DOI QR코드

DOI QR Code

The Hydroxyl Group-Solvent and Carbonyl Group-Solvent Specific Interactions for Some Selected Solutes Including Positional Isomers in Acetonitrile/Water Mixed Solvents Monitored by HPLC

  • Cheong, Won-Jo (Department of Chemistry and Center for Advanced Bioseparation Technology and Institute of Industrial Biotechnology, Inha University) ;
  • Keum, Young-Ik (Department of Chemistry and Center for Advanced Bioseparation Technology and Institute of Industrial Biotechnology, Inha University) ;
  • Ko, Joung-Ho (Department of Chemistry and Center for Advanced Bioseparation Technology and Institute of Industrial Biotechnology, Inha University)
  • Published : 2002.01.20

Abstract

We have evaluated the specific hydroxyl group-solvent and carbonyl group-solvent interactions by using an Alltima C18 stationary phase and by measuring the retention data of carefully selected solutes in 60/40, 70/30, and 80/20(v/v%) acetonitrile/water eluents at 25, 30, 35, 40, 45, and 50 oC. The selected solutes are phenol, acetophenone, alkylbenznes(benzene to hexylbenznene), 4 positional isomers of phenylbutanol, 5-phenyl-1-pentanol, 3 positional isomers of alkylarylketone derived from butylbenzene, and 1-phenyl-2-hexanone. The magnitudes of hydroxyl group-acetonitrile/water specific interaction enthalpies are larger than those of carbonyl group-acetonitrile/water specific interaction enthalpies in general while the magnitudes of carbonyl group-methanol/water specific interaction enthalpies are larger than those of hydroxyl group-methanol/water specific interactions. We observed clear discrepancies in functional group-solvent specific interaction among positional isomers. The variation trends of solute transfer enthalpies and entropies with mobile phase composition in the acetonitrile/water system are much different from those in the methanol/water system. The well-known pocket formation of acetonitrile in aqueous acetonitrile mixtures has proven to be useful to explain such phenomena.

Keywords

References

  1. Grushka, E.; Colin, H.; Guichon, G. Anal. Chem. 1982, 248, 325
  2. Issaq, H. J.; Jaroniec, M. J. Liq. Chromatogr. 1989, 12, 2067
  3. Cole, L. A.; Dorsey, J. G. Anal. Chem. 1992, 64, 1317 https://doi.org/10.1021/ac00037a004
  4. Alvarez-Zepeda, A.; Barman, B. N.; Martire, D. E. Anal. Chem. 1992, 64, 1978 https://doi.org/10.1021/ac00041a037
  5. Tchapla, A.; Heron, S.; Colin, H.; Guichon, G. Anal. Chem. 1988, 60, 1443 https://doi.org/10.1021/ac00165a019
  6. Yamamoto, F. M.; Rokushika, S.; Hatano, H. J. Chromatogr. Sci. 1989, 27, 704 https://doi.org/10.1093/chromsci/27.12.704
  7. Sander, L. C.; Field, L. R. Anal. Chem. 1980, 52, 2009 https://doi.org/10.1021/ac50063a005
  8. Bell, C. M.; Sander, L. C.; Wide, S. A. J. Chromatogr. A 1997, 757, 29 https://doi.org/10.1016/S0021-9673(96)00664-4
  9. McGuffin, V. L.; Chen, S. J. Chromatogr. A 1997, 762, 35 https://doi.org/10.1016/S0021-9673(96)00958-2
  10. Miyabe, K.; Suzuki, M AIChE J. 1995, 41, 548 https://doi.org/10.1002/aic.690410313
  11. Miyabe, K.; Takeuchi, S. Anal. Chem. 1997, 69, 2567 https://doi.org/10.1021/ac961044m
  12. Guillaume, Y.; Guinchard, C. J. Liq. Chromatogr. 1994, 17, 2807
  13. Lee, C. S.; Cheong, W. J. J. Liq. Chrom. & Rel. Technol. 1999, 22, 253 https://doi.org/10.1081/JLC-100101658
  14. Lee, C. S.; Cheong, W. J. J. Chromatogr. A 1999, 848, 9 https://doi.org/10.1016/S0021-9673(99)00404-5
  15. Cheong, W. J.; Kim, C. Y.; Koo, Y. M. Bull. Korean Chem. Soc. 2000, 21, 105
  16. Cheong, W. J.; Kim, C. Y. Bull. Korean Chem. Soc. 2000, 21, 351
  17. Cheong, W. J.; Keum, Y. I. J. Chromatogr. A 2001, 910, 195 https://doi.org/10.1016/S0021-9673(00)01243-7
  18. Guillaume, Y. C.; Guinchard, C. Chromatographia 1995, 41, 84 https://doi.org/10.1007/BF02688004
  19. Guillaume, Y. C.; Guinchard, C. Anal. Chem. 1996, 68, 2869 https://doi.org/10.1021/ac960141c
  20. Guillaume, Y. C.; Cavalli, E. J.; Peyrin, E.; Gunichard, C. J. Liq. Chrom. & Rel. Technol. 1997, 20, 1741 https://doi.org/10.1080/10826079708006329
  21. Katz, E. D.; Ogan, K.; Scott, R. P. W. J. Chromatogr. 1986, 352, 67 https://doi.org/10.1016/S0021-9673(01)83371-9
  22. Guillaume, Y. C.; Guinchard, C. Anal. Chem. 1998, 70, 608 https://doi.org/10.1021/ac9707747
  23. Stalcup, A.; Martire, D. E.; Wise, S. A. J. Chromatogr. 1988, 442, 1 https://doi.org/10.1016/S0021-9673(00)94453-4
  24. Lowenschuss, A.; Yellin, N. Spectrochim. Acta 1975, 31A, 207 https://doi.org/10.1016/0584-8539(75)80012-2
  25. Rowlen, K. L.; Harris, J. M. Anal. Chem. 1991, 63, 964 https://doi.org/10.1021/ac00010a006
  26. Stokes, R. H. J. Chem. Thermodyn. 1987, 19, 977 https://doi.org/10.1016/0021-9614(87)90044-9
  27. Miyabe, K.; Takeuchi, S. Anal. Chem. 1997, 69, 2567 https://doi.org/10.1021/ac961044m

Cited by

  1. Thermodynamic Study of Enantioseparation of Arylpropionic Acids with a Chiralcel OJ‐H Stationary Phase vol.28, pp.4, 2005, https://doi.org/10.1081/JLC-200047202
  2. Interpretation of the dissolution of insoluble peptide sequences based on the acid-base properties of the solvent vol.15, pp.6, 2006, https://doi.org/10.1110/ps.051956206
  3. Thermodynamic Study of Enantioseparation of Arylpropionic Acids with the Chirex 3001 Stationary Phase vol.27, pp.4, 2002, https://doi.org/10.1081/jlc-120028251