Optimization of Onion Oil Microencapsulation by Response Surface Methodology

반응표면분석법에 의한 양파유 미세캡슐화 공정의 최적화

  • Hong, Eun-Mi (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Yu, Mun-Gun (Test and Analysis Laboratory, Seoul Regional Food and Drug Administration) ;
  • Noh, Bong-Soo (Department of Food and Microbial Technology, Seoul Women's University) ;
  • Chang, Pahn-Shick (Department of Food Science and Technology, Seoul National University of Technology)
  • 홍은미 (서울산업대학교 식품공학과) ;
  • 유문균 (서울지방식품의약품안전청) ;
  • 노봉수 (서울여자대학교 식품미생물공학과) ;
  • 장판식 (서울산업대학교 식품공학과)
  • Published : 2002.06.01

Abstract

Using agar and gelatin as wall materials, onion oil was microencapsulated using the extrusion spraying technology. A sensitive methodology was developed for quantitative determination of the microencapsulation yield through ethyl acetate extraction and gas chromatographic analyses. Optimal conditions for the microencapsulation process consisting of the ratio of [core material, Cm] to [wall material, Wm] ($X_1$), temperature of dispersion fluid ($X_2$), detergent concentration in dispersion fluid ($X_3$), and concentration of emulsifier $(X_4)$ were determined using response surface methodology. The regression model equation for the yield of microencapsulation (Y, %) of onion oil could be predicted as $Y\;=\;97.028571-0.775000\;(X_1)-0.746726\;(X_1){\cdot}(X_1)\;-\;1.100000\;(X_3){\cdot}(X_2)$. The optimal conditions for the microencapsulation of the onion oil were determined as the ratio of [core material] to [wall material] of 4.5 : 5.5 (w/w), the temperature of dispersion fluid of $17.1^{\circ}C$ detergent concentration in dispersion fluid of 0.03%, and the concentration of emulsifier of 0.42%. Results revealed the most stable microcapsule of onion oil could be formed with the highest yield of microencapsulation (more than 95%) under optimal conditions.

생체내에서 각종 생리활성이 있는 양파유의 기능성 및 저장성 향상을 위하여 agar와 gelatin이 혼합되어 있는 물질을 피복물질로 사용하여 양파유(중심물질)를 미세하게 캡슐화하는 작업을 수행하였으며, 먼저 양파유 미세캡슐화 수율을 예민하게 측정할 수 있는 방법을 ethyl acetate 추출 및 gas chromatography 기술을 사용하여 확립하였다. 확립된 미세캡슐화 수율 측정법을 사용하여 양파유 미세캡슐화를 위한 제반 공정조건들, 즉 [중심물질, Cm] : [피복물질, Wm]의 비율($X_1$), 분산액의 온도($X_2,\;^{\circ}C$), 분산액내의 detergent 농도($X_3$, %(w/v)), 유화체의 농도($X_4$, %(w/w)) 등의 최적화를 수행하였으며, 공정 최적화를 위해서는 반응표면분석법(response surface methodology, RSM)을 이용하였다. RSREG 처리 결과, 4가지 독립변수가 각각 변화함에 따른 미세캡슐화 수율(Y, %)에 대한 회귀식은 $Y=97.028571-0.775000(X_1)-0.746726(X_1){\cdot}(X_1)-1.100000(X_3){\cdot}(X_2)$으로 표현되었으며, 반응표면분석 결과 양파유 미세캡슐화를 위한 최적화 조건으로서 [중심물질, Cm] : [피복물질, Wm]의 비율은 4.5 : 5.5(w/w), 분산액의 온도는 $17.1^{\circ}C$, 분산액내 detergent농도는 0.037%(w/w), 유화제(sorbitan monolaurate, HLB 16.7)의 농도는 0.42%(w/w)인 것으로 판명되었으며(미세캡슐화 수율의 최대 예측값은 95.7%), 이상의 최적조건하에서 양파유 미세캡슐화를 실제 수행한 결과 96.2%의 미세캡슐화수율 실측값을 얻을 수 있었다. 따라서, RSM에 의하여 결정된 미세캡슐화 최적 조건은 ${\pm}5%$ 오차범위내에서의 높은 신뢰성을 갖는 것으로 판명되었으며, 실제 미세캡슐화 공정에 적용가능한 것으로 판단되었다.

