Spectrofluorimetric Determination of Oxalate Based on Its Ternary Complex between Eu³⁺ and Thenoyltrifluoroacetone

Ki Won Cha, Hua Zi Huang, and Hyun Cheol Choi

Department of Chemistry, Inha University, Incheon 402-751, Korea Received July 22, 2002

A simple, sensitive and selective determination method of oxalate has been investigated based on the fluorescence enhancement of Eu³--TTA complex due to the formation of Eu³--TTA-oxalate ternary complex. An emission peak of Eu³--TTA, which is increased linearly with addition of oxalate, occurs at 610 nm in aqueous solution with excitation at 306 nm. The linear range of the calibration curve is 1×10^{-6} - 8 $\times 10^{-6}$ M and the detection limit is 1×10^{-6} M. The effects of foreign ions were studied. The present method was applied to determine oxalate of two synthetic samples.

Key Words: Oxalate, Eu³. Thenoyltrifluoroacetone (TTA), Fluorescence, Enhancement

Introduction

Oxalate is one of importent nutrients in the human diet found principally in spinach, beet leaves, etc. Oxalate is primary chelator of calcium ion, so it forms chelates with dietary calcium, thus gives the complex unavailable for adsorption in the body and absorbed oxalate causes also to be precipitated as insoluble salts that accumulate in the renal tissue. So calcium oxalate is a most important phase in case of stone diseases. Therefore, the determination of oxalate in the some biological material is important.

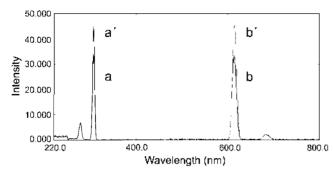
Several determination methods of oxalate such as spectrophotometric.2 amperometric.3-6 spectrofluorimetric. chemiluminescence method⁸ have been proposed. However, those methods have no sufficient sensitivity. Other methods such as isotope dilution mass spectrometry.9 differential pulse polarography. 15 chromatography 10-12 are also used for oxalate determination but those methods are required special instrumentation and relatively high cost of analysis. So a simple, sensitive and inexpensive determination method of oxalate is required. Luminescence of lanthanide complex has been applied to the determination of lanthanide ions¹⁶⁻¹⁷ and we found that the fluorescence intensity of Eu³⁻-TTA complex changed in the addition of some organic compounds. For example, phosphate decreased the fluorescence intensity of the complex. 13 but glycine increased the fluorescence intensity of the complex.¹⁴ which were applied to the determination of those ions. We investigated the determination method of oxalate using the increase of the fluorescence intensity of Eu³⁺-TTA complex added to oxalate.

Experimental Section

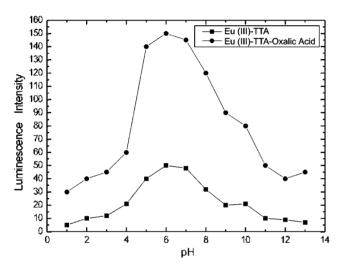
Apparatus and Reagents. The fluorescence intensity measurements were done with a Shimatzu RF- 5301 PC spectrofluorophotometer, using 1 cm quartz cell. The band

passes were 10 nm for excitation and emission monochrometers. The light source was a 150 w xenon lamp. Voltammograms were measured with CV-50W voltammetric analyzer (BAS). All pHs were measured with a Mettler Talodo MP 220 pH meter.

Europium oxide (99.95%) was obtained from Aldrich Co.. Stock solution of the europium ion was prepared by dissolving a known amount of the europium oxide in hydrochloric acid. Standard solution of it were prepared by further dilution with water. Stock solution of TTA (1×10^{-3} M) was prepared by dissolving TTA in 30% ethanol. The working standard solution of oxalate were prepared by diluting a 1.0×10^{-3} M Na₂C₂O₄stock solution. Hexamethylenetetramine (hexamine, 1.0 M) was prepared as a buffer solution and the pHs adjusted to 6.5 with hydrochloric acid. Analytical chemicals and deionized distilled water were used throughout the experiment.


Procedure. To a 50 mL volumetric flask, 5 mL of pH 6.5 buffer solution, 2.5 mL of 1.0×10^{-4} M TTA, 1.0 mL of 1.0×10^{-4} M Eu³⁺ and 5.0 mL of 1.0×10^{-4} M oxalate were added and diluted to the mark with water. The fluorescence intensity of the solution was measured at 610 nm with a excitation wavelength at 306 nm. All fluorescence intensity was corrected with blank solution (Eu³⁺-TTA) and all experiments were conducted at room temperature (25 °C).

