DOI QR코드

DOI QR Code

Synthesis of BiSrCaCu(Ni)O Ceramics from the Gel Precursors and the Effect of Ni Substitution


Abstract

Superconducting BiSrCaCu(Ni)O ceramicss have been prepared by the gel method using an aqueous solution containing a tartaric acid. The aqueous solution of metal salts was concentrated without precipitation. The precursor so prepared was homogeneou s and calcined at $825^{\circ}C$ for 24 h to produce superconducting phase. The thermal decomposition of gels, the formation of superconducting phase, and their ceramic microstructure were studied using IR, TGA, XRD, resistance measurements, and SEM. This method is highly reproducible and leads to powders with excellent homogeneity and small particle size for easy sinterability. The nickel dopant substituting for Cu gives rise to the gradual decrease of the Tc. Phase pure 2212 ceramics were obtained at 825 $^{\circ}C$ for 24 h. SEM pictures showed that liquid phase was formed when the samples were sintered temperatures higher than 825 $^{\circ}C$.

Keywords

References

  1. Strutt, P. R.; Gonsalvas, K. E.; Xiao, T. D. J. Am. Ceram. Soc. 1993, 76, 987. https://doi.org/10.1021/ja01633a012
  2. Chen, P. L.; Chen, I. W. J. Am. Ceram. Soc. 1996, 79, 3129. https://doi.org/10.1111/j.1151-2916.1996.tb08087.x
  3. Yang, D. R.; Tsai, D. S.; Liu, H. C. J. Mater. Sci. 1995, 30, 4463. https://doi.org/10.1007/BF00361532
  4. Woo, X. D.; Inam, T.; Chase, E. W. Appl. Phys. Lett. 1988, 52, 754. https://doi.org/10.1063/1.99337
  5. Venkatesan, T. J. Appl. Phys. 1988, 63, 4591. https://doi.org/10.1063/1.340136
  6. Bbergstrom, L.; Shinozaki, K.; Mizutami, N. J. Am. Ceram. Soc. 1997, 80, 291. https://doi.org/10.1021/ja01535a010
  7. Matsuda, A.; Metsuno, Y.; Katayama, S. J. Mater. Sci. Lett. 1997, 8, 902.
  8. Choy, J. H.; Kwon, S. J.; Park, G. S. Science 1998, 280, 1589. https://doi.org/10.1126/science.280.5369.1589
  9. Yoon, J. B.; Jang, E. S.; Kwon, S. J.; Ayral, A.; Cot, L.; Choy, J. H. Bull. Korean Chem. Soc. 2001, 22, 1111.
  10. Yamada, Y.; Murase, S. Jpn. J. Appl. Phys. 1988, 27, 996.
  11. Endo, U.; Koyama, S.; Kawai, T. Jpn. J. Appl. Phys. 1988, 27, 1476. https://doi.org/10.1143/JJAP.27.L1476
  12. Luo, J. S.; Michel, D.; Chavallier, J. P. Appl. Phys. Lett. 1989, 88, 1448.
  13. Spencer, N. D. Jpn. J. Appl. Phys. 1988, 28, 1564. https://doi.org/10.1143/JJAP.28.1564
  14. Hazen, M. Phys. Rev. Lett. 1988, 60, 1175.
  15. Koyama, S.; Endo, U.; Kawai, T. Jpn. J. Appl. Phys. 1988, 27, 1861. https://doi.org/10.1143/JJAP.27.L1861
  16. Sastry, P. V.; Yakmi, J. V.; Iye, R. M. Solid. State. Commun. 1989, 71, 935. https://doi.org/10.1016/0038-1098(89)90565-6
  17. Takano, M. Jpn. J. Appl. Phys. 1988, 27, 1401. https://doi.org/10.1143/JJAP.27.1401
  18. Wang, X.; Henry, M.; Livage, J. Solid State Commun. 1987, 64, 881. https://doi.org/10.1016/0038-1098(87)90552-7
  19. Guo, L.; Lee, J. H.; Beaucage, G. J. Non-Cryst. Solids 1999, 243, 61. https://doi.org/10.1016/S0022-3093(98)00819-9
  20. Whang, C. M.; Lim, S. S. Bull. Korean Chem. Soc. 2000, 21, 1181.
  21. Choy, J. H.; Lee, W.; Jang, E. S.; Kwon, S. J.; Hwang, S. J.; Kim, Y. I. Mol. Cryst. & Liq. Cryst. 2000, 341, 4479.
  22. Lee, S. H.; Kim, Y.; Seff, K. J. Phys. Chem. B 2000, 104, 2490. https://doi.org/10.1021/jp993092r

Cited by

  1. Mechanical Properties of Bi1.6Pb0.4Sr1.8Ba0.2Ca2Cu3−x Ni x O10+δ Superconducting System vol.25, pp.6, 2012, https://doi.org/10.1007/s10948-012-1584-3
  2. Effect of Pressure on the Superconducting and Mechanical Properties of Bi<sub>1.6</sub>Pb<sub>0.4</sub>Sr<sub>1.8</sub>Ba<sub>0.2</sub>Ca<sub>2</sub>Cu<sub>2.2</sub>Ni<sub>0.8</sub>O<sub>10+δ</sub> System vol.03, pp.01, 2013, https://doi.org/10.4236/ampc.2013.31007
  3. Electromagnetic properties of metal oxide doped ceramic oxide superconductor vol.115, pp.13, 2014, https://doi.org/10.1134/S0031918X14130146
  4. Microscopic structural evolution in terms of porosity in high-Tc superconductors vol.42, pp.10, 2007, https://doi.org/10.1007/s10853-006-1201-6