DOI QR코드

DOI QR Code

One-Pot Synthesis of 2H-Pyrans by Indium(III) Chloride-Catalyzed Reactions.Efficient Synthesis of Pyranocoumarins, Pyranophenalenones, and Pyranoquinolinones


Abstract

An efficient synthesis of 2H-pyrans is achieved by indium (III) chloride-catalyzed reactions of 1,3-dicarbonyl compounds with a variety of $\alpha\beta-unsaturated$, aldehydes in moderate yields. This method has been applied to the synthesis of pyranocoumar ins, pyranophenalenones, and pyranoquinolinone alkaloids.

Keywords

References

  1. McKee, T.; Fuller, R. W.; Covington, C. D.; Cardellina II, J. H.; Gulakowski, R. J.; Krepps, B. L.; McMahon, J. B.; Boyd, M. R. J. Nat. Prod. 1996, 59, 754. https://doi.org/10.1021/np9603784
  2. McKee, T. C.; Covington, C. D.; Fuller, R. W.; Bokesch, H. R.; Young, S.; Cardellina, J. H., II; Kadushin, M. R.; Doel Soejarto, D.; Stevens, P. F.; Cragg, G. M.; Boyd, M. R. J. Nat. Prod. 1998, 61, 1252. https://doi.org/10.1021/np980140a
  3. Grundon, M. F. In The Alkaloids: Quinoline Alkaloids Related to Anthranilic Acid; Academic Press: London, 1988; vol 32, p 341.
  4. Ulubelen, A.; Mericli, A. H.; Mericli, F.; Kaya, ü. Phytochemistry 1994, 35, 1600. https://doi.org/10.1016/S0031-9422(00)86905-8
  5. Wu, S.-J.; Chen, I.-S. Phytochemistry 1993, 34, 1659. https://doi.org/10.1016/S0031-9422(00)90870-7
  6. Campbell, W. E.; Davidowitz, B.; Jackson, G. E. Phytochemistry 1990, 29, 1303. https://doi.org/10.1016/0031-9422(90)85447-N
  7. Khalid, S. A.; Waterman, P. G. Phytochemistry 1981, 20, 2761. https://doi.org/10.1016/0031-9422(81)85282-X
  8. Hifnawy, M. S.; Vaquette, J.; Sévenet, T.; Pousset, J.-L.; Cavé, A. Phytochemistry 1977, 16, 1035. https://doi.org/10.1016/S0031-9422(00)86717-5
  9. Stermitz, F. R.; Sharifi, I. A. Phytochemistry 1977, 16, 2003. https://doi.org/10.1016/0031-9422(77)80113-1
  10. Abd, E.; Hisham, A. Pharmazie 1997, 52, 28.
  11. Chen, I.-S.; Wu, S.-J.; Tsai, I. J.; Wu, T.-S.; Pezzuto, J. M.; Lu, M. C.; Chai, H.; Suh, N.; Teng, C.-M. J. Nat. Prod. 1994, 57, 1206. https://doi.org/10.1021/np50111a003
  12. Magiatis, P.; Melliou, E.; Skaltsounis, A.-L.; Mitaku, S.; Leonce, S.; Renard, P.; Pierre, A.; Atassi, G. J. Nat. Prod. 1998, 61, 982. https://doi.org/10.1021/np9800295
  13. Marvell, E. N.; Gossink, T. J. Org. Chem. 1972, 37, 3036. https://doi.org/10.1021/jo00984a030
  14. Safieddine, A.; Royer, J.; Dreux, J. Bull. Soc. Chim. Fr. 1972, 1646.
  15. Royer, J.; Dreux, J. Bull. Soc. Chim. Fr. 1972, 707.
  16. Roedig, A.; Neukam, T. Chem. Ber. 1974, 107, 3463. https://doi.org/10.1002/cber.19741071102
  17. Roedig, A.; Neukam, T. Liebigs Ann. Chem. 1975, 240.
  18. de Groot, A.; Jansen, B. J. M. Tetrahedron Lett. 1975, 3407.
  19. Babu, G.; Perumal, P. T. Aldrichimica Acta 2000, 33(1), 16.
  20. Kobayashi, S. Synlett 1994, 689.
  21. Francesco, F.; Pizzo, F.; Vaccaro, L. J. Org. Chem. 2001, 66, 3554 https://doi.org/10.1021/jo015564f
  22. Loh, T.-P.; Wei, L.- L. Tetrahedron Lett. 1998, 39, 323. https://doi.org/10.1016/S0040-4039(97)10478-6
  23. Mukaiyama, T.; Ohno, T.; Han, J. S.; Kobayashi, S. Chem. Lett. 1991, 949.
