# A Novel Synthesis of 3,9-Dialkyl and 8-Aryl-3,9-dimethylxanthines 

Shaker Youssif,* Azza El-Kafrawy, Besheer Bayoumy, and Said El-Bahaie<br>Department of Chemistry, Faculy of Science, Zagazig Lhwersity, Zagazig, Egvpt<br>Recenved September 6, 2001


#### Abstract

Several compounds of 3.9-dialkylxanthines were prepared from 1-methyl-6-chlorouracil via nucleophillic reactions with different aliphatic amines. followed by nitrosation reduction formaylation and finally dehy drocyclization. On the other hands. a series of 8 -aryl- 3.9 -dimethylxanthines were synthesized by dehydrocyclization of 5-arylamido-1-methyl-6-methylaminouracils either by fussion or oxidation of 5 -arylidine-amino-l-methyl-6-methylaminouracils using sodium periodate. Phosphoryl chloride was found to be uneffective reagent for dehydrocyclization that. gave another products from 1.3 -oxazolo[5.4-d] pyrimidines.


Keywords: 3.9-Dialkylvanthines, 5-Arylidineamino-, 5-Arylamidouracils. 8-Aryl-3.9-dimethylvanthines. Oxazolopy rimidine-6-one.

Purine derivatives and their analogues have critical roles in various biological processes and considerable attention has been given to the field of purine chemistry in a search for potential antagonists. ${ }^{1.2}$ The syntheses of purines generally involved the condensation-cyclization of 6-amino-5-nitrosopyrimidines with several carbon sources. such as benzylideneaniline ${ }^{3.4}$ aromatic aldehydes. ${ }^{5}$ quarternized Mannich bases. ${ }^{6}$ Vilsmeier reagents ${ }^{7}$ and amide acetals ${ }^{8}$ or by the reaction of 6 -anilinouracils with 4 -phenyl-1.2.4-triazoline3.5 -dione (PTAD) ${ }^{9}$ as nitrogen source. 3.9-dimethy lxanthines has been prepared by various methods. ${ }^{1(1) 13} 8$-Arylpurines have been synthesized either by dehydrocyclization of 4-amino-5-arylamidopyrimidines with phosphoryl chloride. ${ }^{\text {la, } 15}$ phosphoric acid ${ }^{16}$ and by dry heating. ${ }^{17}$ or by cyclization of Schiffs base analogues using ferric chloride. ${ }^{18}$ nitrobenzene. ${ }^{19}$ or bisulfite adduct of aldehydes. ${ }^{30}$ We report herein the synthesis of some purine analogues. namely 3.9-dimethyland 8-aryl-3.9-dimethy lxanthines.

The sequence starting from 6 -chloro-1-methyluracil ( $\mathbf{1 a})^{21,32}$ is the most favored method for the synthesis of 3.9-dimethylvanthine. The treatment of 6-chloro-1-methyl- and/or 6-chloro-l-propyluracil (1a b) with different alkyl amines such as methyl-, isopropyl-. $n$-butyl-, neopentylamine in ethanol were heated under reflux for a short period to afford 1-alkyl-6-alkylaminouracil 2 a -h. The nitrosation of compounds 2a-h using sodium nitrite in acetic acid at room temperature gave 5 -nitroso derivatives $3 \mathrm{a}-\mathrm{g}$ which on reductive formylation gave $4 \mathrm{a}-\mathrm{g}$. The dehydrocyclization of 5 -formamidouracils 4a-g using a mixture of formanide/formic acid led to the formation of $\mathbf{5 a - g}$ as shown in (Scheme 1) in a moderate yields. ${ }^{1} \mathrm{H}$-nur data were shown in Tables 1.2 and 3.
In the course of nitrosation step for the preparation of $\mathbf{3 c} . \mathrm{g}$ the 3.8 -dialkylxanthine derivatives $6 \mathbf{a} . \mathbf{b}$ were formed simultaneously. The structures were confirmed by ${ }^{1} \mathrm{H}$-numr (DMSO-d ${ }_{6}$ ) at $\delta 13.1$ (s. $1 \mathrm{H}, \mathrm{NH}(3)$ ), $11.07(\mathrm{~s} .1 \mathrm{H}, \mathrm{NH}(9)$ ) and MS: $\mathrm{m} / \mathrm{z}(\%)=\mathrm{M}^{-} 208(70), \mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{3} 179$ (63). 137

i) alkylamine, EtOH ; ii) $\mathrm{NaNO}_{2} / \mathrm{AcOH}$; iii) $\mathrm{Zn} / \mathrm{HCOOH}$; iv) $\mathrm{HCONH}_{2} / \mathrm{HCOOH}$

| Compd. No. | R | $\mathbf{R}^{\mathbf{1}}$ |
| :--- | :--- | :--- |
| 5 a | $\mathrm{CH}_{3}$ | $\mathrm{CH}_{3}$ |
| 5 b | $\mathrm{CH}_{3}$ | $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ |
| 5 c | $\mathrm{CH}_{3}$ | $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$ |
| 5 d | $\mathrm{CH}_{3}$ | $\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ |
| 5 e | $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ | $\mathrm{CH}_{3}$ |
| 5 f | $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ | $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$ |
| 5 g | $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ | $\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ |

Scheme 1


Table 1. ${ }^{\text {'H }} \mathrm{H}$-mur spectral data for $\mathbf{2 b}-\mathrm{h}, \delta$ values in DMSO-d $\mathrm{d}_{6}$

| Compd 110. | ¢-ppm |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{N}_{1}$-alkyl | $\mathrm{N}_{3}-\mathrm{H}$ | $\mathrm{C}_{5}-\mathrm{H}$ | $\mathrm{C}_{6}$ - NH | another signal |
| 2b | 3.18 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ) | 10.41 ( $\mathrm{s}, \mathrm{lH})$ | 4.5 ( $\mathrm{s}, 1 \mathrm{H})$ | 6.19 (d. 1 H ) | $3.5(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.5(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{CH} 3)$ |
| c | 3.18 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ) | 10.41 ( $\mathrm{s}, \mathrm{lH}$ ) | 4.47 ( $\mathrm{s}, 1 \mathrm{H})$ | 6.67 (t, 1H) | $3.02\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH})$ |
| d | $3.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ | 10.43 (s, 1H) | 4.66 ( $\mathrm{s}, 1 \mathrm{H})$ | 6.38 (t, 1H) | $2.88\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.92\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right)$ |
| e | 3.71 (t, 2H, CH⿳⺈ ${ }_{2}$ ) | 10.42 (s, 1H) | 4.41 ( $\mathrm{s}, 1 \mathrm{H})$ | $6.94(\mathrm{q}, 1 \mathrm{H})$ | $1.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.92\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ |
| f | $3.79\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ | 10.40 ( $\mathrm{s}, \mathrm{lH})$ | $4.5(\mathrm{~s}, 1 \mathrm{H})$ | 6.18 (d. 1 H$)$ | $\begin{aligned} & 3.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 1.45\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.14\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), \\ & 0.83\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \end{aligned}$ |
| g | $3.72(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH} 2)$ | $10.39(s, 1 H)$ | 4.45 ( $\mathrm{s}, 1 \mathrm{H})$ | $6.70(\mathrm{t}, 1 \mathrm{H})$ | $\begin{aligned} & 3.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3}\right), 1.48\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), \\ & 0.86\left(2 \mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) \end{aligned}$ |
| h | $3.84(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH} 2)$ | $10.39(s, 1 H)$ | 4.65 ( $\mathrm{s}, 1 \mathrm{H}$ ) | 6.46 (t, 1H) | $2.88\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3}\right), 0.85$ ( $\left.\mathrm{s}, 9 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$ |

