard as Hom((F0, σ), (F0, σ)) for a fixed surface F0 and
an ordering σ. Hence Sg,n,1 is a groupoid that satisfies the assumption of
Lemma 2.3. Thus BSg,n,1 has the same homotopy type as BΓg,n+1.

Theorem 3.4. Let Sn = qg≥0BSg,n,1. Then S = qn≥0Sn is an operad
with the structure map induced by the attachings.

This operad S is called the mapping class group operad. Theorem
3.3 says that S ' qn≥0(qg≥0BΓg,n+1). Note also that qn≥0(qg≥0Γg,n+1)
is a monoidal category whose product is induced by the pair of pants
multiplication of two surfaces.

Proof of Theorem 3.4. The structure map on S is induced by the at-
tachings

Sg,k,1

∫
Sh,n,1 −→ Sg+kh,kn,1

which is well-defined because each surface obtained by the attachings is
an object in one of these categories. The single object S1 of S0,1,1 plays
the role of the identity element 1 ∈ S1. Note that any attachings do
not produce a surface of type F0,1,1. The object D in S0,0,1 stands for
0 ∈ S0.

Remark 3.5. There are canonical maps of operads B → RB → S
induced by inclusions. Note that Rβn

∼= Γ0,n,1 and PRβn
∼= Γ0,n+1.

We also note that Sg,n,1 is equivalent to CΓg,n,1

Γg,n+1
. The forgetful functor

Sg,n,1 → CΣn
e induces a map of operad S → Γ, which implies that every

Γ-space may be regarded as an S-space via this map.
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