Results and Discussion


Excitation and emission spectra. The excitation and emission spectra of the Eu³⁺-TTA-oxalate system are shown in Figure 1. In Figure 1, the maximum excitation and emission wavelength were 306 nm and 610 nm, respectively. The a and a' curves are the excitation spectra of Eu³⁺-TTA and Eu³⁺-TTA-oxalate and b and b' curves are the emission spectra of the same, respectively. The presence of oxalate resulted in an increase of the absorbance and emission intensity but no change in the maximum wavelength.

The pH effects on the relative fluorescence intencity of Eu³-TTA-oxalate was studied in the range of pH 3-9 (Figure

^{*}Corresponding Author: Fax +82-32-872-2520, e-mail: kwcha@inha.ac.kr

Figure 1. Excitation (a and a') and emission (b and b') of Eu(III)-TTA complex in the absence (a, b) and presence (a', b') of oxalate, Eu(III): 2×10^{-6} M, TTA: 6×10^{-6} M, Oxalate: 1×10^{-5} M.

Figure 2. pH effects on the fluorescence intensity of Eu(III)-TTA and Eu(III)-TTA-oxalate. Eu(III): 2×10^{-6} M. TTA: 6×10^{-6} M. Oxalate: 1×10^{-5} M.

2). The results indicate that the maxium fluorescence intensity was obtained at pH 5-8 of hexamethylenetetramine-HCl buffer. Thus, pH 6.5 hexamine buffer solution was recommended for the further examination. This pH improved the stability of the complex. The concentration effects of TTA and Eu3+ on the fluorescence intensity of Eu3+-TTAoxalate system was also studied. The fluorescence intensity increased with the increase in TTA concentration to 6×10^{-6} M in the presence of 2×10^{-6} M Eu³⁺ and decrease at the higher concentration. The fluorescence intensity of Eu³⁻-TTA-oxalate system was influenced by the concentration of TTA and Eu³⁺. Therefore, these concentration must retained constantly to determine oxalate. The composition of the Eu³-TTA-oxalate system was investigated. The mole ratio between Eu³⁺ and TTA was 1:3 and the mole ratio between Eu^{3-} and oxalate was 1 : 2. Therefore, the composition of the complex was Eu³-(TTA)₃(oxalate)₂.

Enhancement mechanism: The fluorescence intensity of Eu³⁻ is weak due to the low oscillatory strength of its absorption.¹⁸ But a fluorescence enhancement of Eu³⁻ could be achieved by energy transfer from the triple state of organic ligand to the Eu³⁺ in the complex. This energy transfer is called intramolecular energy transfer.¹⁸⁻²⁰ The composition

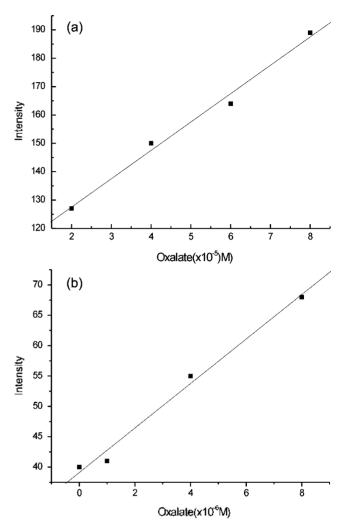


Figure 3. Calibration curves of oxalate.

of Eu³⁺-TTA chelate is Eu³⁺(TTA)₈(H₂O)₂. II In the presence of oxalate ion, the structure of the chelate include two oxalate ions instead of two water molecules and the oxalate ion prevents the quenching by water molecules, which probably act the vibration of the O-H bond. Therefore, the fluorescence intensity of Eu³⁺-TTA will be increased with addition of oxalate.

Calibration curves of oxalate. The increase of the fluore-

Table 1. Tolerance limits of foreign ions

lons	Tolerance		
acetate	$1 \times 10^{-4} \text{M}$		
benzoate	$2 \times 10^{-4} M$		
citrate	$4 \times 10^{-4} \text{ M}$		
CO ₃ 2-	$5 \times 10^{-4} \text{ M}$		
SO_4^{2-}	$2 \times 10^{-4} M$		
BO ₃ 3-	$8 \times 10^{-3} \text{ M}$		
CrO ₄ 2-	$1 \times 10^{-5} \mathrm{M}$		
SiO ₃ ²⁺	$1 \times 10^{-5} M$		
Ca ²	$3 \times 10^{-4} M$		
Mg ²¹	$7 \times 10^{-4} M$		

 Eu^{3+} : 2×10^{-6} M, TTA: 6×10^{-6} M, pH = 6.5. Oxalate: 2×10^{-5} M.