Table 2. ${ }^{1} \mathrm{H}$-mur spectral data for compounds ( $\mathbf{3 a} \mathrm{g}$ ) in DMSO- $\mathrm{d}_{0}$

| Compd. 1 lo | §-ppm |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{N}_{1}$-alkyl | $\mathrm{N}_{3}-\mathrm{H}$ | $\mathrm{C}_{6}-\mathrm{NH}$ | $\mathrm{C}_{6}$-N-alkyl | another signal |
| 3 a | 3.41 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ) | 15.29 (s, 1H) | 11.28 (q, 1H) | 3.13 (d, 3H, $\mathrm{CH}_{3}$ ) | - - |
| b | 3.43 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ) | 13.82 (s, 1H) | $11.30(\mathrm{~s}, 1 \mathrm{H})$ | 3.07 (m, 1H, CH) | $1.08\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$ |
| c | $3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ | 13.84 (s, 1H) | 10.97 (t, 1H) | $3.5\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ | $0.87\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ |
| d | $3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ ) | 16.01 (s, 1H) | $10.98(\mathrm{~s}, 1 \mathrm{H})$ | $3.56\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ | $0.98\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right.$ ) |
| e | $3.73\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ | 13.88 (s, 1H) | $11.26(\mathrm{q}, \mathrm{lH})$ | $3.07\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ | $1.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3}\right), 078\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ |
| f | $3.69\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ | 13.86 (s, 1H) | $11.27(\mathrm{q}, \mathrm{lH})$ | $3.19\left(\mathrm{p}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ | $\begin{aligned} & 1.48\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.79(\mathrm{~m}, 6 \mathrm{H}, \\ & \left.2 \mathrm{CH}_{3}\right) \end{aligned}$ |
| $g$ | $3.78\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ | 13.92 ( $\mathrm{s}, 1 \mathrm{H})$ | $11.32(t, 1 H)$ | 3.12 (d, 2H) | $1.62\left(\mathrm{~mm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.85\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right)$ |

Table 3. ${ }^{1} \mathrm{H}$-mur spectral data for ( $\mathbf{( t a - g}$ ), $\delta$-values in DMSO-d $\mathrm{d}_{6}$

| Compd. 110. | $\delta$-ppm |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{N}_{1}$ | $\mathrm{N}_{3}-\mathrm{H}$ | $5-\mathrm{NH}$ | 6-NH | $5-\mathrm{CHO}$ | another signals |
| 13a | $3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ | 10.78s | 8.68 d | 6.58 q | 8.33 d | 2.87 (d, 3H) |
|  |  |  | 8.01 d | 6.39 q | 7.76 d |  |
| b | $3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ | 10.87s | 8.74 d | 6.59 q | 8.1 d | 1.12 (d, 6H), |
|  |  |  | 8.22 d | 6.28 q | 7.76 d | 3.28 (m, 1H) |
| c | $3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ | 10.8 s | 8.68 d | 6.129 | 8.08 d | 0.85 (t, 3H) |
|  |  | 10.24 s | 8.24 d | 5.97 q | 7.74d | 1.26 (m, 2H) |
|  |  |  |  |  |  | 1.43 (m, 2H) |
| d | $3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ | 10.98d | 9.00 d | 5.85q | 8.10 d | 0.84 ( $\mathrm{s}, 9 \mathrm{H})$ |
|  |  |  |  | 5.45 q | 7.74d | 2.98 (d, 2H) |
| e | $3.74\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ | 10.81 s | 8.64 d | 6.46 t | 8.07 d | 0.84 (t, 3H) |
|  |  | 10.72 s | 8.28d | 6.32 t | 7.73d | $1.94(\mathrm{~mm}, 2 \mathrm{H})$ |
| f | 3.78 (t, 2H, $\mathrm{CH}_{2}$ ) | 10.77 s | 8.71 d | 6.34 t | 8.07 d | 0.84 (2t, 6H) |
|  |  |  | 8.28 d | 6.13 t | 7.75 d | $1.21(\mathrm{~mm}, 2 \mathrm{H})$ |
|  |  |  |  |  |  | 1.45 (m, 4H) |
| g | $3.8\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$ | 10.97 s | 8.96 d | 5.68 t | 8.09 d | 0.83 (3t, 3H) |
|  |  |  | 8.35 d | 8.39 t | 7.72d | 1.56 (m, 2H) |
|  |  |  |  |  |  | 2.9 (d, 2H) |

(22). 98 (7). 48 (100). 29 (49).

The nitrosation of compound $\mathbf{2 f}$ did not give the expected 5 -nitroso analogue. but instead gave 3.3 -dimethyl-5-propyl-6,8-dioxo-5,6.7,8-tetrahydro-3H-pyrimido[5,4-c]-1,2.5-oxadiazine (7). upon stirring with sodium nitrite and acetic acid for 12 h at room temperature. The structure of the compound 7 was confirmed by ${ }^{1} \mathrm{H}$-nmor. mass and uv spectra. Its uv spectrum was identical to that of the analogous 3.3,5,7-tetramethyl-6.8-dioxo-5.6,7,8-tetralydro-3H-pyrimido[5.4-c]-1,2.5-oxadiazine. prepared by Goldner. ${ }^{23}$ The mass spectrum of the compound 7 showed MS: $\mathrm{m} / \mathrm{z}=\mathrm{M}^{-} 238, \mathrm{M}^{+}$$\mathrm{CH}_{3} 223, \mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CN} 197, \mathrm{M}^{-}-\mathrm{CH}_{3} \mathrm{NCO} 181$ and other fragment ions.

$2 f$




7
Treatment of 5-amino-1-methyl-6-methylaminouracil (8). (which was prepared by the hydrogenolysis of $1-m e t h y l-6$ -methylamino-5-nitrosouracil (3a) ${ }^{11}$ ) with aroyl chlorides under proper conditions (benzoyl chloride. 4 -methyl-, 2 -chlorobenzoyl chloride in 1 N NaOH at $0{ }^{\circ} \mathrm{C}$, with 4 -nitrobenzoyl chloride in ethyl acetate in presence of sodium bicarbonate

| No. | Ar |
| :--- | :--- |
| 10 a | $\mathrm{C}_{6} \mathrm{H}_{5}$ |
| 10 b | $4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$ |
| 10 c | $2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ |
| 10 d | $3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ |
| 10 e | $4-\mathrm{Pynidyl}^{2}$ |
| 10 f | 2 -Furyl |


| No. | Ar |
| :--- | :--- |
| 9 a | $\mathrm{C}_{6} \mathrm{H}_{5}$ |
| 9 b | $4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$ |
| 9 c | $2-\mathrm{Cl}_{6} \mathrm{C}_{6} \mathrm{H}_{4}$ |
| 9 d | $4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ |
| 9 e | $4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$ |

Scheme 2


Scheme 3
at $0^{\circ} \mathrm{C}$, or with 4 -triflouromethylbenzoyl chloride in pyridine at room temperature) afforded the corresponding 5 -arylamido-1-methyl-6-methylaminouracils (9a-e) in a good yields (Scheme 2). The uv spectra of these compounds showed close resemblance of absorptions between 204 and 265 mm .

Reaction of compound $\mathbf{8}$ with different aromatic aldelydes namely, benzaldehyde. 4-anisaldelyde. 2-nitro-, 3 -nitrobenzaldelyde, pyridine-4-caboxaldelyde and 2 -furaldelyde with stirring at room temperature for $15-60 \mathrm{~min}$ gave the corresponding Schiffs bases 5 -arylidineamino-6-methylaminouracils (10a-f) in good yields (Scheme 2).

