키토산 첨가에 따른 식빵의 품질 변화

Changes of Quality Characteristics on the Bread added Chitosan

  • 이현영 (부경대학교 식품생명공학부.수산식품연구소) ;
  • 김성미 (부경대학교 식품생명공학부.수산식품연구소) ;
  • 김진영 (부경대학교 식품생명공학부.수산식품연구소) ;
  • 윤선경 (부경대학교 식품생명공학부.수산식품연구소) ;
  • 최정수 (부경대학교 식품생명공학부.수산식품연구소) ;
  • 박선미 (부경대학교 식품생명공학부.수산식품연구소) ;
  • 안동현 (부경대학교 식품생명공학부.수산식품연구소)
  • Lee, Hyun-Young (Faculty of Food Science & Biotechnology/Institute of Sea Food Science, Pukyong National University) ;
  • Kim, Seong-Mi (Faculty of Food Science & Biotechnology/Institute of Sea Food Science, Pukyong National University) ;
  • Kim, Jin-Young (Faculty of Food Science & Biotechnology/Institute of Sea Food Science, Pukyong National University) ;
  • Youn, Sun-Kyoung (Faculty of Food Science & Biotechnology/Institute of Sea Food Science, Pukyong National University) ;
  • Choi, Jung-Su (Faculty of Food Science & Biotechnology/Institute of Sea Food Science, Pukyong National University) ;
  • Park, Sun-Mee (Faculty of Food Science & Biotechnology/Institute of Sea Food Science, Pukyong National University) ;
  • Ahn, Dong-Hyun (Faculty of Food Science & Biotechnology/Institute of Sea Food Science, Pukyong National University)
  • 발행 : 2002.06.01

초록

식빵에 분자량이 다른 키토산을 첨가량을 달리하여 제조하면서 부피팽창도, pH, 수분활성도, 색도 및 물성 등의 품질특성을 측정하였다. 키토산을 첨가한 반죽을 발효시켜 부피팽창도를 측정한 결과, 분자량 약 30과 120 kDa의 키토산을 첨가한 경우에 부피가 큰 것으로 나타났고, 특히 30 kDa의 키토산을 첨가한 경우에 부피팽창효과는 가장 컸다. 그러나 분자량 약 120 kDa의 키토산을 고농도(0.50%)로 첨가한 경우에는 부피가 크게 감소하였다. 식빵의 pH는 첨가한 키토산의 분자량 및 농도에 따른 차이가 거의 없는 것으로 나타났다. 저장 초기, 키토산을 첨가한 식빵의 수분활성이 키토산을 첨가하지 않은 식빵의 수분활성에 비해 낮았으나 저장 중에는 키토산을 첨가하지 않은 식빵의 수분활성이 크게 감소하는데 반해 키토산을 첨가한 식빵의 수분활성은 그다지 감소하지 않고 유지되었다. 색은 분자량 약 30 kDa의 키토산을 첨가한 경우에 식빵 내 외부의 $L^{\ast},\;a^{\ast},\;b^{\ast}$값에 거의 영향을 미치지 않는 것으로 나타났다. 식빵의 물성은 분자량 약 30 kDa의 키토산을 첨가한 경우에는 gumminess와 chewiness가, 분자량 약 120 kDa의 키토산을 첨가한 경우에는 gumminess, chewiness, cohesiveness, resilience가 증가하였다. Hardness는 분자량 약 30, 120 kDa의 키토산을 첨가한 경우, 저장 초기에는 키토산을 첨가하지 않은 경우에 비해 높게 나타났다. 저장 중 키토산을 첨가하지 않은 경우에는 hardness가 크게 증가했으나, 키토산을 첨가한 경우에는 hardness의 증가정도가 낮았고, 첨가 키토산의 분자량이 클수록 hardness의 증가정도가 낮게 유지되었다. 이상의 결과를 종합해 볼 때, 분자량 약 30, 120 kDa의 키토산을 첨가한 경우 반죽의 부피를 크게 할 뿐만 아니라 저장 기간 중 경도 변화를 낮게 유지하였고, 수분활성이 안정하게 유지되는 등 품질향상효과가 있었으며, pH나 색에는 큰 영향을 주지 않아 좋은 효과가 있었다. 특히 이러한 효과는 분자량 약 30 kDa의 키토산 첨가 시 가장 뛰어났다.