  24. Loh, T.-P.; Pei, J.; Cao, G.-Q. Chem. Commun. 1996, 1819.
  25. Kobayashi, S.; Busujima, T.; Nagayama, S. Tetrahedron Lett. 1998, 39, 1579. https://doi.org/10.1016/S0040-4039(98)00033-1
  26. Loh, T.-P.; Liung, S. B. K. W.; Tan, K.-L.; Wei, L.-L. Tetrahedron2000, 56, 3227. https://doi.org/10.1016/S0040-4020(00)00221-0
  27. Loh, T.-P.; Pei, J.; Lin, M. Chem. Commun. 1996, 2315.
  28. Babu, G.; Perumal, P. T. Tetrahedron Lett. 1997, 38, 5025. https://doi.org/10.1016/S0040-4039(97)01060-5
  29. Babu, G.; Perumal, P. T. Tetrahedron Lett. 1998, 39, 3225. https://doi.org/10.1016/S0040-4039(98)00397-9
  30. Babu, G.; Perumal, P. T. Tetrahedron Lett. 1999, 55, 4793. https://doi.org/10.1016/S0040-4020(99)00151-9
  31. Sengupta, S.; Mondal, S. Tetrahedron Lett. 2000, 41, 6245. https://doi.org/10.1016/S0040-4039(00)01042-X
  32. Mukaiyama, T.; Ohno, T.; Nishimura, T.; Suda, S.; Kobayashi, S. Chem. Lett. 1991, 1059.
  33. Miyai, T.; Onishi, Y.; Baba, A. Tetrahedron Lett. 1998, 39, 6291. https://doi.org/10.1016/S0040-4039(98)01333-1
  34. Li, X. R.; Loh, T.-P. Tetrahedron: Asymmetry 1996, 7, 1535. https://doi.org/10.1016/0957-4166(96)00174-7
  35. Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000, 65, 6270. https://doi.org/10.1021/jo000711f
  36. Cravotto, G.; Nano, G. M.; Tagliapietra, S. Synthesis 2001, 49.
  37. Mulholland, D.; Iourine, S.; Taylor, D. A. H.; Dean, F. M. Pytochemistry 1998, 47, 1641. https://doi.org/10.1016/S0031-9422(97)00783-8
  38. Bohlmann, F.; Zdero, C. Pytochemistry 1977, 16, 1261. https://doi.org/10.1016/S0031-9422(00)94370-X
  39. Bittner, M.; Jakupovic, J.; Bohlmann, F.; Grenz, M.; Silva, M. Phytochemistry 1988, 27, 3845. https://doi.org/10.1016/0031-9422(88)83029-2
  40. Bittner, M.; Jakupovic, J.; Bohlmann, F.; Silva, M. Phytochemistry 1988, 27, 3263. https://doi.org/10.1016/0031-9422(88)80039-6
  41. Wolfrum, C.; Bohlmann, F. Liebigs Ann. Chem. 1989, 295.
  42. Ahmad, S. J. Nat. Prod. 1984, 47, 391. https://doi.org/10.1021/np50032a035
  43. Mitaku, S.; Skaltsounis, A.-L.; Tillequin, F.; Koch, M.; Pusset, J.;Chauviere, G. J. Nat. Prod. 1985, 48, 772. https://doi.org/10.1021/np50041a009
  44. Ulubelen, A. Phytochemistry 1984, 23, 2123. https://doi.org/10.1016/S0031-9422(00)85006-2
  45. Bowen, I. H.; Lewis, J. R. Lloydia 1978, 41, 184.
  46. Tantivatana, P.; Ruangrungsi, N.; Vaisiroiroj, V.; Lankin, D. C.;Bhacca, N. S.; Borris, R. P.; Cordell, G. A.; Johnson, L. F. J. Org.Chem. 1983, 48, 268. https://doi.org/10.1021/jo00150a028
  47. Munoz, M. A.; Torres, R.; Cassels, B. K. J. Nat. Prod. 1982, 45,367. https://doi.org/10.1021/np50021a023
  48. Chou, F. Y.; Hostettmann, K.; Kubo, I.; Nakanishi, K.; Taniguchi, M. Heterocycles 1977, 7, 969. https://doi.org/10.3987/S-1977-02-0969
  49. Hostettmann, K.; Pettei, M. J.; Kubo, I.; Nakanishi, K. Helv. Chim. Acta 1977, 60, 670. https://doi.org/10.1002/hlca.19770600239
  50. Funayama, S.; Murata, K.; Nozoe, S. Phytochemistry 1994, 36, 525. https://doi.org/10.1016/S0031-9422(00)97107-3
  51. Huffman, J. W.; Hsu, T. M. Tetrahedron Lett. 1972, 141.