Dehydrative cyclization of the compounds $9 \mathrm{a}-\mathrm{e}$ by heating at $280-320{ }^{\circ} \mathrm{C}$ and oxidation of compounds $\mathbf{1 0 a - f}$ by refluxing with sodium periodate in absolute ethanol for 3-36h gave the corresponding 8-aryl-3,9-dimethylvanthines (11a-i) (Scheme 3 ). The structures of these compounds were proved by elemental analyses, uv spectral data which were similar to those of 8 -ary lpurines ${ }^{16}$ except the compounds 11c and 11f which exhibit a hypsochromic shift due to the planarity of 8 aryl with the santhine ring.

An attempt was made to prepare 8 -arylpurines by the action of freshly distilled phosphoryl chloride on compounds 9. but 2-aryl-5-methyl-4-methylamino-1.3-oxazolo[5.4-d] pyrimidine-6-one ( $\mathbf{1 2 a}, \mathbf{b}$ ) were formed instead on heating with phosphoryl chloride at $90^{\circ} \mathrm{C}$ in an oil bath. (Scheme 3) ${ }^{1} \mathrm{H}$ nur for compound 12a shows doublet for the methyl group of $\mathrm{NHCH}_{3}(6)$ at $\delta=3.39$, quartet for NH at $\delta=8.11$ and the absence of $\mathrm{NH}(3)$ group. On the other hand. when 9b was heated under reflux with phosphoryl chloride for 3.5 h two products: 2.6 -dichloro-9-methyl-8-(2-chlorophenyl)purine (13) and 2-(2-chlorophenyl)-5-methyl-4-methylamino-1,3-oxazolo[5.4-d]pyrimidine-6-one (14) were isolated. (Scheme 4). We conclude that the $\mathrm{POCl}_{3}$ at $90^{\circ} \mathrm{C}$ acts as dehydrocyclizing agent but at higher temperature acts as a halogenated and dehydrocyclizing agent.

## Experimental Section

All melting points were recorded on an electrothermal gallenkamp apparatus and are uncorrected. The ${ }^{1} \mathrm{H}$ nur


Scheme 4
spectra were recorded on a Bruker AC 250 spectrometer ind (ppm) and with tetramethylsilane as the internal standard. The UV spectra were determined with Perkin Elmer, Lambda 5 or 15 spectrophotometer: $\lambda_{\text {max }}$ in $\mathrm{um}(\log \varepsilon)$. The microanalyses were performed in the microanalytical laboratory of the Faculty of Chemistry. Konstanz University. Germany.

1-Methyl-, or 1-propyl-6-chlorouracil (1a, b) $)^{21,2}$ These compounds were prepared according to the reported method ${ }^{21,23}$
1-Alkyl-6-alkylaminouracil (2a-h). A mixture of 1a and/ or 1 b ( 25.5 nmmol ) in absolute ethanol ( 15 mL ) and alkylamines ( 150 mmol ) ( $40 \%$ ethanolic methylamine, isopropyl, $50 \%$ ethanolic $n$-butyl and neopentylamine) were heated under reflux for 15 min . After cooling, the precipitated product was collected by filtration. dried in the oven and recrystallised from appropriate solvent into colourless crystals (Table 1).
2a: ${ }^{11}$ m.p. 275-770: 77\% yield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.33 \mathrm{~A}$ : uv (methanol): 265 (4.35). 203 (4.15). Recrystallized from water. Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C, 46.44: $\mathrm{H}, 5.85$; $\mathrm{N}, 27.08$. Found: C. 46.51 ; H. 6.12: N. 26.78.
2b: m.p. 266-68*: 84\% yield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.39 \mathrm{~A}$; uv (methanol): 267 (4.33). 204 ( 4.20 ). Recrystallized from water. Anal. Calcd. for $\mathrm{C}_{3} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C. 52.45: H, 7.15; N. 22.93. Found: C. 51.85 ; H. 7.03: N. 22.48.
2c: m.p. $212-14^{\circ} ; 96 \%$ yield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.70 \mathrm{~B}$; uv (methanol): 267 (4.37). 204 (4.22): Recrystallized from water. Anal. Caled. for $\mathrm{C}_{3} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C. 54.81: H, 7.66; N. 21.30. Found: C. 54.41 ; H. 7.66: N. 21.37.

2d: m.p. $237^{\circ}: 69 \%$ yield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.18 \mathrm{~A}$ : uv (methanol): 268 (4.27). 203 (3.90): Recystallized from methanol. Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}: \mathrm{C}, 56.85$ : H, 8.11; N. 19.89. Found: C. 56.73: H, 8.17; N. 19.98.

2e: m.p. $215^{\circ} ; 71 \%$ yield: $\operatorname{Rr}(S G)=0.43 \mathrm{~A}:$ uv (methanol): 266 (4.33), 204 (4.09). Recrystallized from methanol. Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C. 52.44: H. 7.14: N. 22.90. Found: C. 54.45 ; H. 7.15 : N. 23.45.

2f: m.p. $219^{\circ}: 83 \%$ yield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.59 \mathrm{~A}$ : uv (methanol): 268 (4.36). 203 (4.20). Recrystallized from acetone. Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C. 56.86 ; H. 8.11: N, 19.89. Found: C, 56.49: H, 8.20; N. 20.25.

2g. m.p. 212-13 ${ }^{\circ} ; 88 \%$ yield; $\mathrm{R}_{\mathrm{r}}(\mathrm{SG})=0.46 \mathrm{~A}$ : uv (methanol): 267 (4.36). 203 (4.19). Recrystallized from ethanol. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ : C. 58.68: H. 8.49: N. 18.66. Found: C, 58.70 . H, 8.34; N. 18.88.

2h: m.p. 202-030. $83 \%$ yield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.62 \mathrm{~A}$; uv (methanol): 269 (4.29). 204 (4.11). Recry stallized from methanol. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2}$ : $\mathrm{C}, 60.23$ : H. 8.83; N. 17.56 . Found: C, 60.12: H, 8.91 ; N. 17.74.

1-Alkyl-6-alkylamino-5-nitrosouracil (3a-g). Compound $2 \mathrm{a}-\mathrm{e}$ and $/$ or $2 \mathrm{~g}, \mathrm{~h}(19 \mathrm{mmol}$ ) was dissolved in water ( 40 mL ), then sodium nitrite ( 22 mmol ) and acetic acid ( 70 mmol) were added with stirring for 3 h in an ice bath. There was generally a color changes in these reactions to either red. pink or violet. The precipitated product was collected by filtration. washed with ether and dried in the dessicator for 48 h to afford 3a-g.

The mother liquor of compound $\mathbf{3 c}$. g was evaporated in vacuo till dryness. water ( 10 mL ) added and the precipitate collected by filtration. dried in the oven and recrystallized from ethanol to give compounds $6 a$ and $6 b$ respectively.

3a: m.p. $180^{\circ} ; 88 \%$ yield: $\mathrm{Rf}_{\mathrm{f}}(\mathrm{SG})=0.49 \mathrm{~A}$ : uv (methanol): 314 (3.80), 230 (4.11).
3b: m.p. $140^{\circ} ; 34 \%$ yield; $\mathrm{R}_{\mathrm{I}}(\mathrm{SG})=0.30 \mathrm{~F}$; uv (methanol): 315 (3.50). 228 (3.80) Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}$, $45.28:$ H, 5.70 ; N. 26.40 . Found: C. 45.12 : H. 5.71 ; N. 25.94.

3c: m.p. $128^{\circ}: 40 \%$ yield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.70 \mathrm{~A}$; uv (methanol): 317 (3.99), 229 (4.25) Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{1+} \mathrm{N}_{4} \mathrm{O}_{3}: \mathrm{C}$, 47.78: H. 6.23; N. 24.76 . Found: C. 48.01 : H. 6.02; N. 24.82.

