DOI QR코드

DOI QR Code

Kinetics and Mechanism for the Reaction of 4-Nitrophenyl 2-Thiophenecarboxylate with Secondary Alicyclic Amines


Abstract

Second-order-rate constants ($k_N$) have been measured spectrophotometrically for the reactions of 4-nitrophenyl 2-thiophenecarboxylate (1a) with a series of secondary alicyclic amines in H2O containing 20 mole % DMSO at 25.0 $^{\circ}C$ . The ester 1a is less reactive than 4-nitrophenyl 2-furoate (1b) but more reactive than 4-nitrophenyl benzoate (1c) except towards piperazinium ion. The Brønsted-type plots for the aminolyses of 1a, 1b and 1c are linear with a $\beta$nuc value of 0.92, 0.84 and 0.85, respectively, indicating that the replacement of the CH=CH group by a sulfur or an oxygen atom in the benzoyl moiety of 1c does not cause any mechanism change. The reaction of piperidine with a series of substituted phenyl 2-thiophenecarboxylates gives a linear Hammett plot with a large $\rho^-$ value ($\rho^-$ = 3.11) when $\sigma^- $ constants are used. The linear Brønsted and Hammett plots with large $\beta$nuc and $\rho^-$ values suggest that the aminolysis of 1a proceeds via rate-determining break-down of the addition intermediate to the products.

Keywords

References

  1. Stefanidis, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. J. Am.Chem. Soc. 1993, 115, 1650. https://doi.org/10.1021/ja00058a006
  2. Jencks, W. P.; Brant, S. R.;Gandler, J. R.; Fendrich, G.; Nakamura, C. J. Am. Chem. Soc.1982, 104, 7045. https://doi.org/10.1021/ja00389a027
  3. Hupe, D. J.; Jencks, W. P. J. Am. Chem. Soc.1977, 99, 451. https://doi.org/10.1021/ja00444a023
  4. Jencks, W. P. Catalysis in Chemistry andEnzymology; McGraw-Hill Book Company: New York, 1969; pp463.
  5. Oh, H. K.; Jeong, J. Bull. Korean Chem. Soc. 2001, 22, 1123.
  6. Oh, H. K.; Park, C. Y.; Lee, J. M.; Lee, I. Bull. Korean Chem.Soc. 2001, 22, 383.
  7. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y.S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  8. Koh, H. J.; Lee, J. W.;Lee, H. W.; Lee, I. New J. Chem. 1997, 21, 447.
  9. Castro, E. A. Chem. Rev. 1999, 99, 3505. https://doi.org/10.1021/cr990001d
  10. Castro, E. A.;Cubillos, M.; Santos, J. G. J. Org. Chem. 1998, 63, 6820. https://doi.org/10.1021/jo980284u
  11. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1996, 61,3501. https://doi.org/10.1021/jo951726u
  12. Castro, E. A.; Araneda, C. A. J. Org. Chem. 1997, 62,126. https://doi.org/10.1021/jo961275t
  13. Williams, A. Chem. Soc. Rev. 1994, 23, 93. https://doi.org/10.1039/cs9942300093
  14. Ba-Saif, S.;Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1989, 111, 2647. https://doi.org/10.1021/ja00189a045
  15. Okuyama, T.; Takano, H.; Senda, K. Bull. Chem. Soc. Jpn.1996, 69, 2639. https://doi.org/10.1246/bcsj.69.2639
  16. DeTar, D. F. J. Am. Chem. Soc. 1982, 104,7205. https://doi.org/10.1021/ja00389a051
  17. Techniques of Organic Chemistry, 4th ed.; Bernasconi, C. F.,Ed.; Wiley: New York, 1986; vol. 6.
  18. Chapman, N. B.; Shorter,J. Advances in Linear Free Energy Relationships; Plenum:London, 1972.
  19. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem.2000, 65, 5659. https://doi.org/10.1021/jo000482x
  20. Lee, J. P.; Yoon, J. H.; Um, I. H. Bull. KoreanChem. Soc. 1999, 20, 805.
  21. Um, I. H.; Park, Y. M.; Shin, E. H.Bull. Korean Chem. Soc. 1999, 20, 392.
  22. Um, I. H.; Chung, E.K.; Lee, S. M. Can. J. Chem. 1998, 76, 729. https://doi.org/10.1139/cjc-76-6-729
  23. Um, I. H.; Yeom,E. S.; Kwon, H. J.; Kwon, D. S. Bull. Korean Chem. Soc. 1997,18, 865.
  24. Um, I. H.; Chung, E. K.; Kwon, D. S. TetrahedronLett. 1997, 38, 4787. https://doi.org/10.1016/S0040-4039(97)01033-2
  25. Um, I. H.; Hong, Y. J.; Kwon, D. S.Tetrahedron 1997, 53, 5073. https://doi.org/10.1016/S0040-4020(97)00227-5
  26. Colthurst, M. J.; Williams, A. J. Chem. Soc., Perkin Trans. 21997, 1493.
  27. Castro, E. A.; Valdiva, J. L. J. Org. Chem. 1986,51, 1668. https://doi.org/10.1021/jo00360a007
  28. Castro, E. A.; Santander, C. L. J. Org. Chem. 1985,50, 3595. https://doi.org/10.1021/jo00219a029
  29. Castro, E. A.; Steinfort, G. B. J. Chem. Soc., PerkinTrans. II 1983, 453.
  30. Menger, F. M.; Smith, J. H. J. Am. Chem.Soc. 1972, 94, 3824. https://doi.org/10.1021/ja00766a027
  31. Correia, V. R.; Cuccovia, I. M.; Chaimovich, H. J. Phys. Org.Chem. 1991, 4, 13. https://doi.org/10.1002/poc.610040104
  32. Kirsch, J. F.; Clewell, W.; Simon, A. J.Org. Chem. 1968, 33, 127. https://doi.org/10.1021/jo01265a023
  33. Caplow, M.; Jencks, W. P.Biochemistry 1962, 1, 883. https://doi.org/10.1021/bi00911a022
  34. Vogel, A. I. Practical Organic Chemistry; Longman's Green andCo.: London, 1962; p 792.
  35. Albert, A. Physical Methods in Heterocyclic Chemistry; Katritzky,A. R., Ed.; Academic Press: London, 1963; Vol. 1, p 44.
  36. Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 8479. https://doi.org/10.1021/ja00204a022
  37. Um, I. H.; Min, J. S.; Lee, H. W. Can. J. Chem. 1999, 77, 659. https://doi.org/10.1139/cjc-77-5-6-659
  38. Um, I. H.; Kwon, H. J.; Kwon, D. S.; Park, J. Y. J. Chem. Res.(s)1995, 301
  39. Um, I. H.; Kwon, H. J.; Kwon, D. S.; Park, J. Y. J. Chem. Res.(M) 1995, 1801.
  40. Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111, 971. https://doi.org/10.1021/ja00185a029
  41. Jones, R. A. Y. Physical and Mechanistic Organic Chemistry, 2nd ed.; Cambridge University Press: London, 1984; p 65.