Keywords

References

  1. Kim, J.W., Hong, J.W. and Byun, D.S. Oxidation stability model of fish oil. J. Korean Soc. Food Nutr. 24: 384-388 (1994)
  2. Chang, P.S. Structure of Lipids p. 30. In: Lipid Chemistry. Seoul National University of Technology press, Seoul (1998)
  3. Han, D.S., Yi, O.S. and Shin, H.K. Effect of naturally occumng antioxidants on the oxidative stability of fish oil. Korean J. Food Sci. Technol. 23: 433-436 (1991)
  4. Risch, S.J. Encapsulation. pp. 2-7. In: Encapsulation and Controlled Release of Food Ingredients. American Chemical Society symposium series No 590,Washington, DC, USA (1995)
  5. Versic R.J. Flavor Eneapsulation. pp. 1-6. In: Flavor Encapsulation. American Chemical Society symposium series No. 370, Washington, DC, USA (1988)
  6. Kim, H.J., Lee, K.W., Baick, S.J., Kwak, H.S. and Kang, J.O. Studies on the microencapsulation of 0)-3 polyunsaturated fatty acid. Korean J. Food Sci. Technol. 28: 743-749 (1996)
  7. Claypool, L.L. Functional role of components of dairy products in processed cereal products. pp. 83-89. In: Dairy Products for the Cereal Processing Industry. American Association of Cereal Chemists (1984)
  8. Pauletti, M.S. and Amestoy, P. Butter microencapsulation as affected by composition of wall material and fat. J. Food Sci. 64: 279-282 (1999) https://doi.org/10.1111/j.1365-2621.1999.tb15882.x
  9. Harangi, J. and Nanasi, P. Measurement of the oil in inclusion complexes with cyclodextrin by means of capillary gas chromatography. Analytica Chimica Acta 156: 103-109 (1984) https://doi.org/10.1016/S0003-2670(00)85541-5
  10. Song, S.H. Optimum condition for microencapsuSation of garlic oil and red pepper oleoresin. M.S. thesis, Seoul National University,Seou1, Korea (1992)
  11. Snyder, L.R. Classification of the solvent properties of common liquids. J. Chromatogr. 92: 223-229 (1974) https://doi.org/10.1016/S0021-9673(00)85732-5
  12. Chang, P.S. and Cho, G.B. Optimization of the conditions for the O/W emulsion containing $\omega$-3 polyunsaturated fatty acid. Korean J. Food Sci. Technol. 30: 1114-1119 (1998)
  13. Han, D.S. Characteristics of lipase from Candida rugosa and hydrolysis of triglycerides by the enzyme in the AOT-isooctane reversed micellar system. Ph.D. dissertation, Korea Advanced Institute of Sci. and Technol., Seoul (1986)
  14. Park, D.G. p. 354. In: Experimental Design, Jayu academy, Seoul (1995)
  15. Baek H.H. and Cadwallader, K.R. Enzymatic hydrolysis of crayfish processing by-products. J. Food Sci. 60: 929-935 (1995) https://doi.org/10.1111/j.1365-2621.1995.tb06264.x
  16. SAS Institute, Inc. SAS User's Guide. Statistical Analysis System Institute, Cary, NC, USA (1990)
  17. Park, J., Rhee, K.S., Kim, B.K. and Rhee, K.C. Single-screw extrusion of defatted soy flour, com starch and raw beef blends. J. Food Sci. 58: 9-20 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb03201.x