3d: m.p. $137^{\circ} ; 71 \%$ y ield: $\mathrm{R}_{\mathrm{t}}(\mathrm{SG})=0.77 \mathrm{~A}$ : uv (methanol): 318 (3.90), 230 (4.20) Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}$. 49.99: H, 6.71 ; N. 23.32 . Found: C. 49.96 : H. 6.73; N. 23.05.

3e: m.p. $152^{\circ}$ : $72 \%$ yield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.55 \mathrm{~A}$; uv (methanol): 314 (3.80), 230 (4.11) Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}, 45.28$; H, 5.69; N. 26.41. Found: C. 45.07: H, 5.70; N, 26.31

3f: m.p. $76^{\circ}: 72 \%$ yield; $\mathrm{Rf}_{\mathrm{f}}(\mathrm{SG})=0.52 \mathrm{~A}$; uy (methanol): 314 (3.70), 229 (4.10). Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ : C. 51.95: H. 7.12; N, 22.03. Found: C, 51.86: H. 6.95; N, 21.96.
$3 \mathrm{~g}: \mathrm{m} . \mathrm{p} .105^{\circ} ; 63 \%$ y ield: $\operatorname{Rf}(\mathrm{SG})=0.38 \mathrm{~B}$ : uv (methanol): 312 (3.60). $230(4.09)$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C} .53 .71$; H. 7.51: N, 20.88. Found: C, 53.67: H, 7.51; N. 20.60.

6a: m.p. $320-22^{\circ} ; 24 \%$ y ield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.65 \mathrm{~B} ; \mathrm{IH}$ nnr: $\delta$ 13.11 ( $\mathrm{s}, \mathrm{IH} . \mathrm{NH}(3)), 11.08(\mathrm{~s} .1 \mathrm{H}, \mathrm{NH}(9)), 3.35\left(\mathrm{~s}, 3 \mathrm{H} . \mathrm{CH}_{3}\right.$ (1)). $2.58\left(\mathrm{t}, 2 \mathrm{H} . \mathrm{CH}_{2}\right) .1 .07\left(\mathrm{~m}, 2 \mathrm{H} . \mathrm{CH}_{2}\right), 0.09\left(\mathrm{t} .3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Anal. Calcd. for $\mathrm{C}_{2} \mathrm{H}_{1} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C. $51.91 ; \mathrm{H}, 5.81 ;$ N. 27.01. Found: C, 51.93: H, 5.81; N, 26.83.
6b: m.p. $>320^{\circ}: 26 \%$ yield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.59 \mathrm{~B}$. Anal. Caled. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}, 57.58: \mathrm{H} .7 .24 ;$ N. 22.38 . Found: C . 57.47: H, 7.26; N. 22.16.

1-Alkyl-6-alkylamino-5-formamidouracil (4a-g). A mixture of compounds $\mathbf{3 a - g}$ ( 5 mmol ). zinc dust ( 30 nmol ) and formic acid ( 0.58 mmol ) were heated under reflux for 15 min. The reaction mixture was filtered on hot and the filterate was evaporated in vacto till dryness, then ethanol ( 10 mL ) was added. The precipitated product was filtered. dried in the oven and recrystallized from appropriate solvent.

4a: m.p. $321^{\circ} ; 61 \%$ yield: uv (methanol): 271 (4.22). 205 (4.12).

4b: m.p. $240^{\circ} ; 72 \%$ y ield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.67 \mathrm{~B}$; uv (methanol): 272 (4.00). 206 (3.95): recry stallized from methanol; Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ : C. 47.78: H. 6.19: N. 24.77. Found: C. 47.69 ; H. 6.24: N. 25.05

4c: m.p. $223^{\circ}: 75 \%$ y ield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.79 \mathrm{E}$ : uv (methanol): 272 (4.01). 207 (4.01): recry stallized from methanol; Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}, 50.00: \mathrm{H} .6 .71: \mathrm{N}, 23.32$. Found: C. 49.81 ; H. 6.62 : N. 23.68

4d: m.p. $215^{\circ} ; 82 \%$ yield; $\mathrm{R}_{\mathrm{r}}(\mathrm{SG})=0.32 \mathrm{~A}$ : uv (methanol): 275 (4.20). 207 (4.18): recry stallized from methanol; Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C} .51 .98$; H. 7.10: N, 22.04. Found: C. 51.80: H, 7.13; N. 21.66.

4e: m.p. $195^{\circ}: 74 \%$ yield: $\mathrm{Rf}_{\mathrm{f}}(\mathrm{SG})=0.50 \mathrm{E}$ : uv (methanol): 272 (4.23), 202 (4.19); recrystallized from ethanol; Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ : C. 47.78: H. 6.23: N. 24.76. Found: C. 48.02 ; H. 6.70 : N. 23.37.

4f: m.p. $184-86^{\circ} ; 36 \%$ yield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.70 \mathrm{~A}$ : uv (methanol): 273 (4.24), 204 (4.18): recrystallized from methanol: Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{2}\left(\mathrm{~N}_{4} \mathrm{O}_{3}\right.$ : C. 53.71: H. 7.49; N. 20.88. Found: C. 53.11; H. 7.53: N, 20.96.

4g: m.p. 190-92 : $57 \%$ yield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.72 \mathrm{~B}$; uv (methanol): 274 (4.38). 203 (4.34); recrystallized from ethanol: Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}$ : C. 55.30 : H. 7.80; N. 19.72. Found: C. 54.83 ; H. 7.74: N. 19.50.
3,9-Dimethylxanthines (5a-g). A mixture of compound $4 \mathrm{a}-\mathrm{g}(2 \mathrm{mmol})$. formamide $(3.0 \mathrm{~mL})$, water $(0.25 \mathrm{~mL})$ and formic acid ( 0.25 mL ) were heated at $160^{\circ}$ for 30 min . After cooling. the precipitated crystal was collected by filtration, dried in the oven and recrystallized from appropriate solvent to give 5a-g.
$5 \mathrm{a}: \mathrm{m} . \mathrm{p} .336^{\circ}, 46 \%$ y ield: $\operatorname{Rf}(\mathrm{SG})=0.72 \mathrm{~B}$ : uv (methanol): 265 (3.72). 235 (3.71). 202 (4.02): recrystallized from water.
5b: m.p. 198-99 $; 49 \%$ yield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.65 \mathrm{E}$; uv (meth-
anol): 268 (3.94), $237(3.83), 201(4.25)$, recrystallized from methanol. Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C. 51.91 : H, 5.81: N. 26.91 . Found: C, 51.72: H, 5.80; N, 26.70.

5c: m.p. $126^{\circ} .44 \%$ yield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.60 \mathrm{~B}$; uv (methanol): 268 (3.96), 237 (3.86), $202(4.25)$; recry stallized from ethanol. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{1+} \mathrm{N}_{4} \mathrm{O}_{2}$ : C, 54.04: H. 6.35; N. 25.21 . Found: C, 54.01: H, 6.35; N. 24.83.

5d: m.p. 262-64 ${ }^{\circ}$ : $70 \%$ yield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.41 \mathrm{~A}$; uv (methanol): 265 (3.95), 235 (3.96), 203 (4.24); recrystallized from ethanol. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C. 55.92 : $\mathrm{H}, 6.82$ : N , 23.71. Found: C. 55.46 ; H. 6.78: N. 23.69.

5e: m.p. $256-58^{\circ}: 50 \%$ yield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.51 \mathrm{E}$; uv (methanol): 266 (3.95), 237 (3.83), 202 (4.15); recrystallized from ethanol. Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C. 51.91 : H. 5.81 ; N, 26.91. Found: C. 52.08 ; H. 5.83: N. 27.65.

