Improvement of Cheongju Manufacturing Process Using Gelatinized Rice and Zeolite

팽화미분과 zeolite를 이용한 청주 제조공정의 개선

  • Seo, Min-Jae (Research and Development Center, Doosan Corporation) ;
  • Ryu, Sang-Ryeol (Department of Food Science and Technology, Seoul National University)
  • Published : 2002.08.01

Abstract

In order to improve a complicated Cheongju manufacturing process, saccharification process with gelatinized rice flour was employed during a Cheongju fermentation. High sugar content without unsaccharified residue appeared to impede the yeast growth and fermentation. To solve this problem, addition of zeolite to the saccharifying solution containing 20% (w/v) sugar and fed-batch system were employed. These adjustments resulted in a increase of yeast viability and 40% time-saving alterations of fermentation. The Cheongju, having 18% (v/v) of ethanol content and fresh and rich flavor, could be made in 12 days. Yeast cells recovered from the fermentation precipitates could be reused up to four times without any adverse effect on cell viability, alcohol production, and flavor of the product. The complicated conventional brewing process of Cheongju can thus be simplified effectively.

공정이 복잡한 청주제조공정을 개선하기 위하여 일반 미분과는 물성이 전혀 다른 팽화미분을 사용하여 새로운 청주제조공정을 개발하였다. 당화액으로부터 고형분을 제거하고 28%(w/v)의 당농도에서 발효를 시작한 경우 효모의 생육이 늦어지며 발효기간이 길어지는 문제점이 발생하였다. 이러한 문제점을 해결하기위하여 20%(w/v)의 당액에 zeolite를 첨가하여 발효를 시작하고, 발효 중 2회에 걸쳐 영양원을 첨가하였다. 이러한 조정으로 효모의 생존율을 증가시켰으며, 총 발효기간을 40%(percent) 감소시킬 수 있었다. 상쾌하고 깊은 맛을 갖으며, 알코올 함량이 18%(v/v)인 청주를 12일 만에 제조할 수 있었다. 발효 침전물로부터 회수한 효모를 4번까지 재사용하여 발효를 실시하였으며, 이 경우 효모의 생존율, 알코올 생성, 향기성분 등의 변화 등이 관찰되지 않아 효모의 재사용이 가능하였다. 따라서 복잡한 방법으로 제조되는 전통적인 청주제조공정을 간단하며 효율적인 방법으로 개선할 수 있었다.

