Characterization and Action Mode of Anti-Complementary Substance Prepared from Lactobacillus plantarum

Lactobacillus plantarum 균체 중 항보체 활성물질의 특성과 작용양식

  • Kim, Jang-Hyun (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Shin, Kwang-Soon (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Ho (Department of Food Science and Biotechnology, Kyonggi University)
  • 김장현 (경기대학교 자연과학부 식품생물공학) ;
  • 신광순 (경기대학교 자연과학부 식품생물공학) ;
  • 이호 (경기대학교 자연과학부 식품생물공학)
  • Published : 2002.04.01

Abstract

Among 12 lactic acid bacteria examined for their abilities to activate the complement system by hemolytic complement assay $(TCH_{50})$, Lactobacillus plantarum previously isolated from Kimchi showed high anti-complementary activity. The anti-complementary activity of the cell wall fraction of L. plantarum was more potent than that of the cytosol fraction, and both activities showed dose dependency. These high activities of the cytosol and the cell wall fractions were relatively resistant to the digestion with pronase, but sharply decreased after the treatment of $NaIO_4$. These results suggested that the complement activation by the cytosol and the cell wall fractions was mainly due to their polysaccharides. By the cross-immunoelectrophoresis using anti-human C3, the C3 activation products from both fractions were identified in $Ca^{++}$-free condition. Anti-complementary activity $(ITCH_{50})$ of the cell wall fraction was retained under the same condition, whereas that of the cytosol fraction was reduced considerably. From these results, it was inferred that the mode of complement activation by the cell wall fraction was mainly via alternative pathway, and that of the cytosol fraction was via both alternative and classical pathways.

김치 및 발효유 제품으로부터 분리한 유산균과 공시균주 12종을 대상으로 보체 용혈 분석법을 이용하여 면역계에서 중요한 역할을 담당하고 있는 보체계 활성화(항보체 활성, $TCH_{50}$) 정도를 측정한 결과, 김치로 부터 분리한 Lactobacillus plantarum이 타 유산균 종에 비해 높은 활성을 나타내었다. 이들 균주로 부터 조제된 세포벽 획분의 경우 세포질 획분보다도 높은 활성을 보였으며 각 획분의 활성은 농도 의존적 경향을 나타내었다. L. plantarum의 세포질 획분과 세포벽 획분의 경우 pronase 소화 후에는 활성의 변화가 없는 반면, 과요오드산 처리에 의해서는 급격한 활성의 감소를 나타내는데 이들 결과로부터 L. plantarum의 세포질과 세포벽 획분에 의한 보체계 활성화가 주로 다당 영역에 기인함을 알수 있었다. 한편 anti-human C3를 이용한 2차원 면역전기영동에 의해, $Ca^{++}$ 이온을 제거한 상태에서도 세포질과 세포벽 획분에 의한 C3 활성화 산물을 동정할 수 있었다. 또한 L. plantarum의 세포벽 획분에 의한 항보체 활성은 동일 조건에서 활성을 유지한 반면, 세포질 획분에 의한 활성화 정도는 동일 조건에서 상당히 감소하였다. 이상의 결과로부터 L. plantarum 세포벽 획분의 보체계 활성화 양식은 주로 alternative pathway의 활성화에 의한 것이며, 세포질 획분에 의한 활성화는 classical pathway와 alternative pathway 양 경로를 경유함을 알 수 있었다.