5f: m.p. $189-90^{\circ} ; 64 \%$ yield: $\mathrm{R}_{\mathrm{t}}(\mathrm{SG})=0.46 \mathrm{~A}$ : uv (methanol): 265 (3.88), $236(3.85), 202(4.20)$, recrystallized from water. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ : $\mathrm{C}, 57.58 ; \mathrm{H}, 7.24: \mathrm{N}$. 22.38. Found: C. 57.36 ; H. 7.05: N. 22.44.

5g: m.p. $229-30^{\circ} ; 19 \%$ yield; $\mathrm{R}_{\mathrm{t}}(\mathrm{SG})=0.50 \mathrm{~A}$ : uv (methanol): 266 (3.95), $236(3.94), 202(4.26)$, recrystallized from ethanol. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C. 59.07: H, 7.62; N, 21.99. Found: C, 59.20: H, 7.62; N. 21.18.

3,3-Dimethyl-5-propyl-6,8-dioxo-5,6,7,8-tetrahydro-3H-pyrimido[5,4-c]-1,2,5-oxadiazine (7). Compound $2 f$ (2 mmol) was suspended in water ( 10 mL ) with stirring in ice bath, then acetic acid ( 8.7 mmol ) and sodium nitrite ( 4.0 mmol) were added, a pink color appeared which changed to white precipitate with continuous stirring. The reaction mixture kept in refrigerator for two days. The precipitate was collected by filtration, dried in the oven and recrystallized from methanol ( 15 mL ) to afford 7 with m.p. $190^{\circ}: 43 \%$ yield; uv (methanol): 281 (4.12). 208 (4.11); Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C. 50.41 : H. 5.92 ; $\mathrm{N}, 23.51$. Found: C. 50.51 ; H, 5.98; N. 23.74.

5-Amino-6-methylamino-1-methyluracil (8). ${ }^{18}$ This compound was prepared as a reported method. ${ }^{18}$

5-Arylamido-1-methyl-6-methylaminouracils (9a-c). Compound 8 ( $3.0 \mathrm{~g}, 17.6 \mathrm{mmol}$ ) was dissolved in a solution of 1 N sodium hydroxide ( 30 mL ) and an equimolar quantity of the aroyl chloride. benzoyl, 4 -methylbenzoyl or 2 chlorobenzoyl chloride was added dropwise over a period of 0.5 h with stirring at $0^{\circ} \mathrm{C}$. The mixture was stirred for an additional lh . and the pH of the solution was adjusted to 5 by adding conc. hydrochloric acid. The precipitate was filtered. washed with water. dried in the oven and recrystallised from ethanol ( 150 mL ).

9a: m.p. $274{ }^{\circ} \mathrm{C} ; 56 \%$ yield; $\mathrm{R}_{\mathrm{t}}(\mathrm{SG})=0.73 \mathrm{~B}$; uv (methanol): 271 (4.25). 222 (4.12), 209 (4.18). ${ }^{1} \mathrm{H}$ ımr: 10.75 (s, $1 \mathrm{H} . \mathrm{NH}(\mathrm{C}-3)$ ). 9.03 (s, 1H, $\mathrm{NH}(\mathrm{C}-5)$ ). 7.90 (dd, 2 H , aromatic), 7.43 (m. 3H. aromatic). 6.43 (q. IH. $\mathrm{NH}(\mathrm{C}-6), 3.25$ ( $\mathrm{s}, 3 \mathrm{H} . \mathrm{NMe}(1)$ ). 2.83 (d. 3H, NHMe(C.-6)). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C. 56.93: H. 5.14; $\mathrm{N}, 20.42$. Found: C, 56.80 ; H, 5.19; N. 21.00.

9b: m.p. $289^{\circ} \mathrm{C} ; 64 \%$ yield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.24 \mathrm{~A}$ : uv (methanol): 271 (4.28), 232 (4.29). 205 (4.52). ${ }^{.} \mathrm{H}$ nmr: 10.75 (s, 1H. $\mathrm{NH}(3)) .8 .95$ (s. $1 \mathrm{H} . \mathrm{NH}(\mathrm{C}-5)$ ). 7.82 (d, 2 H , aromatic),
7.27 (d. 2 H. aromatic) 6.41 (q. $1 \mathrm{H} . \mathrm{NH}(\mathrm{C}-6)$ ). 3.25 (s. 3 H . $\mathrm{NMe}(1) .2 .83$ (d. 3H, NHMe(C-6), 2.34 (s. 3H, P-Me)). Anal. Caled for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$ : C. 58.32 : H. 5.58 ; N. 19.43. Found: C. 58.33 ; H. 5.63 : N. 19.55.
9 C: m.p. $303-304{ }^{\circ} \mathrm{C}: 58 \%$ y ield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.48 \mathrm{~A}$; UV (methanol): $271\left(4.19,208(4.27) .{ }^{1} \mathrm{H}\right.$ nmr: 10.76 (s, 1 H . $\mathrm{NH}(3)) .8 .96$ (s. 1H, $\mathrm{NH}(\mathrm{C}-5)$ ), $7.39-7.95$ (m, 3H. aromatic). 6.46 (q. $\mathrm{NH}(\mathrm{C}-6)$ ), 3.25 (s, 3H. NMe(1)), 3.0 (d, 3H, NHMe (C.6)). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O}_{3}: \mathrm{C}, 50.57$; H. 4.24: N. 18.15. Found: C. 50.62 : H, $4.24, \mathrm{~N}, 18.60$.

1-Methyl-6-methyl amino-5-(4-nitrobenzanido)uracil (9d). Compound 8 ( 2.0 g .11 .7 nmmol ) was dissolved in sodium bicarbonate solution ( 1.0 g in 32 nL of water) with stiming at 0 ${ }^{\circ} \mathrm{C}$. 4-nutrobenzoyl chloride ( 2.2 nL ) in ethylacetate ( 30 nL ) was added dropwise. The reaction mixture was stirred for an additional 2 h . The formed precipitate was filtered. washed with ether, dried in the oven and recrystallised from ethanol ( 100 mL ). m.p. $306-308{ }^{\circ} \mathrm{C}$ : $46 \%$ yield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.09 \mathrm{~A}$; uv (methanol): $270(4.02), 235(4.69) .204(3.96) .{ }^{1} \mathrm{H}$ nmr: $10.82(\mathrm{~s}, 1 \mathrm{H} . \mathrm{NH}(3))$ ). 9.41 (s. $\mathrm{NH}(\mathrm{C}-5)$ ). 8.33 (d, 2 H . aromatic). 8.13 (d, 2 H , aromatic). 6.50 (q. $\mathrm{IH}, \mathrm{NH}(\mathrm{C}-6)$ ). 3.26 (s. $3 \mathrm{H}, \mathrm{NMe}(\mathrm{I})$ ), 2.85 (d. 3 H , $\mathrm{NHMe}(\mathrm{C}-6)$ ). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{\leq}: \mathrm{C} .48 .90 ; \mathrm{H} .4 .10 ; \mathrm{N}$. 21.93. Found C. 48.95 : H, 4.14; N. 22.00.

