Determination of Isoflavone, Total Saponin, Dietary Fiber, Soy Oligosaccharides and Lecithins from Commercial Soy Products Based on the One Serving Size - Some bioactive compounds from commercialized soy products -

대두 가공품 1회분량 내 이소플라본, 사포닌, 식이섬유, 대두 올리고당 및 레시틴의 함량 - 상업용 대두 가공품 1회 분량 당의 생리활성 물질 함량 분석 -

  • Kim, Cheon-Hoe (Central Research Center at Dr. Chung's Food Co., Ltd.) ;
  • Park, Jeom-Seon (Central Research Center at Dr. Chung's Food Co., Ltd.) ;
  • Sohn, Heon-Soo (Central Research Center at Dr. Chung's Food Co., Ltd.) ;
  • Chung, Chai-Won (Central Research Center at Dr. Chung's Food Co., Ltd.)
  • 김천희 ((주) 정.식품, 중앙연구소) ;
  • 박점선 ((주) 정.식품, 중앙연구소) ;
  • 손헌수 ((주) 정.식품, 중앙연구소) ;
  • 정재원 ((주) 정.식품, 중앙연구소)
  • Published : 2002.02.01

Abstract

The levels of biologically active compounds, such as isoflavone, total saponin, dietary fiber, soy oligosaccharides, and lecithin from each serving size of commercial soy products, were quantitatively determined from the raw soybean, soymilk, tofu, isolated soy protein (ISP), soybean paste(toenjang), natto, and tempeh from local and foreign market. Soy flour, natto, and soymilk contained 489.1 mg, 308.3 mg, and 138.1 mg of isoflavone in each 100 g of dry matter, respectively. The ratios of aglycone to glucoside of soybean paste and tempeh showed relatively high level compared with other tested soy products. Commercial soymilk showed the highest ratio of soluble fiber to total dietary(59%). The higher levels of dietary fiber (20.1 g) and lecithin (1.13 g) were also found in tofu. The lecithin and saponin content of isolated soy protein(ISP) were highest (0.63 g and 0.65 g/ 100 g of dry matter) among the tested samples. In conclusion, soy flour showed the highest level of biologically active compounds, such as saponin, isoflavone, dietary fiber, and soy oligosaccharides. But when the evaluation was based on the serving size, soymilk containing 31.5 mg of isoflavone, 2.59 g of dietary fiber, 0.57 g of oligosaccharides, 0.10 g of lecithin, and 0.11 g of saponin showed similarity to those of the tested soybeans(20 g).

대두 제품 중 대두, 두유, 두부, 생대두분말, 분리대두단백(isolated soy protein, ISP), 된장, natto, tempeh의 이소플라본, 수용성 식이섬유, 대두 올리고당, 레시틴, 사포닌의 함량을 분석하였다. 건물 기준으로 생대두분말과 natto, 두유에는 각각 489.1 mg%, 308.3 mg%, 138.1 mg%의 이소플라본이 함유되어 있었다. 이소플라본의 aglycone/glucoside 비율을 natto에 비하여 된장과 tempeh가 더 높았다. 생대두분말은 24.3%의 식이 섬유와 2.87%의 대두 올리고당을 함유하고 있었다. 두유의 경우 식이 섬유의 절대량은 많지 않으나 soluble fiber/total dietary fiber 비가 59%로 가장 높았다. 건물기준으로 두부에는 20.1%의 식이 섬유와 1.13%의 레시틴이 함유되어 상대적으로 많았다. 분리대두단백에는 레시틴과 사포닌이 함유량은 각각 0.63%와 0.65%였다. 비록 대두의 생물학적 활성물질함량은 레시틴을 제외하고 대두 가공품 중 가장 높았으나 이를 일회 분량으로 환산한 경우 두유 내 생물학적 활성물질의 양이 대두와 매우 유사하였다. 즉 두유 일회 분량(200 mL)에는 이소플라본 31.5 mg(raw soybean 15.9 mg), 식이섬유 2.59 g(raw soybean 4.59 g), 올리고당 0.57 g(raw soybean 0.50 g), 레시틴 0.10 g(raw soybean 0.10 g), 사포닌 0.11 g(raw soybean 0.10 g)이 함유되어 있어, 두유는 일상적으로 섭취하기 편하고 대두 생리활성 물질의 좋은 공급원이 될 수 있을 것으로 판단된다.