Cited by

  1. Synthesis of Spinochalcone B and Analogues vol.36, pp.14, 2006, https://doi.org/10.1080/00397910600634316
  2. A Lewis Acid-Catalyzed Formal [3 + 3] Cycloaddition of α,β-Unsaturated Aldehydes with 4-Hydroxy-2-Pyrone, Diketones, and Vinylogous Esters vol.8, pp.2, 2006, https://doi.org/10.1021/ol0523042
  3. ChemInform Abstract: One-Pot Synthesis of 2H-Pyrans by Indium(III) Chloride-Catalyzed Reactions. Efficient Synthesis of Pyranocoumarins, Pyranophenalenones, and Pyranoquinolinones. vol.33, pp.48, 2010, https://doi.org/10.1002/chin.200248143
  4. Substituent-Controlled Electrocyclization of 2,4-Dienones: Synthesis of 2,3,6-Trisubstituted 2H-Pyran-5-carboxylates and Their Transformations vol.2011, pp.28, 2011, https://doi.org/10.1002/ejoc.201100780
  5. Efficient synthesis of tetrahydroquinolinones by acetic acid-mediated formal [3+3] cycloaddition vol.143, pp.10, 2012, https://doi.org/10.1007/s00706-012-0762-0
  6. Solvent free l-proline-catalysed domino Knoevenagel/6π-electrocyclization for the synthesis of highly functionalised 2H-pyrans vol.2, pp.21, 2012, https://doi.org/10.1039/c2ra21306k
  7. Catalytic Asymmetric Synthesis of Chromene Derivatives by Iminium Ion Catalysis vol.4, pp.7, 2012, https://doi.org/10.1002/cctc.201200151
  8. ]quinolinones vol.49, pp.6, 2012, https://doi.org/10.1002/jhet.906
  9. )-Pyrans and 2-Oxabicyclo[2.2.2]oct-5-ene Skeletons vol.2014, pp.6, 2014, https://doi.org/10.1002/ejoc.201301872
  10. Efficient catalyst for tandem solvent free enantioselective Knoevenagel-formal [3+3] cycloaddition and Knoevenagel-hetero-Diels–Alder reactions vol.5, pp.83, 2015, https://doi.org/10.1039/C5RA09865C
  11. Indium(III)-Catalyzed Knoevenagel Condensation of Aldehydes and Activated Methylenes Using Acetic Anhydride as a Promoter vol.80, pp.6, 2015, https://doi.org/10.1021/acs.joc.5b00011
  12. -Pyran onto 1-Oxa- or 1-Azacyclohexane-2,4-diones and Their Analogues via Sequential Condensation with α-Substituted Enals and 6π-Electrocyclization vol.86, pp.7, 2013, https://doi.org/10.1246/bcsj.20130069
  13. ]quinolones as antiproliferative agents vol.16, pp.12, 2018, https://doi.org/10.1039/C7OB03186F
  14. -pyran cores from allenylphosphine oxides and 1,3-diones vol.16, pp.36, 2018, https://doi.org/10.1039/C8OB01640B
  15. Cyclic 1,3-diones and their derivatives-As versatile reactive intermediates in the syntheses of condensed fused ring heterocyles vol.41, pp.6, 2004, https://doi.org/10.1002/jhet.5570410601
  16. Brønsted Acid-Catalyzed Synthesis of Pyransvia a Formal [3+3] Cycloaddition vol.350, pp.1, 2008, https://doi.org/10.1002/adsc.200700375
  17. The synthesis of functionalized pyranophenalenones vol.140, pp.5, 2009, https://doi.org/10.1007/s00706-008-0082-6
  18. Microwave Assisted Domino Knoevenagel Condensation/6?-electron Electrocyclization Reactions for the Rapid and Efficient Synthesis of Substituted 2H,5H-pyrano[4,3-b]pyran-5-ones and Related Heterocycle vol.23, pp.10, 2004, https://doi.org/10.1002/qsar.200420048
  19. Strategies and approaches for constructing 1-oxadecalins vol.62, pp.47, 2006, https://doi.org/10.1016/j.tet.2006.08.054
  20. Asymmetric Organocatalysis: An Efficient Enantioselective Access to Benzopyranes and Chromenes vol.14, pp.21, 2008, https://doi.org/10.1002/chem.200800836
  21. Iodine-Catalyzed One-Pot Synthesis of 2H-Pyrans by Domino Knoevenagel/6π-Electrocylization vol.30, pp.11, 2002, https://doi.org/10.5012/bkcs.2009.30.11.2833
  22. Environmentally benign, one-pot synthesis of pyrans by domino Knoevenagel/6π-electrocyclization in water and application to natural products vol.12, pp.11, 2002, https://doi.org/10.1039/c0gc00265h
  23. Green One-Pot Synthesis of 2H-Pyrans Under Solvent-Free Conditions Catalyzed by Ethylenediammonium Diacetate vol.43, pp.2, 2002, https://doi.org/10.1080/00397911.2011.594975
  24. Microwave-Assisted Solvent and Catalyst Free Synthesis of 2H-Pyrans vol.34, pp.10, 2013, https://doi.org/10.5012/bkcs.2013.34.10.2963
  25. Eco-friendly synthesis of fused pyrano[2,3-b]pyrans via ammonium acetate-mediated formal oxa-[3 + 3]cycloaddition of 4H-chromene-3-carbaldehydes and cyclic 1,3-dicarbonyl compounds vol.10, pp.57, 2020, https://doi.org/10.1039/d0ra06450e
  26. Diverse synthesis of pyrano[3,2-c]coumarins: a brief update vol.44, pp.44, 2002, https://doi.org/10.1039/d0nj03846f