1-Methyl-6-Methylamino-5-( + -trifluoromethylleenzamido)uracil (9e). Compound 8 ( 3.0 g .17 .6 mmol ) was dissolved in pyridine ( 110 mL ) and 4 -trifluoromethylbenzoyl chloride $(2.0 \mathrm{~mL} .13 .0 \mathrm{mmol})$ was added dropwise with stirring at room temperature for 5 h . The reaction mixture was poured on ice ( 150 g ) and the precipitated product was collected by filtration. washed with ether. and dried to give $9 \mathrm{e}(2.54 \mathrm{~g})$. The mother liquor was evaporated in vacto till dryness. water ( 30 mL ) was added with stirring. The formed precipitate was filtered. washed with ether and dried to give an additional yield of $9 \mathrm{e}(0.79 \mathrm{~g})$. The product was $(3.33 \mathrm{~g})$ which recrystallized from a mixture of water/ethanol 2 : 1 to afford a colorless crystals, m.p. $283{ }^{\circ} \mathrm{C} ; 58 \%$ yield: $\mathrm{R}_{\mathrm{f}}$ (SG) $=0.48 \mathrm{~A}$ : uv (methanol): 271 (4.25), 216 (4.24). 204 (4.31). ${ }^{1} \mathrm{H}$ umr: 10.80 (s, IH. NH(3)). 8.31 (s, IH. NH). 8.09 (d, 2H. aromatic). 7.87 (d, 2 H , aromatic), $6.50(\mathrm{q}, 1 \mathrm{H}, \mathrm{NH}(\mathrm{C}-6)$ ). 3.26 (s, 3H. NMe( 1 )), 2.84 (d. 3H. NHMe(C-6)).

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}, 49.13: \mathrm{H}, 3.82: \mathrm{N}$ : 16.36. Found: C. $49.06 ;$ H, 3.83 ; N. 16.20.

1-Methyl-5-arylidineamino-6-methylaminouracil (10a-f). Compound 8 ( 2.0 g . 1.7 mmol ) was dissolved in water ( 100 mL ) and a variety of equimolar amounts of aromatic aldehydes like benzaldehyde, 4-anisaldehyde, 2-nitro-, 3nitrobenzaldehyde, pyridine-4-carboxaldehyde or 2 -furaldehyde. was added with stiming at roon temperature for 30 min . The precipitated product was collected by filtration. washed with methanol then ether. dried in the oven and recrystallized from a mixture of methanol/water 2 : 1 .
10a: m.p. $235-237{ }^{\circ} \mathrm{C} ; 57 \%$ yield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.64 \mathrm{~A}$; uv (methanol): 344 (4.17). 298 (4.13). 231 (4.02), 204 (4.20). ${ }^{1} \mathrm{H}$ nur: 10.83 (s. $1 \mathrm{H}, \mathrm{NH}(3)$ ), $9.60(\mathrm{~s}, 1 \mathrm{H} . \mathrm{CH}(\mathrm{C}-5)$ ). 7.72 (dd, 2 H , aromatic), 7.36 (m. 3 H , aromatic), 6.92 (q. 1 H , $\mathrm{NH}(\mathrm{C}-6)$ ). 3.26 (s, 3H, $\mathrm{NMe}(1)), 3.25$ (d. $3 \mathrm{H}, \mathrm{NHMe}(\mathrm{C}-6)$ ). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C. 60.45; H. 5.46: N, 21.69.

Found: C, 60.34: H, 5.41; N. 21.63 .
10b: m.p. $224-226^{\circ} \mathrm{C} ; 43 \%$ yield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.76 \mathrm{~A}: \mathrm{uv}$ (methanol): 345 (4.36). 298 (4.27). 212 (4.27), 205 (4.26). ${ }^{1} \mathrm{H}$ nmr: $10.80(\mathrm{~s}, \mathrm{IH} . \mathrm{NH}(3)), 9.52$ (s. 1H, $\mathrm{CH}(\mathrm{C}-5)$ ). 7.67 (d. 2 H , aromatic), 6.95 (d, 2 H , aromatic), $6.82(\mathrm{q}, 1 \mathrm{H}$, $\mathrm{NHMe}(\mathrm{C}-6), 3.80$ (s. 3H, $\mathrm{OMe}(\mathrm{p})$ ), 3.21 (s. $\mathrm{NMe}(1)$ ). 3.19 (d. 3 H . NHMe(C-6). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C} .58 .32$ : H, 5.59; N. 19.43. Found: C. 58.30 : H, 5.52 ; N, 19.38.
$10 \mathrm{c}:$ m.p. $231^{\circ} \mathrm{C}: 52 \%$ yield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.78 \mathrm{~B}$; uv (methanol): 357 (3.99). 293 (4.15), 215 (4.25), 205 (4.34). ${ }^{1} \mathrm{H} \mathrm{nmr:}$ 10.90 (s. $1 \mathrm{H} . \mathrm{NH}(3)) .9 .90(\mathrm{~s}, 1 \mathrm{H} . \mathrm{CH}(\mathrm{C}-5)), 8.12$ (d. 1 H , aromatic). 7.92 (d, 1H. aromatic). $7.70(\mathrm{t}, 1 \mathrm{H}$. aromatic), 7.50 (t. 1 H , aromatic), $7.09(\mathrm{q}, 1 \mathrm{H} . \mathrm{NHMe}(\mathrm{C}-6)), 3.32(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{NMe}(\mathrm{I})$ ), 3.25 (d, 3H. NHMe(C-6)).

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$ : $\mathrm{C}, 51.48$; H. 4.32: N, 23.09. Found: C, 51.44: H, 4.28; N. 23.02.

10d: m.p. $249-250^{\circ} \mathrm{C}: 76 \%$ yield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.59 \mathrm{~A}: \mathrm{uv}$ (methanol): 351 (3.70). 291 (3.70), 215 (3.81). ${ }^{1} \mathrm{H}$ nmr: $10.909 \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}(3)) .9 .72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{C}-5)) .8 .45(\mathrm{~s}, 1 \mathrm{H}$, aromatic). 8.13 (d, 2 H, aromatic). $7.66(\mathrm{t}, 3 \mathrm{H}$, aromatic). 7.10 (q. 1H, NHMe(C-6)). 3.23 (s. 3H. NMe(1)), 3.29 (s. $3 \mathrm{H} . \mathrm{NHMe}(\mathrm{C}-6)$ ). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{4}: \mathrm{C}, 51.48: \mathrm{H}$, 4.32; N. 23.09 . Found: C, 51.28 : H. 4.30 : N, 22.98.

10e: m.p. $245-246^{\circ} \mathrm{C}: 55 \%$ y ield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.48 \mathrm{~A}$; uv (methanol): 368 (3.93). 291 (3.85). 237 (3.74), 203 (3.86). ${ }^{1} \mathrm{H}$ unur: 10.92 (s. $1 \mathrm{H} . \mathrm{NH}(3)$ ). 9.61 (s.1H. $\mathrm{CH}(\mathrm{C}-5)$ ), 8.56 (d. 2 H , aromatic), 7.62 (d, 2 H , aromatic), $7.16(\mathrm{q}, 1 \mathrm{H}$, $\mathrm{NHMe}(\mathrm{C}-6)$ ), 3.32 ( $\mathrm{s} .3 \mathrm{H} . \mathrm{NMe}(1) .3 .29$ (d. $3 \mathrm{H} . \mathrm{NHMe}(\mathrm{C}$. 6)). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ : $\mathrm{C}, 55.59$ : H. 5.05 ; N , 27.01. Found: C, 55.51 : H, 4.94; N 26.99.

10f: m.p. $223-225^{\circ} \mathrm{C}$ : $19 \%$ yield; $\mathrm{R}_{\mathrm{t}}(\mathrm{SG})=0.80 \mathrm{~A}$; uv (methanol): 349 (4.40). 301 (4.27), 203 (4.19). ${ }^{1} \mathrm{H}$ nmr: 10.81 (s. $1 \mathrm{H} . \mathrm{NH}(3)) .9 .44$ (s, 1H. $\mathrm{CH}(\mathrm{C}-5)), 7.71$ (d. 1 H , aromatic). 6.83 (q. $1 \mathrm{H} . \mathrm{NH}(6)$ ), 6.75 (d. IH. aromatic), 6.56 (d. 1 H , aromatic). 3.30 (s. $3 \mathrm{H}, \mathrm{NMe}(\mathrm{I})$ ), 3.26 (d, $3 \mathrm{H}, \mathrm{NHMe}$ (6)). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$ : C. $53.22 ; \mathrm{H}, 4.87 ; \mathrm{N}$, 22.56. Found: C. 53.21 ; H. 4.85 : N. 22.30.