This was studied to evaluate the quality characteristics of the bread added chitosan during storage at room temperature(Temp. $27^{\circ}C{\pm}2$, RH $75%{\pm}10$). The volume of the dough was increased depending on the larger molecular weight and the higer concentration of chitosan but was decreased at 0.50% of 120 kDa chitosan. The water activity was low depending on the larger molecular weight and the higher concentration of chitosan at the early storage, but maintained constantly during storage totally. The colors of the bread was hardly affected by 30 kDa of chitosan. Textural characteristics was improved at 30 kDa and 120 kDa of chitosan. Especially, the change of the hardness were maintained lower at 30 kDa, 120 kDa of chitosan during storage than that of standard. These results showed that the quality of the bread by added 30 kDa of chitosan was improved highly.

키워드

참고문헌

  1. National health and nutrition survey-nutrition survey. p. 141 Ministry of health and welfare/Korea health industry development institute (1998)
  2. Choi, O.J., Kim, Y.D., Kang, S.K., Jung, H.S., Ko, M.S. and Lee, H.C. Properties on the quality characteristics of bread added with Angelica keiskei Koidz flour. J. Korean Soc. Food Sci. Nutr. 28: 118-125 (1999)
  3. Bae, J.H., Woo, H.S., Choi, H.J. and Choi C. Qualities of bread added with Korean persimmon (Diospyros kaki L. folium) leaf powder, J. Korean Soc. Food Sci. Nutr. 30: 882-887 (2001)
  4. Jung, H.S., Noh, K.H., Go, M.K. and Song, Y.S. Effect of leek (Allium tuberosum) Powder on physicochemical and sensory characteristics of breads. J. Korean Soc. Food Sci. Nutr. 28: 113-117 (1999)
  5. Choi, O.J., Jung, H.S., Ko, M.S., Kim, Y.D., Kang, S.K. and Lee, H.C. Variation of retrogradation and preference of bread with added flour of Angetica keiskei Koidz during the storage. J. Korean Soc. Food Sci. Nutr. 28: 126-131 (1999)
  6. Kim, J.S. Effect of aloe powder on the moisture and pH of fermented pan bread. J. Indust. Technol. 6: 205-208 (1998)
  7. Yook, H.S., Kim, Y.H., Ahn, H.J., Kim, D.H., Kim, J.O. and Byun, M.W. Rheological properties of wheat Qour dough and qualities of bread prepared with dietary fiber purified from ascidian (Halocynthia roretzi) tunic. Korean J. Food Sci. Technol. 32: 387-395 (2000)
  8. Hwang, J.K., Kim, C.T, Cho, S.J. and Kim, C.J. Effects of various thermal treatments on physicochemical properties of wheat bran. Korean J. Food Sci. Technol. 27: 394-403 (1995)
  9. Jeong, Y.N., Kang, H.A. and Shin, M.G. Quality characteristics of the bread added anchovy powder. Food Eng. Prog. 5: 235-240 (2001)
  10. Knorr, D. Functional properties of chitin and chitosan. J. Food Sci. 47: 593-595 (1982) https://doi.org/10.1111/j.1365-2621.1982.tb10131.x
  11. Dodane, V, Khan, M.A. and Merwin, J.R. Effect of chitosan on epithelial permeability and structure, Int. J. Pharm. 182: 21-32 (1999) https://doi.org/10.1016/S0378-5173(99)00030-7
  12. Ilyina, A.V, Tatarinova, N.Y. and Varlamov, V.P. The preparation of low-molecular-weight chitosan using chitinolytic complex from Streptomyces kurssanovii. Pro. Biochem. 34: 875-878 (1999) https://doi.org/10.1016/S0032-9592(99)00022-9
  13. Lee, J S. Broadcasting effect of chitosan solution on dry matter production in Ladino clover (Trifolium repens). Korean J. Organic Agric. 4: 79-85 (1995)
  14. Ikeda, I., Sugano, M., Yoshida, K., Sasaki, E., Iwamoto, I. andHatano, K. Effects of chitosan hydrolysates on lipid absorption and on serum and liver lipid concentration in rats. J. Agric. Food Chem. 41: 431-435 (1993) https://doi.org/10.1021/jf00027a016
  15. Sugano, M., Fujikawa, T., IIiratsuji, Y., Nakashima, K., Fukuda, N. and Hasegawa, Y. A novel use of chitosan as a hypocholesterolemic agent in rats. Am. J. Clin. Nutr. 33: 787-793 (1980) https://doi.org/10.1093/ajcn/33.4.787