Keywords

References

  1. Holt, S. The Soy Revolution. pp. 4-6. M. Evans and company, Inc., New York, USA (1999)
  2. National Center for Health Statistics. National Vital Statistics Report. 47(25): 35-36 (1999)
  3. Anthony, M.S., Clarkson, T.B. and Williams, J.K. Effects of soy isoflavones on atherosclerosis: potential mechanisms. Am. J. Clin. Nutr. 68(supp1): 1390s-1393s (1998) https://doi.org/10.1093/ajcn/68.6.1390S
  4. Karatkar, R. and Rao, A.V. Effect of soya bean saponins on azoxymethane-induced preneoplastic lesions in the colon of mice. Nutr. Cancer 27(2): 206-209 (1997) https://doi.org/10.1080/01635589709514526
  5. Setchell, K.R. and Cassidy, A. Dietary isoflavone: biological effects and relevance to human health. J. Nutr. 129: 758s-767s (1999) https://doi.org/10.1093/jn/129.3.758S
  6. Messina, M.J., Persky, V., Setchell, K.D.R. Soy intake and cancer risk: A review of the in Vitro and in Vivo Data. Nutr. Cancer 21: 113(1994) https://doi.org/10.1080/01635589409514310
  7. Park, S.L, Lee, H.K. and Kang, K.H. A study on the effect of oligosaccharides on growth of intestinal bacteria. Korean J. Dairy Sci. 10(4): 159-169 (1988)
  8. Wada, K., Watabe, J., Mizutani, J., Tomoda, M., Suzuki, H., Sai-toh, Y. Effects of soybean oligosaccharide containing beverages on human fecal flora and metabolites. Nippon Nogeikagaku Kai-shi 66(2): 127-135 (1992) https://doi.org/10.1271/nogeikagaku1924.66.127
  9. Hanson, C.F. and Winterfeldt, E.A. Dietary fiber effects on pas-sage rate and breath hydrogen. Am. J. Clin. Nutr. 42: 44-48 (1985) https://doi.org/10.1093/ajcn/42.1.44
  10. Harju, E. Increase in meal viscosity caused by addition of guar gum decrease postprandial acidity and rate of emptying of gastric contents in healthy subjects. Panminerva Med. 27: 223-232 (1985)
  11. Fuse, K., Bamba, T. and Hosada, S. Effects of pecdn on fatty acid and glucose absorption and on thickness of unstirred water layer in rat and human intestine. Dis. Sci. 34: 1109-1116 (1989) https://doi.org/10.1007/BF01536383
  12. Vahouny, G.B., Khtchesvsky, M.D. Dietary Fiber: Basic and clini-cal aspects. pp. 309-321, Schneeman, B.O. and Lefevre. (ed.). Plenum press, New York, USA (1985)
  13. Gallaher, D. and Schneeman, B.O. Intestinal interaction of bile acids, Phospholipids, dietary fibers, and cholestyramine. Am. J. Physiol. 250: 420-426 (1986)
  14. Schneeman, B.O. and Tinker, L.F. Dietary fiber. Pediatric Clinics of North America 12(4): 825-838 (1995)
  15. Williams, C.M. and Maunder, K. Effect of dietary fatty acid com-position on inositol-, choline- and ethanolamine-phospholipids of mammary tissue and erythrocytes in the rat. Br. J. Nutr. 68(1): 183-93 (1992) https://doi.org/10.1079/BJN19920076
  16. Price, K.R., Johnson, I.T. and Fenwick, G.R. The chemistry and biological significance of saponins. In Food and Feedingstuffs., CRC Crit. Rew. Food Sci. Nutr. 26: 27-135 (1987) https://doi.org/10.1080/10408398709527461
  17. Ireland, P.A., Dziedzie, S.Z. and Kearsley, M.W. Saponin content of soya and some commercial soya products by means of High Performance Liquid Chromatography of the sapogenins. J. Sci Food Agric. 37: 694-698 (1986) https://doi.org/10.1002/jsfa.2740370715
  18. Birk, Y. and Peri, I. Saponins (2nd ed), pp. 161-182 Academic New York, USA (1980)
  19. Carroll, K.K. and Kurowska, E.M. Soy consumption and choles-terol reduction: Review of animal and human studies. J. Nutr. 125: 594s-597s (1993)
  20. Wu, R.T, Chiang, H.C., Fu, W.C., Chien, K.Y., Chung, Y.M. and Hong, L.Y. Formosamin C, an immunomodulator with antitumor activity, Int. J. Immunopharmacol. 12(7): 777-786 (1990) https://doi.org/10.1016/0192-0561(90)90042-L
  21. Tokuda, H., Konoshima, T., Lozuka, M. and Kimura, T. Inhibition of 12-o-tetradecanoyl phorbol-13-acetate-promoted mouse skin papilloma by saponins. Oncology 48: 77-80 (1991) https://doi.org/10.1159/000226899