Keywords

References

  1. Jung, C.M. and Kang, K.H. Industrial utilization and future pros-pect of lactic acid bacteria. Bioindustry News (Kor.) 12: 16-22(1999)
  2. Femandes, C.F., Shahani, K.M. and Amer, M.A. Therapeutic role of dietary lactobacilli and lactobacilli fermented dairy products.FEMS Microbiol. Rev. 46: 343-356 (1987) https://doi.org/10.1111/j.1574-6968.1987.tb02471.x
  3. Fuller, R. Probiotics in human medicine. Gut 32: 439-442 (1991) https://doi.org/10.1136/gut.32.4.439
  4. Chandan, R.C. Enhancing market value of milk by adding cul tures. J. Dairy Sci. 74: 2082-2088 (1999) https://doi.org/10.3168/jds.S0022-0302(91)78380-X
  5. Sanders, M.E. Probiotics. Food Technol. 53: 67-77 (1999)
  6. Bogdanov, I.G., Dalev, P.G., Gurevich, L.A., Kolosov, M.N.,Malkov, V.R, Plemyannikova, L.A. and Sorokina, I.B. Antitumor glycopeptides from Lactobacillus bulgaricus cell wall. FEBS Lett 57: 259-261(1975) https://doi.org/10.1016/0014-5793(75)80312-7
  7. Goldin, B.R. and Gorbach, S.L. The effect of Lactobacillus aci-dophitus dietary supplements on 1,2-dimethylhydrazine dihydro-chloride-induced intestinal cancer in rats. J. Natl. Cancer Inst. 73: 263-265 (1980)
  8. Kato, I., Kobayashi, S., Yokokura, T. and Mutai, M. Antitumor activity of L. casei in mice. Gann 72: 517-523 (1981)
  9. Friend, B.A. Farmer, R.E. and Shahani, K.M. Effect of feeding and intraperitoneal implantation of yogurt culture cells of Ehrilich ascites tumor. Milchwissenschaft 37: 708-714 (1982)
  10. Rao, C.V., Sanders, M.E., Indranie, C., Simi, B., and Reddy, B.S.Prevention of indices of colon carcinogenesis by the probiotic Lactobacillus acidophilus NCFM in rats. Int. J. Oncol. 14: 939-944(1999)
  11. Fernandes, C.F. and Shahani, K.M. Anticarcinogenic and imimu-nological properties of dietary lactobacilli. J. Food Prot. 53: 704-710(1990) https://doi.org/10.4315/0362-028X-53.8.704
  12. Perdigon, G., Elena, M., Alvrez, S., Medici, G., Oliver, G. and Holgado, A. Effect of a mixture of Lactobacillus casei and Lac-tobacillus acidophilus administered orally on the immune system in mice. J. Food Prot. 49: 986-989 (1986) https://doi.org/10.4315/0362-028X-49.12.986
  13. Rangavajhyala, N., Shahani, K.M., Sridevi, G. and Srikumaran, S.Nonlipopolysaccharide component(s) of Lactobacillus acidophilus stimulates the production of interlukin-l$\alpha$ and tumor necrosis fac-tor-$\alpha$ by murine macrophages. Nutr. Cancer 28: 130-134 (1997) https://doi.org/10.1080/01635589709514564
  14. Matsuzaki, T, Yamazaki, R., Hashimoto, S. and Tokokura, T. The effect of oral feeding of Lactobacillus casei strain Shirota on immunoglobulin E production in mice. J. Dairy Sci. 81: 48-53 (1998) https://doi.org/10.3168/jds.S0022-0302(98)75549-3
  15. Gill, H.S., Rutherfurd, K.J., Prasad, J. and Gopal, P.K. Enhance-ment of natural and acquired immunity by Lactobacillus rhamno-sus (HNOOl), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br. J. Nutr. 83: 167-176 (2000) https://doi.org/10.1017/S0007114500000210
  16. Yamada, H. and Kiyohara, H. Bioactive polysaccharides from Chinese herbal medicines. Abstracts of Chinese Medicines 3: 104-124 (1989)
  17. Suzuki, I., Hashimoto, K., Oikawa, S., Sato, K., Osawa, M. and Yadomae, T. Antitumor and immunomodulating activites of a $\beta$-glucan obtained from liquid-cultured Grifola flondosa. Chem. Pharm. Bull. 37: 410-413 (1980)
  18. Okuda, T, Yoshioka, Y., Ikekawa, T., Chihara, G. and Nishioka, K. Anticomplementary acitivity of antitumor polysaccharides. Nature New Biol. 238: 59-64 (1972) https://doi.org/10.1038/238059a0
  19. Ito, H. Effects of the antitumor agents from various natural sources on drug-metabolizing system. Phagocytic activity and complement system in sarcoma 180-bearing mice. Japan. J. Phar-macol. 40: 435-443 (1986) https://doi.org/10.1254/jjp.40.435
  20. Whaley, K. The complement system, pp. 1-35. In: Complement in Health and Disease. Whaley, K. (ed.). MTP Press, Lancaster, USA(1986)
  21. Ikeda, K... Sannoh, T., Kawasaki, N., Kawasaki, T. and Yamash-ina, I. Serum lectin with known structure activates complement through the classical pathway. J. Biol. Chem. 262: 7451-7454 (1987)
  22. Egwang, T.G. and Befus, A.D. The role of complement in the induction and regulation of immune responses, Immunology 15: 207-224 (1984)
  23. Kabat, E.A. and Mayer, M.M. Complement and complement fixa-tion, pp. 133-240. In: Experimental Immunochemistry. 2nd ed. Charles, C. (ed.). Thormas Publisher, Illinois, USA (1971)
  24. Shin, K.S. Studies on selection, purification and action modes of anti-complementary polysaccharides from Arecae Pericarpium. Ph.D. Dissertation, Korea Univ., Korea (1992)
  25. Shimura, K., Ito, H. and Hibasami, H. Screening of host-mediated antitumor polysaccharides by crossed immunoeletrophoresis using fresh human sernm. Japan, J. Pharmacol. 33: 403-408 (1983) https://doi.org/10.1254/jjp.33.403
  26. Mheen, T. I. and Kwon, T.W. Effect of temperature and salt con centration on kimchi fermentation. Korean J. Food Sci. Technol. 16:443-450 (1984)
  27. Son, T.J., Kim, J.S. and Park, K.Y. 1998. Antimutagenic activites of lactic acid bacteria isolated from kimchi. J. Korean Assoc. Cancer Prev. 3: 65-74 (1998)
  28. Shin, K.S., Chae, O.W., Park, I.C., Hong, S.K. and Choe, T.B. Antitumor effects of mice fed with cell lysate of Lactobacillus plantarum isolation from kimchi. Korean J. Biotechnol. Bioeng. 13:357-363(1998)
  29. Park, I.S. Function and physiological characteristics of lactic acid bacteria isolated from kimchi. Ph.D. Dissertation, Chung-Ang Univ., Korea (1992)
  30. Park, K.Y., Kim, S.H. and Son, T.J. Antimutagenic activities of cell wall and cytosol fractions of lactic acid bacteria isolated from kimchi. J. Food Sci. Nutr. 3: 329-333 (1998)
  31. Nagaoka, M, Muto, M, Nomoto, K, Matuzaki, T, Watanabe, T,Yokokura, T. Structure of polysaccharide-peptidoglycan complex from the cell wall of Lactobacillus casei YIT9018. J. Biochem. 108: 568-571 (1990) https://doi.org/10.1093/oxfordjournals.jbchem.a123243
  32. Gerard, W.R., Hans, L.J., Dick, J.C., Han, H., Johannis, P.K. and Vligenthart, J.F.G. Structural studies of the exopolysaccharide produced by Lactobacillus paracasei 34-1. Carbohydr. Res. 285: 129-139 (1996) https://doi.org/10.1016/S0008-6215(96)90178-0
  33. Czop, J.K. and Austin, K.F. A $\beta$-glucan inhibitable receptor on human monocytes: Its identity with the phagocytic receptor for particulate activators of the alternative complement pathway J.Immunol. 134: 2588-2593 (1996)