  16. Lee, J.K., Kim, S.U. and Kim, J.H. Modification of chitosan to improve its hypocholesterolemic capacity. Biosci. Biotech. Biochem. 63: 833-839 (1999) https://doi.org/10.1271/bbb.63.833
  17. Rhoades, J. and Roller, S. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl. Environ. Microbiol. 66: 80-86 (2000) https://doi.org/10.1128/AEM.66.1.80-86.2000
  18. Wang, G.H. Inhibition and inactivation of five species of foodborne pathogens by chitosan. J. Food Prot. 55: 916-919 (1992) https://doi.org/10.4315/0362-028X-55.11.916
  19. Sudarshan, N.R., Hoover, D.G. and K-norr, D. Antibacterial action of chitosan. Food Biotech. 6: 257-272 (1992) https://doi.org/10.1080/08905439209549838
  20. Yun, Y.S., K-im, K.S. and Lee, Y.N. Antibacteral and antifungal effect of chitosan. J. Chitin. Chitosan. 4: 8-14 (1999)
  21. Sanford, P.A. Chitosan, commercial uses and potential applications. pp. 51-69. In: Proc. 4th Int. Conf. on Chitin/chitosan held in Trondlheim, Norwey (1988)
  22. Ito, M., Ban, A. and Ishihara, M. Anti-ulcer effects of chitin and chitosan, healthy foods, in rats. Japan J. Pharmacol. 82: 218-225 (2000) https://doi.org/10.1254/jjp.82.218
  23. Lee, H.S., Park, H.Y, Choi, Y.J., Jung, Kim, J.J., Jung., B.O. and Chung, S.J. Effect of chitosan on bread properties and shelf life. Appl. Chem. 4: 133-136 (2000)
  24. Bough, W.A. Chitosan-a polymer from seafood wastes for use in treatment of food processing wastes and activated sludge, Process Biochem. 11: 13-18 (1976)
  25. No, H.K. and Meyers, S.P. Crawfsh chitosan as a coagulant in recovery of organic compounds from seafood processing streams. J. Agric. Food Chem. 37: 580-586 (1989) https://doi.org/10.1021/jf00087a002
  26. Li, Q., Dunm, E.T, Grandmaision, E.W. and Goosen, M.F.A. Applications and properties of chitosan. J. Bioact. Comp. Poly. 7: 370-375 (1980)
  27. Rodriguez, M.S., Albertengo, L.A. and Agullo, E. Emulsification capacity of chitosan. Carbohydr. Polym. 48: 271-276 (2002) https://doi.org/10.1016/S0144-8617(01)00258-2
  28. Lee, M.H. and No, H.K. Effect of chitosan on shelf-life and quality of buckwheat starch jelly. J. Korean Soc. Food Sci. Nutr. 30: 865-869 (2001)
  29. Kataoka, J., Ishizaki, S. and Tanaka, M. Effects of chitosan on gelling properties of low quality surimi. J. Muscle Foods. 9: 209-220 (1998) https://doi.org/10.1111/j.1745-4573.1998.tb00656.x
  30. Roller, S. and Covill, N. The antimicrobial properties of chitosan in mayonnaise and mayonnaise-base shrimp salads. J. Food Prot 63: 202-209 (2000) https://doi.org/10.4315/0362-028X-63.2.202
  31. Park, J.W., Kang, S.G., Oho, S.W., Park, S.Y., Jung, S.T, Park, Y.K., Rhim, J.W. and Ham, K.S. Effect of chitosan treatment on the quality of dried layers. Korean J. Food Sci. Technol. 31: 1115-1119 (1999)
  32. Youn, S.K., Park, S.M. and Ahn, D.H. Studies on the improvement of storage property in meat sausage using chitosan-II, Difference of storage property by molecular weight of chitosan. J. Korean Soc. Food Sci. Nutr. 29: 849-853 (2000)
  33. Lee K.H. and Lee, Y.C. Effect of carboxymethyl chitosan on quality of fermented pan bread. Korean J. Food Sci. Technol. 29: 96-100 (1997)
  34. Lee, J.W. and Lee, Y.C. The physico-chemical and sensory properties of mike with water soluble chitosan. Korean J. Food Sci. Technol. 22: 806-813 (2000)
  35. Kim, G.E. and Cho, M.G. Chitin contents and antibacterial activity of chitosan extracted from biomass. Korean J. Microbiol. Biotechnol. 22: 643-645 (1994)
  36. Knorr, D. Use of chitinous polymers in food. Food Tech. 38: 85-96 (1984)
  37. Cho, Y.L, No, H,K. and Meyers, S.P. Physicochemical character istics and functional properties of various commercial chitin and chitosan products. J. Agric. Food Chem. 46: 3839-3843 (1998) https://doi.org/10.1021/jf971047f