## 8-Aryl-3,9-dimethylxanthine (11a-h).

Method A: Compound 9 a. b, d, e( 1.7 mmol ) were heated near their melting points for 1 h . The products were dissolved in 0.5 N of sodium hydroxide ( 30 mL ) and filtered on boiling water ( 30 mL ) and acidified with acetic acid ( 5 mL ). After cooling, the precipitates were collected by filtration, washed with ether. dried and recry stallized from methanol to give 11a-d.

Method B: To a suspensions solution of compound 10a, c-f ( 1.0 mmol ) in ethanol ( 15 mL ) a solution of sodium periodate ( 4.0 mmol ) in water ( 5 mL ) was added. The mixtures were refluxed with stirring for 4 h . After cooling, the precipitates were collected by filtration. washed with water. dried in the oven and recry stallized from methanol.

11a: m.p. $312-313{ }^{\circ} \mathrm{C}$ : $28 \%$ Yield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.36 \mathrm{~A}$ : uv ( 0.1 N HCl ): 282 (3.82), 255 (3.90). 202 (4.29). ${ }^{1} \mathrm{H}$ nmr: $11.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}(1)), 7.52+7.61(\mathrm{~m}, 5 \mathrm{H}$, aromatic). $3.85(\mathrm{~s}$, 3H. NMe(9)). 3.65 (s, 3H. NMe(3)). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{12}-$ $\mathrm{N}_{4} \mathrm{O}_{2}$ : C. 60.92: $\mathrm{H}, 4.72$ : $\mathrm{N}, 21.86$. Found: C. 60.88 ; $\mathrm{H}, 4.68$; N, 21.82 .

11b: m.p. $>330^{\circ} \mathrm{C} ; 85 \%$ Yield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.35 \mathrm{~A}$; uv $(0.1$ $\mathrm{NHCl}): 287$ (4.23), 249 (4.08), 203 (4.43). ${ }^{1} \mathrm{H}$ nmı: 11.19 (s. $1 \mathrm{H}, \mathrm{NH}(\mathrm{I})), 7.54+7.50(\mathrm{dd} .4 \mathrm{H}$, aromatic). $3.83(\mathrm{~s}, 3 \mathrm{H}$. $\mathrm{NMe}(9)$ ). 3.64 (s, IH. $\mathrm{NMe}(3)$ ). 2.37 ( $\mathrm{s}, 3 \mathrm{H} . \mathrm{Me}(\mathrm{p})$ ). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{1+} \mathrm{N}_{4} \mathrm{O}_{2}$ : C. 62.21: H. 5.22; N, 20.72. Found: C. 62.02: H, 5.19; N. 20.88.

11c: m.p. $231^{\circ} \mathrm{C} ; 33 \%$ Yield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.71 \mathrm{~A}$ : uv $(0.1 \mathrm{~N}$ $\mathrm{HCl}): 272$ (4.30), 233 (4.12), 208 (4.44). ${ }^{1} \mathrm{H}$ nmir: 11.23 (s. $1 \mathrm{H}, \mathrm{NH}(1)$ ). $7.56+7.67$ ( $\mathrm{m}, 4 \mathrm{H}$. aromatic). 3.66 (s. $3 \mathrm{H} . \mathrm{NMe}$ (9)). 3.39 ( $\mathrm{s}, 3 \mathrm{H} . \mathrm{NMe}(3)$ ). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}_{2}: \mathrm{C}$. 53.71: H. 3.81; N, 19.27. Found: C. 35.70: H. 3.79; N, 19.31.

11d: m.p. $321^{\circ} \mathrm{C}: 64 \%$ Yield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.46 \mathrm{~A}$; uv $(0.1 \mathrm{~N}$ $\mathrm{HCl}): 285$ (3.96), 214 (4.29), 202 (4.16). ${ }^{1} \mathrm{H}$ nmir: 11.23 (s. $1 \mathrm{H}, \mathrm{NH}(1)) .7 .85-7.93$ (dd. 4 H . aromatic). $3.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}$ (9)). 3.65 (s. $3 \mathrm{H}, \mathrm{NMe}(3)$ ). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{2}: \mathrm{C}$, 51.85: H. 3.41; N, 17.27. Found: C. 51.80: H. 3.42; N, 17.25.

11e: m.p. $310-312{ }^{\circ} \mathrm{C}$ : $60 \%$ Yield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.57 \mathrm{~B}$; uv ( 0.1 IN HCl$): 260(4.20), 241(4.20) .203(4.53) .{ }^{1} \mathrm{H} \mathrm{nnm}:$ 11.23 (s. 1H, NH(L)). 8.23 (d, 1H. aromatic), 7.87 (m, 2H. aromatic), 7.70 (d, IH. aromatic). 3.73 (s. $3 \mathrm{H} . \mathrm{NMe}(9)$ ). 3.67 (s. $3 \mathrm{H} . \mathrm{NMe}(3)$ ). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{4}$ : C .51 .82 : H. 3.68: N, 23.24. Found: C, 51.78: H, 3.64; N. 23.21.

11f: m.p. $312-314^{\circ} \mathrm{C} ; 30 \%$ Yield: uv ( 0.1 N HCl ): 328 (4.28). 300 (4.17), 275 (4.04). 204 (4.35). ${ }^{1} \mathrm{H}$ nnur: 11.26 (s. $1 \mathrm{H}, \mathrm{NH}(\mathrm{l})), 8.42(\mathrm{~s} .1 \mathrm{H}$, aromatic). $8.35(\mathrm{~d}, 1 \mathrm{H}$, aromatic). 8.10 (d. 1 H , aromatic), 7.84 (t. 1 H , aromatic), 3.91 (s. 3 H . $\mathrm{NMe}(9)$ ), 3,65 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}(3)$ ). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{5}-$ $\mathrm{O}_{4}: 51.82$ : H, 3.68: N. 23.24. Found: C, 51.80: H, 3.62: N, 23.19.
11 g. m.p. $319^{\circ} \mathrm{C}: 40 \%$ Yield: $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.25 \mathrm{~A}$; uv $(0.1 \mathrm{~N}$ $\mathrm{HCl}): 351$ (4.23), 267 (4.02), 202 (4.42). ${ }^{1} \mathrm{H}$ nmir: 11.26 (s. $1 \mathrm{H}, \mathrm{NH}(\mathrm{I})), 8.73+7.64$ (dd, 4 H , aromatic). 3.92 (s. $3 \mathrm{H}, \mathrm{NMe}$ (9)). 3.65 (s. 3H. NMe(3)). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C. 56.02: H. 4.31; N, 27.22. Found: C, 55.98: H. 4.29; N, 27.21 .

11h: m.p. $305-307{ }^{\circ} \mathrm{C} ; 20 \%$ Yield; $\mathrm{R}_{\mathrm{f}}(\mathrm{SG})=0.31 \mathrm{~A}$; uv ( 0.1 N HCl ): 291 (4.22), 234 (4.02). 207 (4.18). ${ }^{1} \mathrm{H}$ nnur: 11.25 (s, $1 \mathrm{H}, \mathrm{NH}(\mathrm{l})$ ). $7.9 \mathrm{I}+6.70$ (m. 3 H . aromatic). 3.97 (s, 3 H , $\mathrm{NMe}(9)$ ), 3.64 ( $\mathrm{s}, 3 \mathrm{H}$. NMe(3)). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3}$ : C. 53.65 : H. 4.09 , N, 22.75 . Found: C. 53.64 : H. $3.99 ;$ N, 22.63.