Cited by

  1. in 20 mol % DMSO (aq). Effects of 5-Thienyl Substituent and Base Strength vol.34, pp.7, 2013, https://doi.org/10.5012/bkcs.2013.34.7.2036
  2. Effect of Amine Nature on Rates and Mechanism: Pyridinolyses of 4-Nitrophenyl Benzoate vol.24, pp.9, 2002, https://doi.org/10.5012/bkcs.2003.24.9.1245
  3. Effect of Nonleaving Group on the Reaction Rate and Mechanism: Aminolyses of 4-Nitrophenyl Acetate, Benzoate and Phenyl Carbonate vol.24, pp.9, 2002, https://doi.org/10.5012/bkcs.2003.24.9.1251
  4. Nucleophilic Substitution Reactions of Aryl Thiophene-2-carbodithioates with Pyridines in Acetonitrile vol.25, pp.2, 2002, https://doi.org/10.5012/bkcs.2004.25.2.203
  5. Kinetics Studies on the Hydrolysis Reactions of N-Heteroaryl-4(5)-nitroimidazoles vol.25, pp.3, 2004, https://doi.org/10.5012/bkcs.2004.25.3.392
  6. Base-Promoted, Ketene-Forming Elimination Reactions. Mechanistic Borderline between E2 and E1cb Mechanisms vol.26, pp.7, 2002, https://doi.org/10.5012/bkcs.2005.26.7.1017
  7. Aminolysis of Y-Substituted Phenyl 2-Thiophenecarboxylates and 2-Furoates: Effect of Modification of Nonleaving Group from 2-Furoyl to 2-Thiophenecarbonyl on Reactivity and Mechanism vol.29, pp.3, 2002, https://doi.org/10.5012/bkcs.2008.29.3.585
  8. Reactions of 4‐NITROPHENYL 5‐substituted Furan‐2‐carboxylates with R 2 NH / R 2 NH 2+ in 20 mol% DMSOhttps://doi.org/10.1002/bkcs.12296