A Caspase Inducing Inhibitor Isolated from Forsythiae fructus

연교(Forsythiae fructus)로부터 분리한 caspase 유도 저해물질

  • Kim, Jin-Hee (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kho, Yung-Hee (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Mee-Ree (Department of Food and Nutrition, Chungnam National University) ;
  • Kim, Hyun-A (Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Sang-Myung (Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Choong-Hwan (Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2002.02.01

Abstract

During the screening of inhibitors of caspase-3 induction in U937 human monocytic leukemia cells from natural sources, Forsythiae fructus, which showed a high level of inhibition, was selected. And then, the compound was purified from the methanol extract using silica gel column chromatography and HPLC. The inhibitor was identified as rengyolone, by spectroscophic methods of ESI-MS, $^1H-NMR$, $^{13}C-NMR$, DEPT, and HMBC. Rengyolone showed inhibitory activity of caspase-3 induction, a major protease of apoptosis cascade, with an $IC_{50}$ value of $6.25\;{\mu}g/mL$ after 7 h of treatment in U937 cells. It also showed inhibitory activity of caspace-1 induction, with an $IC_{50}$ value of $7.50\;{\mu}g/mL$ after 40 h of treatment in D10S cells. In addition, it showed protective effect against cell death with an $IC_{50}$ value of $11\;{\mu}g/mL$ on U937 cells induced by etoposide after 24 h of treatment, but did not show any cytotoxicity at the same condition without etoposide, a caspase 3 inducing agent.

연교의 메탄올 추출물로부터 caspase 저해물질을 분리하였으며, ESI-MS, $^1H-NMR$, $^13C-NMR$, DEPT 등의 기기분석 자료에 의하여 rengyolone으로 동정하였다. 이 물질은 $IC_{50}\;6.25\;{\mu}g/mL$의 농도에서 etoposide가 처리된 U937 세포주의 caspase-3 유도 저해를 나타내었다. 또한 rengyolone은 $Interleukin-1{\beta}$가 처리된 D10S 세포에서 caspase-1의 유도저해활성을 나타내었으며, $IC_{50}$값은 $7.5\;{\mu}g/mL$이었다.