  22. Wang, H.J. and Murphy, P.A. Isoflavones content in commercial soybean foods. J. Agric. Food Chem. 42: 1666-1673 (1994) https://doi.org/10.1021/jf00044a016
  23. Barnes, S., Kirk, M. and Coward, L. Isoflavones and their conju gates in soy foods: Extraction conditions and analysis by HPLC-mass spectrometiy. J. Agric. Food Chem. 42: 2466-2474 (1994) https://doi.org/10.1021/jf00047a019
  24. AOAC Official Methods of Analysis. 18th ed. Association of Official Analytical Chemists, Washington DC, USA (1995)
  25. Pharmaceutical Society of Japan, Standard methods of analysis for hygienic chemists (1995)
  26. Black, L.T. and Bagley, E.B. Determination of oligosacchahdes in soybeans by HPLC using an internal standard. J. Am. Oil Chem. Soc. 55: 228-232 (1978) https://doi.org/10.1007/BF02676930
  27. Balazs, P.E., Schmit, P.L. and Szuhaj, B.F. HPLC Separation of Soy Phospholipids. J. Am. Oil Chem. Soc. 73(3): 193-197 (1996) https://doi.org/10.1007/BF02523894
  28. Folch, J., Lees, M. and Stanley, G.H.S. A Simple Method for the Isolation and Purification of total Lipids from Animal Tissues. J. Biol. Chem. 226: 497-509 (1957)
  29. Korean Ginseng & Tobacco Research Institute, Methods of Gin-seng component analysis, Jeil Publishing corp., Korea (1991)
  30. Ikeda, R., Ohta, N. and Watanabe, T. Changes of isoflavones at various stages of fermentation in defatted soybean. Nippon Shokuhin Kagaku Kogaku Kaishi 42(5): 322-327 (1995) https://doi.org/10.3136/nskkk.42.322
  31. Xia, X., Huei-Ju, W., Murphy, P.A., Cook, L., Hendiich, S. Daid-zein is a more bioavailable soymilk isoflavone than is genistein in adult women. J. Nutr. 124(6): 825-832 (1994) https://doi.org/10.1093/jn/124.6.825
  32. Setchell, K.D.R. Phytoestrogens: the biochemistry, Physiology and implications for human health of soy isoflavones. Am. J. Clin. Nutr. 68:1333s-1343s (1998) https://doi.org/10.1093/ajcn/68.6.1333S
  33. Cassidy, A., Bingham, S., Setchell, K.D.R. Biological effects of isoflavones in young women: importance of the chemical compo-sition of soyabean products. British Journal of Nutrition 74(4): 587-601 (1995) https://doi.org/10.1079/BJN19950160
  34. Hirou, K. Food applications of soy oligosaccharides. New Food Industry 31(6): 33-38 (1989)
  35. Szuhaj, B.F. and List, G.R. Lecithin, pp. 12-13 Amehcan Oil Chemist's Society, USA (1985)
  36. Charalambous, G. and Doxastakis, G. Food EmulsiSers: Chemis-try, Technology, Functional Properties and Applications. pp. 417-419, Elsevier, New York, USA (1989)
  37. Shiraiwa, M., Harada, K. and Okubo, K. Composition and con-tent of saponins in soybean seed according to variety, cultivation year and maturity. Agric. Biol. Chem. 55(2): 323-331 (1991) https://doi.org/10.1271/bbb1961.55.323
  38. Kitagawa, I., Yoshikawa, M., Hayashi, T. and Taniyama, T. Quan-titative determination of soyasaponins of various origins and soy-bean products by means of HPLC. Yakugaku Zasshi 104(3): 275-279 (1984) https://doi.org/10.1248/yakushi1947.104.3_275
  39. Kim, J.H., Yoshiki, Y. and Okubo, K. Relationships among vari-ous types in saponin content of soybean seeds. Soybean Digest: 55-61 (1997)
  40. Wardlaw, G.M. and Insel, P.M. Perspectives in Nutrition 2nd ed. Mosby-Year Book, Inc. St. Louis, Missouii, USA (1990)
  41. The Korean Society of Nutrition, Food exchange table (1995)
  42. Wang, H. and Murphy, P.A. Isoflavone composition of American and Japanese soybeans in Iowa: Effects of variety, crop year and location. J. Agric. Food Chem. 42: 1674-1677 (1994) https://doi.org/10.1021/jf00044a017
  43. Shigemitsu, K., Yvette, F, Dieter, W., Diniele, M., Teiji, U., Keisuke, K. and Kazuyoshi, O. Malonyl isoflavone glycosides in soybean seeds. Agric. Biol. Chem. 55(9): 2227-2233 (1991) https://doi.org/10.1271/bbb1961.55.2227