Keywords

References

  1. Yamashita, M. and Yoshimatsu, T. The appearance on earth and development of cereal koji and cereal alcoholic beverages. Seibutsu-kogaku 72: 443-451 (1994)
  2. Imayasu, S., Hata, Y., Oishi, K., Kawato, A. and Suginami, K. Sake brewing using the liquefied product of rice slurry as raw material (Kakemai). Nippon Nogeikagaku Kaishi 63: 971-979(1989) https://doi.org/10.1271/nogeikagaku1924.63.971
  3. Akita, O., Ohba, T. and Nakamura, K. Making of saccharified solution used for fermentation following after sacchanfication, part 1. J. Brew. Soc. Japan 81: 396-401 (1986) https://doi.org/10.6013/jbrewsocjapan1915.81.396
  4. Akita, O., Ohba, T. and Nakamura, K. Studies on conditions of fermentation following after saccharification (1), Part 2. J. Brew. Soc. Japan 81: 402-408 (1986) https://doi.org/10.6013/jbrewsocjapan1915.81.402
  5. Akita, O., Ohba, T. and Nakamura, K. Studies on conditions of fermentation following after saccharification (2), Part 3. J. Brew. Soc.Japan 81:537-543 (1986) https://doi.org/10.6013/jbrewsocjapan1915.81.537
  6. Matsuura, K., Hirotsune, M., Hamachi, M. and Nunokawa, Y. Thermal control strategy for iso-amylacetate formation in sake brewed with a saccharified rice solution. J. Ferment. Bioeng. 74:112-116(1992) https://doi.org/10.1016/0922-338X(92)80011-7
  7. Nakada, R, Hamaji, M. and Honda, T. Effects of promotion fac-tors on flavor formation in a liquified fermented sake. Hakkokogaku 67: 403-409 (1989)
  8. Korn, S.R. and Harper, J.H. Extrusion of corn for ethanol fermen-tation. Biotech. Lett. 4: 417-422 (1982) https://doi.org/10.1007/BF01134588
  9. Ota, T., Kuwahara, K., Obata, T., Imamura, T., Hara, S. and Yoshizawa, K. Brewing of sake using polished gelatinized rice made from parboiled rice grain. J. Brew. Soc. Japan 81: 329-332(1986) https://doi.org/10.6013/jbrewsocjapan1915.81.329
  10. Okamoto, T., Kobayashi, Y., Ono, A., Takahashi, Y. and Tashiro, M. Use of twin screw extruder cooked rice in sake brewing. J. Brew. Soc. Japan 85: 506-513 (1990) https://doi.org/10.6013/jbrewsocjapan1988.85.506
  11. Chou, C. and Rwan, J. Mycelial propagation and enzyme produc-tion in koji prepared with Aspergillus oryzae on various rice extrudates and steamed rice. J. Ferment. Bioeng. 79: 509-512 (1995) https://doi.org/10.1016/0922-338X(95)91273-8
  12. Roque-Malherbe, R., Delgado, R. and Lago, A. Behaviour of yeast fermentation in the presence of zeolite. Biotech. Lett. 9:640-642 (1987) https://doi.org/10.1007/BF01033202
  13. SivaRaman, H., Chandwadkar, A., Baliga, S.A. and Prabhune, A.A. Effect of synthetic zeolite on ethanolic fermentation of sug-arcane molasses. Enz. Microbiol. Technol. 16: 719-722 (1994) https://doi.org/10.1016/0141-0229(94)90096-5
  14. Larue, R, Lafon-Lafourcade, S. and Ribereau-Gayon, P. Relation-ship between the sterol content of yeast cells and their fermentation activity in grape must. Appl. Environ. Microbiol. 39: 808-811(1980)
  15. Chi, Z., Kohlwein, S.D. and Pltauf, F. Role of phophatidylinositol (PI) in ethanol production and ethanol tolerance by a high etha-nol producing yeast. J. Ind. Microbiol. Biotechnol. 22: 58-63(1999) https://doi.org/10.1038/sj.jim.2900603
  16. Castellar, M.R., Aires-Barros, M.R., Cabral, J.M.S. and Iborra, J.L. Effect of zeolite addition on ethanol production from glucose by Saccharomyces bayanus. J. Chem. Technol. Biotechnol. 73:377-384 (1998) https://doi.org/10.1002/(SICI)1097-4660(199812)73:4<377::AID-JCTB973>3.0.CO;2-I
  17. Inahashi, M., Yoshida, K. and Tadenuma, M. Yeast culture condi-tions and the appearance of TTC white strains. J. Brew. Soc. Japan 94: 1006-1015 (1999) https://doi.org/10.6013/jbrewsocjapan1988.94.1006
  18. Murakami, E. Analytical Methods for Brewing, 3rd ed., pp. 6-28 Brewing Society Japan (1984)
  19. Yamashiro, K., Tani, Y. and Fukui, S. Studies on the metabolism of Sacchammyces sake. J. Ferment. Technol. 49: 313-318 (1971)
  20. Chi, Z. and Arneborg, N. Saccharomyces cerevisiae strains with different degrees of ethanol tolerance exhibit different adaptive responses to produced ethanol. J. Ind. Microbiol. Biotechnol. 24:75-78 (2000) https://doi.org/10.1038/sj.jim.2900769
  21. Ouchi, K. Physiological characteristics of yeast in producing high ethanol content. Brew. Soc. Japan 72:667-670 (1977) https://doi.org/10.6013/jbrewsocjapan1915.72.667
  22. Fujii, T., Kobayashi, O., Yoshimoto, H., Furukawa, S. and Tamai,Y. Effect of aeration and unsaturated fatty acid on expression of the Saccharomyces cerevisiae alcohol acetyltransferase gene. Appl. Environ. Microbiol. 63: 910-915 (1997)
  23. Yoshioka, K. and Hashimoto N. Ester formation by alcohol acetyl transferase from brewer's yeast. Agric. Biol. Chem. 45: 2183-2190(1981) https://doi.org/10.1271/bbb1961.45.2183
  24. Peddie, H.A.B. Ester formation in brewery fermentations. J. Inst. Brew. 96: 327-332 (1990) https://doi.org/10.1002/j.2050-0416.1990.tb01039.x
  25. Fukuda, K., Yamamoto, N., Kiyokawa, Y., Yanagiuch, T, Wakai, Y., Kitamoto, K., Inoue, Y. and Kimura, A. Balance of activities of alcohol acetyltransferase and esterase in Saccharomyces cerevi-siae is important for production of isoamyl acetate. Appl. Envi-ron. Microbiol. 64: 4076-4078 (1998)
  26. Lilly, M., Lambrechts, M.G. and Pretorius, I.S. Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl. Environ. Microbiol. 66: 744-753(2000) https://doi.org/10.1128/AEM.66.2.744-753.2000
  27. Yamashiro, K., Nishihara, H., Shimoide, M., Tani, Y. and Fukui, S. Studies on the metabolism of Saccharomyces sake. J. Fennent. Technol. 48: 307-313 (1970)