Keywords

References

  1. Cohen, G. Caspases: the executioners of apoptosis. Biochem. J. 326: 1-16 (1997) https://doi.org/10.1042/bj3260001
  2. Barinaga M. Death by Dozens ofcuts. Science 280: 32-34 (1998) https://doi.org/10.1126/science.280.5360.32
  3. Thornberry N. Caspases: Key mediators of apoptosis. Chem. & Biol. 5(5): 97-103 (1998) https://doi.org/10.1016/S1074-5521(98)90615-9
  4. Friedlander R., Brown R. and Gagliardini V, Wang J., Yuan J. Inhibition of ICE slows ALS in mice. Nature 388: 31 (1997)
  5. Salvatore, M., Hensens, O., Zink, D., Liesch, J., Dufresne, C., Ondeyka, J., Jurgens, T., Bords, R., Raghoobar, S., Mccauley, E., Kong, L., Gartner, S., Koch, S., Pelaez, R, Diez, M., Cascales, C., Martin, I., Polishookv, J., Balick, M., Beck, H., King, S., Hsu, A. and Lingham, R.: L-741, 494, a fungal metabolite that is an inhibitior of mterleukin-l$\beta$ converting enzyme. J. Nat. Prod., 57(6): 755-760 (1994) https://doi.org/10.1021/np50108a011
  6. Yamashita, N., Shin-Ya, K., Furihata, K., Hayakawa, Y. and Seto, H. New ravidomycin analogues, FE35A and FE35B, apoptosis inducers produced by Streptomyces rochei. J. Antibiotics 51(12): 1105-1108 (1998) https://doi.org/10.7164/antibiotics.51.1105
  7. Yamashita, N., Harada, T., Shin-Ya, K. and Seto, H. 6-Hydrox-ytetrangulol, a new CPP32 protease inducer produced by Strepto-myces sp. J. Antibiotics 51(1): 79-81 (1997)
  8. Kim, J. W., Adachi, H., Shin-Ya, K., Hayakawa, T., Seto, H. Apoptolidin, a new apoptosis inducer in transformed cells from Nocardiopsis sp. J. Antibiotics 50(7): 628-630 (1997) https://doi.org/10.7164/antibiotics.50.628
  9. Kakeya, H., Zhang, H., Kobinata, K., Onose, R., Onozawa, C., Kudo, T, Osada, H. Cytotdenin A, a novel apoptosis inducer in human leukemia HL-60 Cells. J. Antibiotics 50(4): 370-372 (1997) https://doi.org/10.7164/antibiotics.50.370
  10. Mastrangelo, A. and Betenbaugh, M. Overcoming apoptosis: new methods for improving protein-expression systems. Trends Bio-technol. 16: 88-95 (1998) https://doi.org/10.1016/S0167-7799(97)01159-1
  11. Steller, H. Mechanisms and genes of cellular suicide. Science 267: 1445-1462 (1995) https://doi.org/10.1126/science.7878463
  12. Lee, E., Miura, M., Yoshinari, M., Iwai, H. and Kariya, K. Selec-tive inhibition of dexamethasone-induced apoptosis in rat thy-mocytes by herbimycin A. Biochem. Biophys. Res. Commum. 202(1): 128-134 (1994) https://doi.org/10.1006/bbrc.1994.1902
  13. Ji, L., Zhang, G. and Hirabayashi, Y. Inhibition of tumor necrosis factor $\alpha$ and ceramide-induced intemucleosomal DNA Fragmenta-tion by herbimycin A in U937 cells. Biochem. Biophys. Res. Commun. 212(2): 640-647 (1995) https://doi.org/10.1006/bbrc.1995.2017
  14. Shimura, M., Ishizaka, Y., Yuo, A., Hatake, K., Oshima, M., Sasaki, T., Takaku, F. Characterization of room temperature induced apoptosis in HL-60. FEBS betters 417: 379-384 (1997) https://doi.org/10.1016/S0014-5793(97)01327-6
  15. Kim, T.J. Korean resources plants. Seoul National University Pub. Co., p. 262 (1991)
  16. Lee, E.B. and Keum, HJ. Pharmacological studies on Forsythae Fructus. Kor. J. Pharmacogn. 19(4): 262-269 (1988)
  17. Takeshi, H., Yuka, K., Kazuhiro, O., Ryoji, K., Kazuo, Y. and Chayan, P. Cyclohexylethanoids and related glucosides from Mill-ingtonia Hortensis. 39(1): 235-241 (1995)
  18. Kitagawa, S., Nishibe, S. and Baba, H. Studies on the chinese crude drug Forsythiae fructus on isolation of phenylpropanoid glycosides from fruits of Forsythia koreana and their antibacterial activity. Yakugaku Zasshi 107(4):274-278 (1987) https://doi.org/10.1248/yakushi1947.107.4_274
  19. Ozaki, Y., Rui, J. and Yuan, T. T. Antiinflammatory effect of For-sythia suspensa VAHL and its active principle. Biological and Pharmaceutical Bulletin 23(3): 365-367 (2000) https://doi.org/10.1248/bpb.23.365
  20. Gurtu, V., Kain, S.R. and Zhang, G. Fluorometiic and colohmet-ric detection of caspase activity associated with apoptosis. Anal. Biochem. 251:98-102 (1997) https://doi.org/10.1006/abio.1997.2220
  21. Goodwin, C.J., Holt, S.J., Downes, S. and Marshall, N.J. Microc-ulture tetrazolium assays: a compahson between two new tetrazo-lium salts, XTT and MTS. J. Immunol. Methods 179: 95-103 (1995) https://doi.org/10.1016/0022-1759(94)00277-4
  22. Endo, K.., Seya, K. and Hikino, H. Biogenesis-like transformation of salidroside to rengyol and its related cyclohexyletanoids of Forsythia Suspensa. Tetrahedron 45(12): (1989) https://doi.org/10.1016/S0040-4020(01)89229-2
  23. Li, M., One, V.O., Guegan, C., Chen, M., Lewis, V.J., Andrew, L.J., Olszewski, A.J., Stieg, P.E., Lee, J.R, Przedborski, S., Frzed-borski, S. and Friedlander, R.M. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288(14): 335-339 (2000) https://doi.org/10.1126/science.288.5464.335
  24. Tewari, M., Quan, K.O., Desnoyers, S., Zeng, Z., Beider, D.R., Poirier, G.G., Salvesen, G.S. and Dixit, V.M. Yama, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate Po1y(ADP-Ribose) Polymerase. Cell 81(2): 801-809 (1995) https://doi.org/10.1016/0092-8674(95)90541-3