Table 2. Composition of synthetic sample and analytical data

	Composition	Present	RSD	Polarography
No 1	1×10^{-5} M of acetate, benzoate, citrate, carbonate, sulfate, Ca^{24} and Mg^{24} in 2.00×10^{-6} M oxalate	$1.98 \times 10^{-6} \text{ M}$	2.1° o (N-3)	2.15×10 ⁻⁶ M
No 2	1×10^{-5} M of acetate, benzoate, citrate carbonate, sulfate, Ca ²¹ and Mg ²¹ in 2.00×10^{-5} M oxalate	$2.12 \times 10^{-5} \mathrm{M}$	3.2° o (N-3)	$2.80 \times 10^{-5} \text{ M}$

scence intensity of the Eu3 -TTA -oxalate complex was a linear function of oxalate concentration. The linear range was $1 \times 10^{-5} \sim 8 \times 10^{-5}$ M oxalate concentration when the concentration of Eu³ and TTA was 2×10^{-6} M and 6×10^{-6} M, respectively (r = 0.9994) and was $1 \times 10^{-6} \sim 8 \times 10^{-6}$ M when the concentration of Eu³ and TTA was 2×10^{-7} M and 6×10^{-6} M, respectively (r = 0.9946). The detection limit was 1.0×10^{-7} M oxalate (S/N = 3).

Interference. The effects of some anions and cations on the fluorescence intencity of Eu31-TTA-oxalate complex were investigated in the presence of 2×10^{-5} M oxalate (Table 1). The tolerance limits was calculated by the concentration of foreign ions, resulting in less than 5% deviation of the fluorescence intensity of Eu³-TTA in the 2 \times 10⁻⁵ M oxalate. In Table 1, most amons have a relatively high tolerance limit, except silicate and chromate ion.

Application. To study the validity of the present method, two synthetic samples were prepared and oxalate content was determined by present method and differential pulse polarography after derivatization of oxalate with ρ -phenylenediamine.15 The analytical data obtained by the standard addition method of present method was compared with the results of differential pulse polarography (Table 2). In two data good agreement was obtained as seen in Table 2.

Conclusion

A simple, sensitive and selective determination method of oxalate was studied using the fluorescence enhancement of Eu³ -TTA complex. The fluorescence intensity of Eu³ -TTA complex was increased linearly with addition of oxalate in the concentration range $1 \times 10^{-6} \sim 8 \times 10^{-6}$ M. The present method was applied to determine oxalate content in a

synthetic samples.

Acknowledgment. This work was supported by Korea Research Foundation Grant (KRF-2001-015-DP0290).

References

- 1, Zhang, Z. Q.; Xu, X. Q. Anal. Chim. Acta 2000, 406, 303.
- 2. Infants, J. A.; Luque, M. D.; Valcarcel, M. Anal. Chim. Acta 1991. 242, 179.
- 3. Fogg, A. G.: Alonso, R. M.; Fenandez, M. A. Analyst 1986, 111,
- Alnnaibd, A. M.; Townhend, A. Anal, Chim. Acta 1989, 218. 1.
- 5. Leon, L. E.; Rois, A.; Luque, M. D.; Valcarcel, M. Analyst 1990. 115, 1549.
- 6. Leon, L. E.; Rois, A.; Luque, M. D.; Valcarcel, M. Anal. Chim. Acta 1990, 234, 227.
- 7. Perez-Raiz, T.; Martinez, C.; Tomas, V.; Casajus, R. Analyst 1995, 120.2111
- 8. Perez-Raiz, T.; Martinez, C.; San, A.; Val, V. Anal. Chem. Acta **1993**, 284, 1973.
- 9. Zara, A. J.; Bulbore, L. O. Anal. Lett. 1987, 20, 213.
- 10. Chen, Y.; Li, Q.: Yang, Z.; Zhang, F. Chiniese J. Chromatogr. 1989, 7, 226.
- 11. Utzman, S. J. Chromatogr. 1993, 640, 282.
- 12. Brega, A.; Quadri, A. J. Liq. Chromatogr. 1992, 15, 501.
- 13. Cha. K. W.; Park, C. I.; Jung, Y. B.; Park, K. W. Bull. Korean Chem. Soc. 2000, 21, 529.
- 14. Cha, K. W.; Park, C. I.: Park, K. W. Bull, Korean Chem. Soc. 2002, 23, 623.
- 15. Jose, A. R.; Aquiles, A. B. Anal. Chim. Acta 1993, 273, 531.
- 16. Jianzhong, L.; Zhujun, Z. Anal. Chim. Acta 1996, 318.175.
- 17. Menzel, E. R., inal. Chem. 1989, 557A-61A.
- 18. Crosby, G. A.; Whan, R. E.; Alire, R. M. J. Chem. Phys. 1961, 34.
- 19. Sato, S.; Wada, M. Bull, Japan Chem. Soc. 1970, 43, 1955.
- Mecartz, W. I.; Winefordner, J. D. Anal. Chem. 1966, 38, 848.
- 21. Horioctz, W. W.; Sudnick, W. J. Am. Chem. Soc. 1971, 161, 334.