DOI QR코드

DOI QR Code

Development of Physical Human Bronchial Tree Models from X-ray CT Images

X선 CT영상으로부터 인체의 기관지 모델의 개발

  • Won, Chul-Ho (Dept. of Control & Instrumentation Engineering, Kyungil University) ;
  • Ro, Chul-Kyun (Dept. of Control & Instrumentation Engineering, Kyungil University)
  • 원철호 (경일대학교 제어계측공학과) ;
  • 노철균 (경일대학교 제어계측공학과)
  • Published : 2002.09.30

Abstract

In this paper, we investigate the potential for retrieval of morphometric data from three dimensional images of conducting bronchus obtained by X-ray Computerized Tomography (CT) and to explore the potential for the use of rapid prototype machine to produce physical hollow bronchus casts for mathematical modeling and experimental verification of particle deposition models. We segment the bronchus of lung by mathematical morphology method from obtained images by CT. The surface data representing volumetric bronchus data in three dimensions are converted to STL(streolithography) file and three dimensional solid model is created by using input STL file and rapid prototype machine. Two physical hollow cast models are created from the CT images of bronchial tree phantom and living human bronchus. We evaluate the usefulness of the rapid prototype model of bronchial tree by comparing diameters of the cross sectional area bronchus segments of the original CT images and the rapid prototyping-derived models imaged by X-ray CT.

본 논문에서는 X선 컴퓨터 단층 촬영으로부터 획득된 기관지의 3차원 영상으로부터 기관지의 구조 및 형태 정보를 추출할 수 있는 가능성을 조사하고, 분진 침착 모델의 수학적인 개발과 실험적인 검증에 사용될 수 있는 물리적인 공동 주형 모델을 개발한다. CT로부터 획득된 영상으로부터 수학적 모폴로지 기법에 의하여 폐의 기관지 영역을 검출한다. 검출된 폐의 기관지 영역의 체적 데이터를 3차원 공간상에서 나타낼 수 있는 표면 데이터를 STL(streolithography) 파일로 변환한 후에, 고속 프로토타입 기기에 입력하여 3차원 입체 형상을 제작한다. 이때 기존의 기관지 팬텀과 실제 정상인으로부터 획득된 CT 영상으로부터 각각의 공동 주형 모델을 제작하게 된다. CT 스캔하여 얻어진 원래의 영상과 제작된 공동 주형 모델을 CT 스캔하여 얻어진 영상에서의 기관지 영역의 단면 직경을 비교하여 생성된 폐 기관지 모델의 유용성을 검증하였다.

Keywords

References

  1. Br. J. Ind. Med. v.37 Deposition, retention, and clearance of inhaled particles. M. Lippmann;D. B. Yeates;R. E. Albert
  2. JAS v.8 R. B. Schlesinger;D. E. Bohning;T. L. Chan;M. Lippmann
  3. Radiat Res v.79 no.1 Distribution of polonium-210 in the human lung B. S. Cohen;M. Eisenbud;M. E. Wrenn;N. H. Harley https://doi.org/10.2307/3575029
  4. Health Phys v.39 Measurement of the alpha-radioactivity on the mucosal surface of the human bronchial tree. B. S. Cohen;M. Eisenbud;N. H. Harley https://doi.org/10.1097/00004032-198010000-00004
  5. Toxicol Appl Pharmacol v.79 no.2 Clearance of polonium-210-enriched cigarette smoke from the rat trachea and lung B. S. Cohen;N. H. Harley;T. C. Tso https://doi.org/10.1016/0041-008X(85)90353-9
  6. lung dosimetry. v.32 Nonuniform particle deposition on tracheobronchial airways:Implications for lung dosimetry. B. S. Cohen;N. H. Harley;R. B. Schlesinger;M. Lippmann
  7. SPIE Conf. Biomedical Image Processing and Three-Dimensional Microscopy v.1660 VIDA: An environment for multidimensional image display and analysis. E. A. Hoffman;D. Gnanaprakasam;K. B. Gupta;J. D. Hoford;S. D. Kugelmass;R. S. Kulawiec
  8. http://everest.radi-ology.uiowa.edu/vida/vidahome.html VIDA: volumeric image display and analysis. Division of physiologic imaging
  9. Ph.D. Thesis Geometric analysis of dynamic three-dimensional tree structures. C. Pisupati
  10. M. S. Thesis Segmentation and analysis of the human airway tree from 3d X-ray CT images. D. Bilgen
  11. Proc. SPIE Conf. Medical Imaging v.2709 ASAP: Interactive quantification of 2D airway geometry N. D. D'Souza;J. M. Reinhardt;E. A. Hoffman
  12. Ann. Biomed. Eng. v.24 Improved quantitation of airway geometry. J. M. Reinhardt;N. D. D'Souza;E. A. Hoffman
  13. IEEE Computer Graphics and Applications v.12 no.3 Shape-based interpolation G. T. Herman;J. Zheng;C. A. Bucholtz https://doi.org/10.1109/38.135915
  14. IEEE Transactions on Medical Imaging v.9 no.1 Shapebased interpolation of multidimensional objects. S. Raya;J. Udupa
  15. Proc. IEEE Intern. Conf. on Image Processing v.2 Shape-based interpolation using morphological morphing. A. G. Bors;L. Kechagias;I. Pitas
  16. 3D computer graphics. Alan Watt
  17. Computer Graphics v.21 no.4 Marching Cubes: a high resolution 3D surface construction algorithm. W. E. Lorensen;H. E. Cline https://doi.org/10.1145/37402.37422
  18. AAAR Conf. American association for aerosol research X-ray CT-based assessment of variations in human airway geometry: implications for evaluation of particle deposition and dose to different populations. C. H. Won;J. Cook-Granroth;B. S. Cohen;E. A. Hoffman