2-Aryl-6-methyl-7-methylamino-1,3-oxazolo[5,4-d]pyri-midin-5-one (12a, b). A mixture of compound 9a, b (2.0 mmol) and phosphoryl chloride was heated at $90^{\circ} \mathrm{C}$ for 0.5 h . The excess of phosphoryl chloride was evaporated in vocto and the residue was poured on ice ( 15 g ) with shaking. The precipitate was collected by filtration, washed with ether, dried in the oven and recrystallised from methanol.

12a: m.p. $320^{\circ} \mathrm{C} .89 \%$ yield. $\mathrm{R}_{\mathrm{f}}=0.62$ in $1: 9$ methanol chloroform. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{2}$ : C. 60.93; H. 4.71: N. 21.86. Found: C. 60.99 : H, 4.77; N, 22.92.

12b: m.p. $>330^{\circ} \mathrm{C} .60 \%$ yield. $\mathrm{R}_{\mathrm{f}}=0.53$ in I: 9 methanol : chloroform. ${ }^{1} \mathrm{H}$ mmi: 8.12 (q. $1 \mathrm{H}, \mathrm{NH}(4)$ ), $7.92-7.51$ (m. 4 H , aromatic). 3.41 (d. $3 \mathrm{H} . \mathrm{NHMe}(4)$ ). 3.32 (s, 3 H . NMe(5)). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C. 62.21 ; $\mathrm{H}, 5.21$ : N. 20.94. Found: C. 61.97: H, 5.17; N, 20.94.

2,6-dichloro-9-methyl-8-(2-chloropheny1)purine (13) and 2-(2-chlorophenyl)-5-methyl-t-methylamino-l,3-oxazolo-[5,4-d] pyrimidine-6-one (14). A misture of compound 9a ( 1.0 g .3 .0 mmol ) and redistilled phosphoryl chloride (30
mL ) was heated under reflux for 3.5 h (the color changed to dark brown after th from refluxing). The reaction misture was poured on ice ( 20 g ) with strong shaking. The precipitate was collected by filtration. dried and recrystallized from water ( 20 mL ) giving compound $13 . \mathrm{m} . \mathrm{p} .295-298^{\circ} \mathrm{C}$, yield ( $0.23 \mathrm{~g} .25 \%$ ) and $\mathrm{R}_{\mathrm{i}}=0.49\left(\mathrm{CH}_{3} \mathrm{OH}: \mathrm{CHCl}_{3} 1: 9\right)$. Anal. Calcd. for $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N}_{4}$ : C. 45.96 : $\mathrm{H}, 2.24$; $\mathrm{N}, 17.86$. Found: C, 45.95 : H, $2.30 ; \mathrm{N}, 18.00$.

The mother liquor was left standing ovemight The precipitate was collected by filtration, dried in the oven and recrystallized from methanol ( 20 mL ) to give compound 14 , m.p. $193{ }^{\circ} \mathrm{C}$, yield ( $0.35 \mathrm{~g} .34 \%$ ) and $\mathrm{R}_{\mathrm{f}}=0.84\left(\mathrm{CH}_{3} \mathrm{OH}\right.$ : $\mathrm{CHCl}_{3} \mathrm{I}: 9$ ). ${ }^{ } \mathrm{H}$ nmr: 8.19 (q. $\left.1 \mathrm{H}, \mathrm{NH}(4)\right), 7.96+7.47$ (m. 4 H . aromatic), 3.41 (d. $3 \mathrm{H}, \mathrm{NMe}(4)$ ). 3.36 (s. $3 \mathrm{H}, \mathrm{NMe}(5)$ ). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}_{2}$ : C. $53.71 ; \mathrm{H}, 3.81 ; \mathrm{N}, 19.27$. Found: C, 52.80: H, 3.90; N. 19.00.

Where $\mathrm{A}: \mathrm{CH}_{3} \mathrm{OH} / \mathrm{CHCl}_{3}(1: 9) \mathrm{B} ; \mathrm{CH}_{3} \mathrm{OH} / \mathrm{CHCl}_{3}(1: 4)$ E: $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CHCl}_{3}(3: 7) \mathrm{F} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}(20: 1)$.

Acknowledgment. The author wishes to thank Prof. Dr. W. Pfleiderer, Faculty of Chemistry. University of Konstanz, Germany, for many helpful discussions and to carry out this work in his laboratories.

## References

1. Hitchings, G. H.: Elion, G. B.; Falco. E. A.; Russel. P. B.; Sherwood. M. B: Vander Werff. H. J. Biol. Chem. 1950. 1. 183.
2. EIion. G. B.; Hitchings. G. H:; VanderWerff. H J. Biol. Chem. 1951. 192. 505.
3. Goldner. H.: Dietz. G.: Carstens. E. Amalen 1966. 691. 142.
4. Timmis. G. M.: Cooke. J.: Spickett. R. G. W. Ciba Fommation Symposium on the Chemisty and Biology of Purines' Churchill, London. 1957: p 139.
5. Taylor. E. C.: Garcia. E. E. J. Am. Chem. Soc. 1964. 86. 4720.
6. Yoneda. F.: Matsumura. T.: Senga. K. J. Chem. Soc. Chem. Conm: 1972. 606.
7. Yoneda. F.: Higuchi. M: Hayakawa. A. Smothesis 1975. 264.
8. Yoneda. F:; Matsumoto. S.; Sakuma. Y. Chem. and Pham. Buhl. (Japan), 1975, 23. 2425.
9. Yoneda. F.: Sakuma, Y.: Nagamatsu. T.: Mizumoto. S. J. Chem. Soc. Perkin 1 1976. 2398.
10. Youssif. S.: Ptleiderer W. J. Heterocyclic Chen. 1998. 35.949.
11. Ptleiderer. W.: Nubel. G. Liebigs Am. Chent. 1961. 155.
12. Velkina. N. Ya,; Chaman, E. S.: Ebed, M. Zh. Obshch. Khim. 1957. 37, 508.
13. Okano, T.: Goya, S.: Kaizu, T. J. Pharm. Soc. Japan 1967, 87, 469.
14. Falco. E. A.: Elion. G. B.: Burgi. E.: Hitchings. G. H. J. Ant. Chen. Soc. 1952. 74. 4897.
15. Elion. G. B.: Burgi. E.: Hitchings. G. H. J. Am. Chent Soc. 1951. 73. 5235.
16. Fu, S.-C. J.: Chinoporos. E.; Tirzian, H. J. Org. Chem. 1965, 30. 1916.
17. Albert. A.: Brown. D. J. J. Chem. Soc. 1954. 2060.
18. Traube. W.: Nithack. W. Ber Disch Chen. Ges I906. 9. 277
19. Jerchel. D.: Krackt. M.: Krucker. K. Liebigs Am. Chem. 1954. 232.590 .
20. Lichtentherg, D.: Bergmann. F:; Neiman. Z. J. Chem. Soc.(C) 1971. 1939.
21. Itoh. T.: Melik-Obanjanian. R. G.: Ishikawa. I.: Kawabara. N.: Mizuno. Y:: Honma. Y.: Hozumi. M.: Ogura. H. Chen. Pharn. Buhl. 1989. 37.3184.
22. Kazimierczuk. Z; Shugar. D. Acta Biochim. Polon. 1971, 17. 325.
23. Goldner. H.; Dietz, G.: Carstons. E. Liebigs Am. Chem. 1966. 692.134.
